

IBM VisualAge C++ for OS/2

Open Class Library User's Guide

Version 3.0

S25H-6962-00

ÉÂÔ IBM VisualAge C++ for OS/2

Open Class Library User's Guide

Version 3.0

S25H-6962-00

 Note!

Before using this information and the product it supports, be sure to read the general information under

“Notices” on page xix.

First Edition (May 1995)

This edition applies to Version 3.0 of IBM VisualAge C++ for OS/2 (Programs 30H1664, 30H1665, and 30H1666) and to all

subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for

the level of the product. Consult the latest edition of the applicable IBM system bibliography for current information on this

product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked

at the address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your comments

to:

IBM Canada Ltd. Laboratory

Information Development

2G/345/1150/TOR

1150 Eglinton Avenue East

North York, Ontario, Canada. M3C 1H7

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments electronically to

IBM. Please see “Communicating Your Comments to IBM” for a description of the methods. This page immediately precedes

the Readers' Comment Form at the back of this publication.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it

believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993, 1995. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to

restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xix

Programming Interface Information . xix

Trademarks and Service Marks . xix

About This Book . xxi

Who Should Use This Book . xxi

How to Use This Book . xxii

How to Find Class or Function Descriptions xxii

A Note about Examples . xxiii

Icons Used in This Book . xxiii

Related Documentation . xxiv

Chapter 1. Introduction to IBM Open Class Library 1

History of IBM Open Class Library . 1

Hierarchies of the Class Libraries . 2

Including IBM Open Class Library . 5

Part 1. Complex Mathematics . 7

Chapter 2. Using the Complex Mathematics Classes 9

Review of Complex Numbers . 9

Header Files and Constants for complex and c_exception 10

Constructing complex Objects . 11

Complex Mathematics Input and Output . 11

Mathematical Operators for complex . 13

Equality and Inequality Operators Test for Absolute Equality 14

Assignment Operators Do Not Produce an lvalue 15

Friend Functions for complex . 15

Mathematical Functions for complex . 15

Trigonometric Functions for complex . 17

Magnitude Functions for complex . 17

Conversion Functions for complex . 17

Using the c_exception Class to Handle Complex Mathematics Errors 18

Defining a Customized complex_error Function 19

Errors Handled Outside of the Complex Mathematics Library 20

Linking to the Complex Library . 20

An Example of Using the Complex Mathematics Library 20

Part 2. The I/O Stream Library . 23

 Copyright IBM Corp. 1993, 1995 iii

Chapter 3. Introduction to the I/O Stream Classes 25

Linking to the I/O Stream Classes . 25

The I/O Stream Classes and stdio.h . 25

Overview of the I/O Stream Classes . 25

Combining Input and Output of Different Types 26

Input and Output for User-Defined Classes 26

The I/O Stream Class Hierarchy . 27

The I/O Stream Header Files . 28

Predefined Streams . 29

Anonymous Streams . 30

Stream Buffers . 32

What Does a Stream Buffer Do? . 32

Why Use a Stream Buffer? . 32

How Is a Stream Buffer Implemented? . 32

Format State Flags . 34

Chapter 4. Getting Started with the I/O Stream Library 35

Receiving Input from Standard Input . 35

Multiple Variables in an Input Statement . 36

String Input . 36

White Space in String Input . 37

Incorrect Input and the Error State of the Input Stream 38

Using Input Streams Other Than cin . 38

Displaying Output on Standard Output or Standard Error 38

Multiple Variables in an Output Statement . 39

Using Output Streams Other Than cout, cerr, and clog 40

Flushing Output Streams with endl and flush . 40

Placing endl or flush in an Output Stream . 41

Parsing Multiple Inputs . 42

Opening a File for Input and Reading from the File 43

Constructing an fstream or ifstream Object for Input 44

Reading Input from a File . 45

Opening a File for Output and Writing to the File 46

Chapter 5. Advanced I/O Stream Topics . 47

Associating a File with a Standard Input or Output Stream 47

Using filebuf Functions to Move Through a File 48

Defining an Input Operator for a Class Type . 50

Using the cin Stream in a Class Input Operator 50

Displaying Prompts in Input Operator Code 51

Defining an Output Operator for a Class Type 52

Class Output Operators and the Format State 52

Correcting Input Stream Errors . 54

iv VisualAge C++ Open Class Library User's Guide

Changing the Formatting of Stream Output . 56

ios Methods and Manipulators . 56

Using setf, unsetf, and flags . 57

Changing the Notation of Floating-Point Values 59

Changing the Base of Integral Values . 60

Setting the Width and Justification of Output Fields 61

Defining Your Own Format State Flags . 62

Using the strstream Classes for String Manipulation 64

Chapter 6. Manipulators . 67

Introduction to Manipulators . 67

Simple Manipulators and Parameterized Manipulators 67

Creating Simple Manipulators for Your Own Types 68

Creating Parameterized Manipulators for Your Own Types 69

Part 3. The Collection Class Library 73

Chapter 7. Overview of the Collection Class Library 75

Concrete Classes Provided by the Library . 75

Benefits of the Collection Class Library . 79

Types of Classes in the Collection Class Library 80

Flat Collections . 80

Ordering of Collection Elements . 82

Access by Key . 82

Equality for Keys and Elements . 82

Uniqueness of Entries . 84

Restricted Access . 86

Trees . 87

Auxiliary Classes . 87

The Overall Implementation Structure . 88

Categories of Classes . 89

Default Classes . 90

Variant Classes . 90

Abstract Classes . 91

Reference Classes . 91

Support Classes for Visual Builder for C++ 91

Typed and Typeless Implementation Classes 91

Class Template Naming Conventions . 93

Linking to the Collection Classes . 93

Chapter 8. Instantiating and Using the Collection Classes 95

Instantiation and Object Definition . 95

Bounded and Unbounded Collections . 96

 Contents v

Adding, Removing, and Replacing Elements . 96

Adding Elements . 96

Removing Elements . 97

Replacing Elements . 98

Cursors . 98

Using Cursors for Locating and Accessing Elements 100

Iterating over Collections . 101

Iteration Using Cursors . 101

Iteration Using Iterators . 102

Copying and Referencing Collections . 105

Chapter 9. Element Functions and Key-Type Functions 107

Introduction to Element Functions and Key-Type Functions 107

Using Member Functions . 108

Using Separate Functions . 109

Using Element Operation Classes . 110

Memory Management with Element Operation Classes 114

Functions for Derived Element Classes . 114

Using Pointer Classes . 115

Overview of Pointer Classes . 116

Element Pointers . 118

Managed Pointers . 119

Automatic Pointers . 119

Constructing Pointers from the Pointer Classes 121

Chapter 10. Tailoring a Collection Implementation 125

Introduction . 125

Replacing the Default Implementation . 125

The Based-On Concept . 126

Provided Implementation Variants . 128

Features of Provided Implementation Variants 130

Sequences . 131

Trees . 133

Hash Table . 137

Chapter 11. Polymorphic Use of Collections 139

Introduction to Polymorphism . 139

Using Reference Classes . 140

Chapter 12. Support for Visual Builder for C++ 141

Header Files for Visual Builder Support . 142

Example for IVSequence<IString> . 142

vi VisualAge C++ Open Class Library User's Guide

Chapter 13. Exception Handling . 145

Introduction to Exception Handling . 145

Exceptions Caused by Violated Preconditions 145

Exceptions Caused by System Failures and Restrictions 146

Precondition and Defined Behavior . 146

Levels of Exception Checking . 147

List of Exceptions . 147

The Hierarchy of Exceptions . 149

Chapter 14. Collection Class Library Tutorials 151

Preparing for the Lessons . 152

Lesson 1: Defining a Simple Collection of Integers 153

Lesson 2: Adding, Listing, and Removing Elements 156

Lesson 3: Changing the Element Type . 161

Lesson 4: Changing the Collection . 167

Lesson 5: Changing the Implementation Variant 176

Errors When Compiling or Running the Lessons 179

Other Tutorials . 179

Using the Default Classes . 179

Advanced Use . 180

Source Files for the Tutorials . 180

Chapter 15. Solving Problems in the Collection Class Library 181

Cursor Usage . 182

Element Functions and Key-Type Functions 182

Key Access Function - How to Return the Key (1) 184

Key Access Function - How to Return the Key (2) 185

Definition of Key-Type Functions . 185

Exception Tracing . 186

Declaration of Template Arguments and Element Functions (1) 186

Declaration of Template Arguments and Element Functions (2) 186

Declaration of Template Arguments and Element Functions (3) 187

Default Constructor . 187

Considerations when Linking with Templates 188

Part 4. Data Type and Exception Class Library 189

Chapter 16. Data Types and Exceptions . 191

Organization of Classes . 191

IBase Class . 194

IVBase Class . 194

String and Buffer Classes . 195

DBCS and National Language Support . 195

 Contents vii

Chapter 17. String Classes . 197

Introduction to the String Classes . 197

String Buffers . 198

Double-Byte Character Set Support . 198

Indexing of Strings . 198

What You Can Do with Strings . 199

Creating and Copying Strings . 199

Doing String Input and Output . 202

Concatenating Strings . 202

Finding Words or Substrings within Strings 203

Replacing, Inserting, and Deleting Substrings 204

Determining String Lengths and Word Counts 205

Extending Strings . 206

Converting between Strings and Numeric Data 206

Converting between Strings and Different Base Notations 207

Testing the Characteristics of Strings . 208

Formatting Strings . 210

Other IString Capabilities . 211

IStringTest Class . 211

Chapter 18. Exception and Trace Classes 213

Introduction to the Exception Classes . 213

Characteristics of the Exception Classes . 213

Derivation of the Exception Classes . 214

Situations in Which the Exception Classes Are Used 214

Catching Exceptions Thrown by Class Library Functions 215

An Example of the new Operator Throwing an Exception 215

An Example of the Subscript Operator Throwing an Exception 216

Throwing Your Own Exceptions Using the Exception Classes 217

Macros Used with the Exception Classes . 218

Why Use the Macros? . 219

Using the ITrace Class . 221

Using the Trace Macros to Control Trace Output 221

An Example of Using ITrace . 222

Chapter 19. Date and Time Classes . 225

IDate Class . 225

Creating an IDate Object . 225

Changing an IDate Object . 226

Information Functions for IDate Objects . 226

Testing and Comparing IDate Objects . 226

ITime Class . 227

Creating an ITime Object . 227

viii VisualAge C++ Open Class Library User's Guide

Changing an ITime Object . 227

Information Functions for ITime Objects . 228

Comparing ITime Objects . 228

Writing an ITime Object to an Output Stream 228

Simple Combined Date and Time Example . 229

Part 5. The Database Access Class Library 231

Chapter 20. Using the Database Access Class Library 233

Using Visual Builder Programs . 233

Compiling a Database Part . 233

Using Database Parts in Visual Builder . 234

Accessing the DB/2 Table . 235

Accessing Data in the DB/2 Table . 236

Using C++ Programs . 238

Compiling a Database Part . 238

Accessing the Data in the DB2/2 Table . 240

Using SOM Programs . 244

Compiling the IDL . 245

Accessing the Data in the DB2/2 Table . 246

Chapter 21. Constructing Applications Using Data Access Builder and the

Visual Builder . 255

Sample Applications Description . 255

The CarBrws Application . 255

The CarEdit Application . 255

Creating the Sample Database and the Table 256

Running the Samples . 256

Running CarBrws . 256

Running CarEdit . 256

Generating the Database Parts . 257

Compiling the Database Parts . 258

Building the CarBrws Application . 258

Building the CarEdit Application . 258

Chapter 22. Constructing an Application Using Data Access Builder and

C++ . 259

Running the C++ Stock Sample from a Project 259

Creating the Database and the Table . 259

Generating the Database Classes . 259

Compiling the Database Classes . 260

Running the Application . 260

 Contents ix

Chapter 23. Constructing an Application Using Data Access Builder and

SOM . 261

Running the SOM Stock Sample from a Project 261

Creating the Database and the Table . 261

Generating the Database Classes . 261

Compiling the Database Classes . 262

Running the Application . 262

Part 6. The User Interface Class Library 263

Chapter 24. Using the User Interface Class Library 265

The Contextual Help Feature . 267

User Interface Class Library Conventions . 268

File Names . 268

Class Names and Member Names . 269

Function Return Types and Function Arguments 269

A Note about Samples and Examples . 270

Chapter 25. Summary of Changes . 271

New and Enhanced Classes . 271

New and Enhanced Member Functions . 275

Enhanced Member Functions . 283

Additional Library Enhancements . 287

New Styles . 288

Extended Styles Support . 288

Chapter 26. Introducing the User Interface Class Library 289

Creating Your Own Classes . 290

Understanding the Design Recommendations 291

Reviewing C++ Recommendations . 291

Understanding the User Interface Class Library Recommendations 292

Chapter 27. Creating User Interface Class Library Applications 295

Understanding a User Interface Class Library Application 297

Creating a C++ Source File . 297

Starting Event Processing . 298

Loading Resources into an Application . 299

Recording and Querying Command Line Arguments 300

Compiling and Linking Your User Interface Class Library Application 300

Using the Conversion Tools . 302

Linking an Application to the Open Class Library 302

Rebuilding the Open Class Library DLLs . 303

How to Rebuild . 303

x VisualAge C++ Open Class Library User's Guide

Reserved Pragma Priority Values . 305

Chapter 28. Creating and Using Windows 307

Creating a Frame Window . 307

Changing the Title Bar . 310

Adding a Menu Bar . 311

Creating an Information Area . 313

Adding Styles . 314

Copying Styles . 315

Combining Styles . 315

Testing Styles . 316

Negating Styles . 316

Setting Window Styles . 317

Using Cursor Classes . 318

Specifying Message Box Information . 318

Creating a Message Box . 319

Chapter 29. Creating and Using Text Controls 321

Creating a Static Text Control . 321

Understanding Entry Fields . 322

Creating an Entry Field . 323

Viewing and Editing Multiple-Line Edit (MLE) Fields 326

Creating an MLE . 326

Loading and Saving a File . 329

Positioning the Cursor . 329

Performing Clipboard Operations . 330

Creating Buttons . 331

Understanding Button Types . 332

Creating a Push Button . 332

Creating a Radio Button . 333

Creating a Check Box . 339

Creating a Three-State Check Box . 341

Chapter 30. Creating and Using List Controls 343

Understanding List Box Controls . 343

Using List Boxes . 343

Creating a List Box . 344

Adding or Deleting a List Box Item . 344

Understanding Combination Box Controls . 348

Creating a Combination Box . 349

Understanding Slider Controls . 350

Creating a Slider Control . 352

Understanding Spin Buttons . 356

 Contents xi

Creating a Spin Button . 357

Chapter 31. Creating and Using Canvas Controls 361

Understanding Split Canvases . 361

Creating a Split Canvas . 362

Understanding Set Canvases . 366

Creating a Set Canvas . 367

Understanding Multiple-Cell Canvas . 371

Creating a Multiple-Cell Canvas . 373

Understanding View Ports . 377

Creating a View Port . 377

Chapter 32. Creating and Using File and Font Dialogs 381

Specifying File Dialog Information . 381

Creating a File Dialog . 382

Specifying Font Dialog Information . 384

Creating a Font Dialog . 385

Chapter 33. Creating Menus . 387

Creating Menu Bars and Pull-Down Submenus 387

Understanding Pop-Up Menus . 387

Creating Pop-Up Menus . 388

System Menu . 395

Chapter 34. Creating and Using Notebooks 397

Understanding the Default Notebook Styles . 397

Creating a Notebook . 400

Specifying Notebook Styles . 401

Removing Notebook Pages . 403

Changing Notebook Colors . 403

Chapter 35. Creating and Using Containers 405

Understanding Containers . 405

Creating Container Objects . 406

Adding and Removing Container Objects . 407

Sharing Objects Among Containers . 409

Filtering Container Objects . 411

Accessing Container Objects Using an Object Cursor 412

Changing Views in a Container . 414

Defining the Details View Using Container Columns 415

Creating a Pop-Up Menu in a Container . 417

Chapter 36. Supporting Direct Manipulation 419

xii VisualAge C++ Open Class Library User's Guide

Using Default Direct Manipulation Support . 421

Using Defaults for Entry Fields and MLEs 421

Using Defaults for Containers . 422

Enabling Default Support . 423

Using Defaults for Tool Bars . 423

Understanding Drag Items . 425

Understanding Drag Item Provider . 425

Using Rendering Mechanisms and Formats 426

Using Drag Item Types . 429

Enabling Direct Manipulation for an Entry Field or MLE 430

Enabling Direct Manipulation for a Container 431

Enabling Drag and Drop . 439

Enabling a Control as a Drop Target . 439

Enabling a Control as a Drag Source . 447

Enabling a Control as a Drag Source and a Drop Object 449

Enabling a Control to Support a Workplace Shell Shredder Object 450

Enabling a Control to Support a Workplace Shell Printer Object 450

Enabling a Control for Workplace Shell File Support 451

Setting and Querying the Drag Operation . 453

Adding Images to Drag Items . 453

Drag Image Resources for stack3AndFade 455

Setting the Target Emphasis . 456

Debugging Direct Manipulation within an Application 456

Chapter 37. Defining Application Resources 459

Using Window Resources . 459

Understanding Dialog Templates . 460

Accessing Bitmap and Icon Resources . 460

Adding Keyboard Accelerators . 461

Understanding Accelerator Tables . 462

Creating an Accelerator-Table Resource . 462

Converting Resource Files . 463

Supporting Double-Byte Character Set and Multiple Languages 464

Creating DBCS-Enabled Applications . 464

Chapter 38. Adding Events and Event Handlers 467

Processing Events Using Handlers . 468

Extracting Information from Events . 472

Writing an Event Handler . 473

Extending Event Handling . 475

Understanding More About Writing Handlers 479

Handling Mouse Events . 481

 Contents xiii

Chapter 39. Understanding Fonts . 487

Constructing Fonts . 487

Creating an IFont Object with a Specific Name 487

Creating an IFont Object Using a Window’s Font 487

Chapter 40. Adding Clipboard Support . 489

Creating the Clipboard . 490

Moving Data Using the Clipboard . 492

Clipboard Example . 493

Chapter 41. Adding Tool Bars . 503

Creating a Tool Bar . 504

Customizing Your Tool Bar . 506

Tool Bar Example . 506

Chapter 42. Using Graphics in Your Application 513

Adding Graphic Primitives to Your Applications 514

Setting Attributes for Drawing Primitives 515

Drawing Lines and Arcs . 518

Displaying Areas, Polygons, and Regions 519

Using Character Strings . 520

Working with Bitmaps . 521

Grouping Graphic Objects . 528

Defining a Transformation Matrix . 528

Using the Drawing Functions . 529

Adding Handlers to Graphical Objects . 529

Two-dimensional Graphics Samples . 529

Chapter 43. Creating and Using Multimedia Controls 541

Understanding Multimedia . 542

Understanding Multimedia Device Classes . 542

Understanding Base Device Classes . 542

Understanding Abstract Device Classes . 543

Using the User Interface Class Library Base Class for Multimedia 543

Creating and Using Audio Devices . 544

Creating Audio Devices . 545

Playing Audio Compact Discs . 551

Using Audio Devices . 558

Creating and Using Video Devices . 574

Understanding Video Concepts . 574

Creating Video Devices . 574

Using Video Devices . 575

Using Additional Multimedia User Interface Class Library Class Features . . . 580

xiv VisualAge C++ Open Class Library User's Guide

Notifying Observer Objects . 580

Controlling Position, Time, and Speed . 580

Multimedia Class Hierarchy . 582

Multimedia Samples . 582

Subdirectory Structure . 582

Chapter 44. Providing Help Information . 583

Creating Help Information . 583

Adding Fly Over Help . 588

Displaying Fly Over Help Information . 589

Attaching Handlers to Provide Context-Sensitive Help 590

Dynamically Adding Help Text to Windows 591

Setting Time Intervals . 591

Creating Timers . 592

Using the Abstract and Template Classes 592

Chapter 45. Introducing the Sample Application 595

About the Hello World Application . 595

Running the Hello World Files . 595

Reviewing the Conventions Used in the Samples 595

Chapter 46. Creating a Main Window . 597

Listing the Hello World Version 1 Files . 597

The Primary Source Code File . 598

Exploring Hello World Version 1 . 598

Creating the Main Window . 599

Creating a Static Text Control . 599

Setting the Size of the Main Window . 600

Setting the Focus and Showing the Main Window 601

Starting Event Processing . 601

Chapter 47. Adding a Resource File and Frame Extensions 603

Listing the Hello World Version 2 Files . 604

The Primary Source Code File . 604

The AHelloWindow Class Header File . 604

The Symbolic Definitions File . 604

The Resource File . 604

The Icon File . 605

Discussing the Advantages of the C++ File Structure 606

Exploring Hello World Version 2 . 606

Creating the Main Window . 606

Starting Event Processing . 608

Constructing the AHelloWindow Object . 608

 Contents xv

Creating an Information Area . 611

Chapter 48. Adding a Command Handler and Menu Bars 613

Listing the Hello World Version 3 Files . 614

The Primary Source Code File . 614

The AHelloWindow Class Header File . 614

The Symbolic Definitions File . 614

The Resource File . 614

The Icon File . 615

Exploring Hello World Version 3 . 615

Constructing the AHelloWindow Object . 615

Creating a Menu Bar . 616

Setting an Initial Check Mark in the Pull-Down Menu 617

Destructing the AHelloWindow Object . 618

Aligning a Text String . 618

Setting ACommandHandler as the Command Handler 619

Chapter 49. Adding Dialogs and Push Buttons 621

Listing the Hello World Version 4 Files . 622

The Primary Source Code File . 622

The AHelloWindow Class Header File . 622

The Symbolic Definitions File . 622

The Text Dialog Source Code File . 623

The ATextDialog Class Header File . 623

The Resource File . 623

The Icon File . 623

Exploring Hello World Version 4 . 624

Adding a Cascaded Menu to the Menu Bar 624

Adding a Modal Dialog Window . 626

Setting Push Buttons in a Set Canvas . 632

Chapter 50. Adding Split Canvases, a List Box, Native System Functions,

and Help . 635

Listing the Hello World Version 5 Files . 635

The Primary Source Code File . 636

The AHelloWindow Class Header File . 636

The Symbolic Definitions File . 636

The Text Dialog Source Code File . 636

The ATextDialog Class Header File . 636

The Earth Window Source File . 636

The AEarthWindow Class Header File . 637

The Resource File . 637

The Icon File . 637

xvi VisualAge C++ Open Class Library User's Guide

The Help Window Source File . 637

Exploring Hello World Version 5 . 637

Constructing the Client Window with Split Canvases 637

Creating and Using a List Box . 638

Using Native System Functions and a Paint Handler 641

Setting Up the Help Area . 641

Chapter 51. Adding a Font Dialog, a Pop-up Menu, and a Notebook . . . 647

Listing the Hello World Version 6 Files . 647

Exploring Hello World Version 6 . 648

Part 7. Appendices, Bibliography, Glossary, and Index 651

Appendix A. Class Hierarchy by Category 653

Application Control Classes . 653

Base Window, Menu, Handler, and Event Classes 654

Base Window, Menu, Handler, and Event Classes 655

Standard Control Classes . 656

Standard Control Classes ... 657

Advanced Control, Dialog, and Handler Classes 658

Advanced Control, Dialog, and Handler Classes 659

Advanced Control, Dialog, and Handler Classes 660

Direct Manipulation Classes . 661

2D Graphic Classes . 662

Dynamic Data Exchange Classes . 663

Multimedia Classes . 664

Appendix B. New Color Support . 665

Appendix C. Task and Samples Cross-Reference Table 673

Appendix D. Using Extended Style Support 677

IBitFlag . 678

IWindow . 679

IMenuItem . 681

Classes that Implement or Override the convertToGUIStyle Function 681

Appendix E. Obsolete and Ignored Members Cross-Reference Tables . . . 683

Obsolete Classes and Members . 683

Ignored Classes and Members . 686

Glossary . 701

 Contents xvii

Bibliography . 715

The IBM VisualAge C++ Library . 715

The IBM VisualAge C++ BookManager Library 715

C and C++ Related Publications . 715

IBM OS/2 2.1 Publications . 715

IBM OS/2 3.0 Publications . 715

Multimedia Books . 716

Other Books You Might Need . 716

BookManager READ/2 Publications . 716

Non-IBM Publications . 716

Index . 717

xviii VisualAge C++ Open Class Library User's Guide

 Notices

Any reference to an IBM licensed program in this publication is not intended to state

or imply that only IBM’s licensed program may be used. Any functionally equivalent

product, program, or service that does not infringe any of IBM’s intellectual property

rights may be used instead of the IBM product, program, or service. Evaluation and

verification of operation in conjunction with other products, except those expressly

designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this

document. The furnishing of this document does not give you any license to these

patents. You can send license inquiries, in writing, to the IBM Director of Licensing,

IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594 USA.

This publication may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All such names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

Programming Interface Information

This book is intended to help you develop applications that use the C++ class libraries

provided with VisualAge C++. This publication documents General-Use

Programming Interface and Associated Guidance Information provided by

VisualAge C++.

General-Use programming interfaces allow the customer to write programs that obtain

the services of VisualAge C++.

Trademarks and Service Marks

The following terms are trademarks of the International Business Machines

Corporation in the United States or other countries or both:

C Set ++ Common User Access

CUA IBM

IBMLink Open Class

Operating System/2 OS/2

OS/2 Warp Presentation Manager

SAA Systems Application Architecture

VisualAge WorkFrame

 Copyright IBM Corp. 1993, 1995 xix

UNIX is a registered trademark in the United States and other countries licensed

exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double

asterisk (**), may be trademarks or service marks of others.

xx VisualAge C++ Open Class Library User's Guide

Who Should Use This Book

About This Book

This book gives you guidance on how to use IBM Open Class Library, the

comprehensive library of C++ classes that are provided with VisualAge C++. IBM

Open Class Library consists of the following groups of classes, described individually

as “class libraries” in this book:

¹ The Complex Mathematics Library

¹ The I/O Stream Library

¹ The Collection Class Library

¹ The Data Type and Exception Class Library

¹ The Data Access Builder Class Library

¹ The User Interface Class Library

The book is divided into parts, beginning with an overview of IBM Open Class

Library, and followed by a part for each of the class libraries listed above.

Who Should Use This Book

This book is intended for skilled C++ programmers who want to develop portable

C++ applications using IBM Open Class Library. Programmers using this book need

to understand the concept of classes. For the Collection Class Library, programmers

must also be familiar with using C++ templates. Use this book if you want to do any

of the following in your C++ programs:

¹ Manipulate complex numbers (numbers with both a real and an imaginary part)

¹ Perform input and output to console or disk devices using a typesafe,

object-oriented programming approach

¹ Implement commonly used abstract data types, including sets, maps, sequences,

trees, stacks, queues, and sorted or keyed collections

¹ Manipulate strings with greater ease and flexibility than the standard C++ method

of using character pointers and the string functions of the C string.h library

¹ Use date and time information, and apply methods to date and time objects

¹ Use Data Access Builder generated source code in conjunction with the Data

Access Builder class library to access a DB2/2 relational database.

¹ Simplify the development of portable applications containing graphical user

interfaces (GUI).

¹ Simulate Common User Access (CUA) workplace look and feel and take

advantage of Presentation Manager features.

 Copyright IBM Corp. 1993, 1995 xxi

Finding Class or Function Descriptions

How to Use This Book

This book is divided into the following chapters and parts:

¹ Chapter 1, “Introduction to IBM Open Class Library” on page 1 describes

the origins, structure, and uses of each of the class libraries, so that you can

decide which libraries or classes to learn about.

¹ Part 1, “Complex Mathematics” on page 7 reviews the uses of complex

numbers, and describes the complex and c_exception classes. The complex class

is used to manipulate complex numbers, and the c_exception class is used to

handle exceptions resulting from complex number computations.

¹ Part 2, “The I/O Stream Library” on page 23 describes the organization of

the I/O Stream Class Library, gives reasons for using its classes rather than the

I/O interface provided by stdio.h, and shows a number of detailed examples of

how to do input and output to a console or file, how to format output, how to

handle input errors, and so on.

¹ Part 3, “The Collection Class Library” on page 73 describes the Collection

Class Library, and helps you design applications that use its classes. It discusses

instantiating collections, using the Collection Class Library member functions on

elements or element keys, tailoring collections for performance, determining the

cause of compilation errors resulting from your use of the Collection Classes, and

other subjects. This part also contains a set of tutorial lessons that you can use

to learn Collection Class Library concepts and techniques.

¹ Part 4, “Data Type and Exception Class Library” on page 189 describes the

string, date, time, exception, and other classes that make up the Data Type and

Exception Class Library, and shows you how to write programs that use the wide

range of string-handling and other features provided by this library.

¹ Part 5, “The Database Access Class Library” on page 231 describes how to

use the code you generated with the Data Access Builder tool with the Data

Access Builder Class Library to access data in DB2/2 tables.

¹ Part 6, “The User Interface Class Library” on page 263 describes the User

Interface Class Library, which you can use to create applications that have the

Common User Access (CUA) look and feel.

How to Find Class or Function Descriptions

For detailed information on a particular class or member function, see the appropriate

part of the Open Class Library Reference. If you know what library a class or

member function is in, you can turn to the Open Class Library Reference section that

describes that library. At the beginning of each Open Class Library Reference section

you will find a list of all classes described in the section, with page references to

class descriptions. Each class description in turn includes an alphabetical listing of

xxii VisualAge C++ Open Class Library User's Guide

Icons

member functions with page references to individual functions. If you do not know

what section to look in (or what class), you can look up the class or method name in

the index.

Classes are organized alphabetically within each class library in the Open Class

Library Reference, except where classes with similar functionality are placed together.

Functions and data members are listed alphabetically at the start of each class chapter,

and their descriptions are grouped according to their purpose. If a class has more

than one version of a function, all versions are described in one place. For the

Collection Classes, all functions of flat collections are described in “Flat Collection

Member Functions” in the Open Class Library Reference, because each of these

functions is used by many or all of the Collection Classes.

A Note about Examples

The examples in this book explain elements of the C++ class libraries. They are

coded in a simple style. They do not try to conserve storage, check for errors,

achieve fast run times, or demonstrate all possible uses of a library, class, or member

function.

Icons Used in This Book

The icons in this book let you quickly scan pages for key concepts, examples,

cross-references, and other information.

This icon identifies important concepts, programming, and performance tips for using

VisualAge C++.

This icon identifies examples that illustrate how to use a particular language feature

or other concept presented in the book.

This icon identifies cross-references to related information in this or other books. The

icon may appear in the left margin where a number of cross-references are collected,

or in miniature form within the text of a paragraph (like this:) where only one or

two cross-references are shown.

Motif This icon identifies informa that applies only to Motif** versions of the class library.

PM This icon identifies informatio that applies only to Presentation Manager versions of

the class library.

This icon identifies portability information that you should refer to when you are

writing programs that you want to run on multiple platforms.

 About This Book xxiii

Related Documentation

 Related Documentation

See “Bibliography” on page 715 for a list of related books and recommended reading

materials.

xxiv VisualAge C++ Open Class Library User's Guide

History of IBM Open Class Library

1 Introduction to IBM Open Class Library

This book describes IBM Open Class Library, a comprehensive set of C++ class

libraries you can use to develop applications:

¹ The Complex Mathematics Library provides you with the facilities to manipulate

complex numbers and perform standard mathematical operations on them.

¹ The I/O Stream Library gives you the facilities to deal with many varieties of

input and output. You can derive classes from I/O Stream classes to customize

the input and output facilities for your own particular needs.

¹ The Collection Class Library provides a set of commonly used abstract data types

that you can use to build collections. Collections can have properties such as

sorted or unsorted, ordered or unordered, unique-element or multiple-element.

¹ The Data Type and Exception Classes let you manipulate string, date, and time

information, and let you handle and trace exceptions.

¹ The Data Access Builder Class Library provides a set of classes and methods that

let you connect and disconnect from your DB2/2 database and to perform

transactions in the database.

¹ The User Interface Class Library lets you develop portable applications

containing graphical user interfaces (GUI) and simulate the Common User Access

(CUA) workplace look and feel. You can use these classes to take advantage of

Presentation Manager features.

History of IBM Open Class Library

The UNIX** System Laboratories C++ Language System Release 3.0 included

Complex, I/O Stream, and Task Libraries. (Earlier releases of this product are known

as the AT&T** C++ Language System.) In the Unix System Laboratories product,

the class library that corresponds to the I/O Stream Library is called the Iostream

Library. Prior to Release 2.0 of the AT&T C++ Language System, a class library

called the Stream Library provided input and output facilities. The I/O Stream

Library includes obsolete functions, described in this book, to provide compatibility

with the Stream Library.

The Collection Class Library was developed by IBM, as a set of classes for the

original C Set ++ for OS/2* product. The classes of the Collection Class Library are

exploited by the User Interface Class Library.

 Copyright IBM Corp. 1993, 1995 1

Class Library Hierarchies

The Data Type and Exception Classes were developed by IBM, originally as part of

the User Interface Class Library on C Set ++ for OS/2.

The User Interface Class Library was developed by IBM, originally for the C Set ++
for OS/2 product. This class library has been significantly enhanced and expanded

since its release on C Set ++ for OS/2 Version 2.1.

Hierarchies of the Class Libraries

The following figures show the class hierarchy of the class libraries that make up

IBM Open Class. Some of these figures are repeated in the parts that describe

specific libraries. For a more detailed description of the Collection Class Library

hierarchy figure, see “Abstract Classes” on page 91.

No figure is shown for the Complex Mathematics Library, because the only two

classes involved, complex and c_exception, are not related by inheritance.

Because of the complexity of the User Interface Class Library, no hierarchy diagram

is shown for them. For information on the hierarchy of these classes, see the Open

Class Library Reference Volumes 2 and 3.

The following Data Type and Exception classes are not shown because they do not

derive from any class and do not have any subclasses:

 ¹ IExceptionLocation

 ¹ IMessageText

 ¹ IStringEnum

 ¹ IException::TraceFn

 ¹ IBase::Version

2 VisualAge C++ Open Class Library User's Guide

Class Library Hierarchies

ios

streambuf

istream

strstreambuf

istream_
withassign

ostream_
withassign

stdiostream

stdiobuf

istrstream ostrstream

ostream

fstream

filebuf

ifstream ofstream

iostream

iostream_
withassign

strstream

Figure 1. I/O Stream Library Hierarchy

 Chapter 1. Introduction to IBM Open Class Library 3

Class Library Hierarchies

Collection

Key
Collection

Equality Key
Collection

Key Sorted
Collection

Equality
Collection

Equality
Key Sorted
Collection

Key Sorted
Set

Key Sorted
Bag

Stack

Sorted Map

Sorted Relation

DequeuePriority
Queue

Key Set Map Set

Key Bag Relation Bag

Sorted Set

Sorted Bag

Queue

Equality
Sequence

Sequence

Heap Tree

Sorted
Collection

Equality
Sorted

Collection

Sequential
Collection

Ordered
Collection

Figure 2. Collection Class Library Hierarchy. Abstract classes have a grey background. Concrete classes have a black

background. Restricted access classes have a white background. Dotted lines show a “based-on” relationship, not an actual

derivation.

4 VisualAge C++ Open Class Library User's Guide

Including IBM Open Class Library

IDate

IReference

ITime

IRectangle

INotification
Event

IBase

IPointArray I0String

IString

IString
Handle

IHandle

IPoint

IRange ISize

IPair

IVBase

IBuffer

IException

IDevice
Error

IInvalid
Parameter

IOutOf
Memory

IInvalid
Request

IOutOfSystem
Resource

IResource
Exhausted

IOutOfWindow
Resource

IAssertion
Failure

IAccess
Error

IDBCSBuffer

IRefCounted

IErrorInfo

ICLib
ErrorInfo

IObserver

IStringParser

IGUI
ErrorInfo

IObserver::
Cursor

IStringParser::
Skip

ISystem
ErrorInfo

IObserver
List

ITrace

IXLib
ErrorInfo

INotifier

IStringTest

IStringTest
MemberFn

IStandard
Notifier

Figure 3. Data Type and Exception Class Hierarchy. Some class names have been split into two lines to fit in their boxes.

Including IBM Open Class Library

A class library is a collection of header and library files. The header files provide the

interface to the class libraries.

 Chapter 1. Introduction to IBM Open Class Library 5

Including IBM Open Class Library

To use the classes, functions, and operators available in IBM Open Class, you must

include the parts of the library's interface that you need in your C++ source program.

To include an interface, use the directive #include <filename>, where filename is

the name of the header file. Place this statement at the beginning of the program that

requires any of the classes, functions, or operators defined in the header file. Then,

in the body of your program, you can use a class, function, or operator defined in the

header file, as well as derive new classes and overload the functions and operators.

6 VisualAge C++ Open Class Library User's Guide

 Part 1. Complex Mathematics

This part provides a review of complex arithmetic, and describes the complex and

c_exception classes.

Chapter 2. Using the Complex Mathematics Classes 9

Review of Complex Numbers . 9

Header Files and Constants for complex and c_exception 10

Constructing complex Objects . 11

Complex Mathematics Input and Output . 11

Mathematical Operators for complex . 13

Friend Functions for complex . 15

Using the c_exception Class to Handle Complex Mathematics Errors 18

Errors Handled Outside of the Complex Mathematics Library 20

Linking to the Complex Library . 20

An Example of Using the Complex Mathematics Library 20

 Copyright IBM Corp. 1993, 1995 7

8 VisualAge C++ Open Class Library User's Guide

Complex Numbers Review

2 Using the Complex Mathematics Classes

This chapter reviews the concept of complex numbers, and then describes complex,

the class you use to manipulate complex numbers, and c_exception, the class you

use to errors created by the functions and operations in the complex class. Linking

issues, and conflicts between complex functions and similarly named functions in the

Standard C Runtime Library, are also identified.

Note: The c_exception class is not related to the C++ exception handling

mechanism that uses the try, catch, and throw statements.

Review of Complex Numbers

A complex number is made up of two parts: a real part and an imaginary part. A

complex number can be represented by an ordered pair (a,b), where a is the value of

the real part of the number and b is the value of the imaginary part. If (a,b) and

(c,d) are complex numbers, then the following statements are true:

¹ (a,b) + (c,d) = (a+c,b+d)

¹ (a,b) - (c,d) = (a-c,b-d)

¹ (a,b) * (c,d) = (ac-bd,ad+bc)

¹ (a,b) / (c,d) = ((ac+bd) / (c²+d²), (bc-ad) / (c²+d²))

¹ The conjugate of a complex number (a,b) is (a,-b)

¹ The absolute value or magnitude of a complex number (a,b) is the positive

square root of the value a² + b²

¹ The polar representation of (a,b) is (r,theta), where r is the distance from the

origin to the point (a,b) in the complex plane, and theta is the angle from the

real axis to the vector (a,b) in the complex plane. The angle theta can be

positive or negative. Figure 4 on page 10 illustrates the polar representation

(r,theta) of the complex number (a,b).

 Copyright IBM Corp. 1993, 1995 9

Header Files and Constants

imaginary axis

angle theta

real axis

complex (a,b) = polar (r, theta)

(a, b) r

Figure 4. Polar Representation of Complex Number (a,b)

Header Files and Constants for complex and c_exception

You must include the following statement in any file that uses the complex or

c_exception classes:

 #include <complex.h>

This file must be included before any use of the Complex Mathematics Library.

Constants

Defined in

complex.h

The following table lists the mathematical constants that the Complex

Mathematics Library defines (if they have not been previously defined):

Table 1 (Page 1 of 2). Constants Defined in complex.h

Constant Name Description

M_E The constant e

M_LOG2E The logarithm of e to the base of 2

M_LOG10E The logarithm of e to the base of 10

M_LN2 The natural logarithm of 2

M_LN10 The natural logarithm of 10

M_PI π

10 VisualAge C++ Open Class Library User's Guide

complex Input and Output

Table 1 (Page 2 of 2). Constants Defined in complex.h

Constant Name Description

M_PI_2 π / 2

M_PI_4 π / 4

M_1_PI 1 / π

M_2_PI 2 / π

M_2_SQRTPI 2 divided by the square root of π

M_SQRT2 The square root of 2

M_SQRT1_2 The square root of 1 / 2

Constructing complex Objects

You can use the complex constructor to construct initialized or unitialized complex

objects or arrays of complex objects. The following example shows different ways of

creating and initializing complex objects:

complex comp1; // Initialized to (0, 0)
complex comp2(3.14); // Initialized to (3.14, 0)
complex comp3(3.14,2.72); // Initialized to (3.14, 2.72)

 complex comparr1[3]={
1.0, // Initialized to (1.0, 0)

 complex(2.0,-2.0), // (2.0, -2.0)
 3.0 // (3.0, 0)
 };
 complex comparr2[3]={

complex(1.0,1.0), // Initialized to (1.0, 1.0)
 2.0, // (2.0, 0)
 complex(3.0,-3.0) // (3.0, -3.0)
 };
 complex comparr3[3]={

1.0, // Initialized to (1.0, 0)
 complex(M_PI_4,M_SQRT2), // (0.785..., 1.414...)
 M_SQRT1_2 // (0.707..., 0)
 };

Complex Mathematics Input and Output

The complex class defines input and output operators for I/O Stream Library input

and output. See Part 2, “The I/O Stream Library” on page 23 for more in-depth

information on using the I/O Stream Library. Complex numbers are written to the

output stream in the format (real,imag). Complex numbers are read from the input

stream in one of two formats: (real,imag) or real. The following example shows

you how to use the complex input and output operators, and provides some sample

input and the resulting output.

 Chapter 2. Using the Complex Mathematics Classes 11

complex Input and Output

// An example of complex input and output

#include <complex.h> // required for use of Complex Mathematics Library
#include <iostream.h> // required for use of I/O Stream input and output

void main() {
complex a[3]={1.0, 2.0, complex(3.0,-3.0)};

 complex b[3];
 complex c[3];
 complex d;

// read input for all of arrays b and c
// (you must specify each element individually)
cout << "Enter three complex values separated by spaces:\n";
cin >> b[0] >> b[1] >> b[2];

cout << "Enter three more complex values:\n";
cin >> c[2] >> c[0] >> c[1];

// read input for scalar d
cout << "Enter one more complex value:\n";
cin >> d;
// Note that you cannot use the above notation for arrays.
// For example, cin >> a; is incorrect because a is a complex array.

// display each array of three complex numbers, then the complex scalar
cout << "Here are some elements of arrays a, b, and c:\n"

<< a[2] << '\n'
<< b[0] << b[1] << b[2] << '\n'
<< c[1] << '\n'
<< "Here is scalar d: "
<< d << '\n'

// cout << a produces an address, not a list of array elements:
<< "Here is the address of array a:\n"

 << a
<< endl; // endl flushes the output stream

 }

This example produces the output shown below in regular type, given the input

shown in bold. Notice that you can insert white space within a complex number,

between the brackets, numbers, and comma. However, you cannot insert white space

within the real or imaginary part of the number. The address displayed may be

different, or in a different format, than the address shown, depending on the operating

system, hardware, and other factors.

Enter three complex values separated by spaces:
38 (12.2,3.14159) (1712,-33)
Enter three more complex values:
(17.1234 , 1234.17) (27, 12) (-33 ,0)
Enter one more complex value:

 17
Here are some elements of arrays a, b, and c:
(3, -3)
(38, 0)(12.2, 3.14159)(1712, -33)
(-33, 0)
Here is scalar d: (17, 0)
Here is the address of array a:

 0x2ff7f9b8

12 VisualAge C++ Open Class Library User's Guide

Mathematical Operators for complex

Mathematical Operators for complex

The complex class defines a set of mathematical operators with the same precedence

as the corresponding real operators. With these operators, you can code expressions

on complex numbers such as the expressions shown in the example below. In the

example, for each complex scalar x, the comments showing the results of operations

use xr to denote the scalar's real part and xi to denote the scalar's imaginary part.

 // Using the complex mathematical operators

 #include <complex.h>
 #include <iostream.h>

 complex a,b,c,d,e,f,g;

void main() {
cout << "Enter six complex numbers, separated by spaces:\n";
cin >> b >> c >> d >> e >> f >> g;

// assignment, multiplication, addition
a=b*c+d; // a=((br*cr)-(bi*ci)+dr , (br*ci)+(bi*cr)+di)

 // division
a=b/d; // a=((br*dr)+(bi*di) / ((br*br)+(bi*bi),

// (bi*dr)-(br*di) / ((br*br)+(bi*bi))

 // subtraction
a=b-f; // a=((br-fr), (bi-fi))

// equality, multiplication assignment
if (a==f) c*=e; // same as c=c*e;

// inequality, addition assignment
if (b!=f) d+=g; // same as d=d+g;

cout << "Here are the seven numbers after calculations:\n"
<< "a=" << a << '\n'
<< "b=" << b << '\n'
<< "c=" << c << '\n'
<< "d=" << d << '\n'
<< "e=" << e << '\n'
<< "f=" << f << '\n'
<< "g=" << g << endl;

 }

This example produces the output shown below in regular type, given the input

shown in bold:

Enter six complex numbers, separated by spaces:
(1.14,2.28) (2.24,4.48) (1.17,12.18)
(4.4444444,5.12341) (12,7) 5
Here are the seven numbers after calculations:
a=(-10.86, -4.72)
b=(1.14, 2.28)
c=(2.24, 4.48)
d=(6.17, 12.18)
e=(4.44444, 5.12341)
f=(12, 7)
g=(5, 0)

Note that there are no increment or decrement operators for complex numbers.

 Chapter 2. Using the Complex Mathematics Classes 13

Mathematical Operators for complex

Equality and Inequality Operators Test for Absolute Equality

The equality and inequality operators test for an exact equality between the real parts

of two numbers, and between their complex parts. Because both components are

double values, two numbers may be “equal” within a certain tolerance, but unequal as

far as these operators are concerned. If you want an equality or inequality operator

that can test for an absolute difference within a certain tolerance between the two

pairs of corresponding components, you should define your own equality functions

rather than use the equality and inequality operators of the complex class. The

functions is_equal and is_not_equal in the following example provide a reliable

comparison between two complex values:

// Testing complex values for equality within a certain tolerance

 #include <complex.h>
#include <iostream.h> // for output
#include <iomanip.h> // for use of setw() manipulator

int is_equal(const complex &a, const complex &b,
const double tol=0.0001)

 {
return (abs(real(a) - real(b)) < tol &&

abs(imag(a) - imag(b)) < tol);
 }

int is_not_equal(const complex &a, const complex &b,
const double tol=0.0001)

 {
return !is_equal(a, b, tol);

 }

 void main()
 {

complex c[4] = { complex(1.0, 2.0),
 complex(1.0, 2.0),
 complex(3.0, 4.0),
 complex(1.0000163,1.999903581) };

cout << "Comparison of array elements c[0] to c[3]\n"
<< "== means identical,\n!= means unequal,\n"
<< " ˜ means equal within tolerance of 0.0001.\n\n"
<< setw(10) << "Element"

 << setw(6) << 0
 << setw(6) << 1
 << setw(6) << 2
 << setw(6) << 3
 << endl;

for (int i=0;i<4;i++) {
cout << setw(10) << i;
for (int j=0;j<4;j++) {

if (c[i]==c[j]) cout << setw(6) << "==";
else if (is_equal(c[i],c[j])) cout << setw(6) << "˜";

else if (is_not_equal(c[i],c[j])) cout << setw(6) << "!=";
else cout << setw(6) << "???";

 }
cout << endl;

 }
 }

14 VisualAge C++ Open Class Library User's Guide

Friend Functions for complex

This example produces the following output:

Comparison of array elements c[0] to c[3]
== means identical,
!= means unequal,
 ˜ means equal within tolerance of 0.0001.

Element 0 1 2 3
0 == == != ˜

1 == == != ˜

2 != != == !=
3 ˜ ˜ != ==

Assignment Operators Do Not Produce an lvalue

The complex mathematical assignment operators (+=, -=, *=, /=) do not produce a

value that can be used in an expression. The following code, for example, produces a

compile-time error:

complex x, y, z; // valid declaration
x = (y += z); // invalid assignment causes a

// compile-time error

Friend Functions for complex

The complex class defines a set of mathematical, trigonometric, magnitude, and

conversion functions as friend functions of complex objects. Because these functions

are friend functions rather than member functions, you cannot use the dot or arrow

operators. For example:

 complex a,b,*c;
a=exp(b); // correct - exp() is a friend function of complex

 a=b.exp(); // error - exp() is not a member function of complex
a=c->exp(); // error - exp() is not a member function of complex

 }

Mathematical Functions for complex

The complex class defines four mathematical functions as friend functions of

complex objects. The functions, described in detail in the Open Class Library

Reference, are:

¹ exp - Exponent

¹ log - Logarithm

¹ pow - Power

¹ sqrt - Square Root

 Chapter 2. Using the Complex Mathematics Classes 15

Friend Functions for complex

The following example shows uses of these mathematical functions:

// Using the complex mathematical functions

 #include <complex.h>
 #include <iostream.h>

void main() {
complex a, b;

 int i;
 double f;
 //

// prompt the user for an argument for calls to
// exp(), log(), and sqrt()

 //
cout << "Enter a complex value\n";
cin >> a;
cout << "The value of exp() for " << a << " is: " << exp(a)

<< "\nThe natural logarithm of " << a << " is: " << log(a)
<< "\nThe square root of " << a << " is: " << sqrt(a) << "\n\n";

 //
// prompt the user for arguments for calls to pow()

 //
cout << "Enter 2 complex values (a and b), an integer (i),"

<< " and a floating point value (f)\n";
cin >> a >> b >> i >> f;
cout << "a is " << a << ", b is " << b << ", i is " << i

<< ", f is " << f << '\n'
<< "The value of f**a is: " << pow(f, a) << '\n'
<< "The value of a**i is: " << pow(a, i) << '\n'
<< "The value of a**f is: " << pow(a, f) << '\n'
<< "The value of a**b is: " << pow(a, b) << endl;

 }

This example produces the output shown below in regular type, given the input

shown in bold:

Enter a complex value
(3.7,4.2)
The value of exp() for (3.7, 4.2) is: (-19.8297, -35.2529)
The natural logarithm of (3.7, 4.2) is: (1.72229, 0.848605)
The square root of (3.7, 4.2) is: (2.15608, 0.973992)

Enter 2 complex values (a and b), an integer (i), and a floating point value (f)
(2.6,9.39) (3.16,1.16) -7 33.16237
a is (2.6, 9.39), b is (3.16, 1.16), i is -7, f is 33.1624
The value of f**a is: (972.681, 8935.53)
The value of a**i is: (-1.13873e-07, -3.77441e-08)
The value of a**f is: (4.05451e+32, -4.60496e+32)
The value of a**b is: (262.846, 132.782)

16 VisualAge C++ Open Class Library User's Guide

Friend Functions for complex

Trigonometric Functions for complex

The complex class defines four trigonometric functions as friend functions of

complex objects. The functions, described in detail in the Open Class Library

Reference, are:

¹ cos - Cosine

¹ cosh - Hyperbolic cosine

¹ sin - Sine

¹ sinh - Hyperbolic sine

The following example shows how you can use some of the complex trigonometric

functions:

// Complex Mathematics Library trigonometric functions

 #include <complex.h>
 #include <iostream.h>

void main() {
complex a = (M_PI, M_PI_2); // a = (pi,pi/2)
// display the values of cos(), cosh(), sin(), and sinh()
// for (pi,pi/2)

cout << "The value of cos() for (pi,pi/2) is: " << cos(a) << '\n'
<< "The value of cosh() for (pi,pi/2) is: " << cosh(a) << '\n'
<< "The value of sin() for (pi,pi/2) is: " << sin(a) << '\n'
<< "The value of sinh() for (pi,pi/2) is: " << sinh(a) << endl;

 }

This program produces the following output:

The value of cos() for (pi,pi/2) is: (6.12323e-17, 0)
The value of cosh() for (pi,pi/2) is: (2.50918, 0)
The value of sin() for (pi,pi/2) is: (1, -0)
The value of sinh() for (pi,pi/2) is: (2.3013, 0)

Magnitude Functions for complex

The magnitude functions for complex are:

¹ abs - Absolute value

¹ norm - Square magnitude

See the Open Class Library Reference for further details on these functions.

Conversion Functions for complex

The conversion functions in the Complex Mathematics Library allow you to convert

between the polar and standard complex representations of a value and to extract the

real and imaginary parts of a complex value.

The complex class provides the following conversion functions as friend functions of

complex objects:

¹ arg - Angle in radians

¹ conj - Conjugation

 Chapter 2. Using the Complex Mathematics Classes 17

Using the c_exception Class

¹ polar - Polar to complex

¹ real - Extract real part

¹ imag - Extract imaginary part

The following program shows how you can use the complex conversion functions:

// Using the complex conversion functions

 #include <complex.h>
 #include <iostream.h>

void main() {
 complex a;

// For a value supplied by the user, display the real part,
// the imaginary part, and the polar representation.
cout << "Enter a complex value" << endl;
cin >> a;
cout << "The real part of this value is " << real(a) << endl;
cout << "The imaginary part of this value is " << imag(a) << endl;
cout << "The polar representation of this value is "

<< "(" << abs(a) << "," << arg(a) << ")" << endl;
 }

This example produces the output shown below in regular type, given the input

shown in bold:

Enter a complex value
(175,162)
The real part of this value is 175
The imaginary part of this value is 162
The polar representation of this value is (238.472,0.746842)

Using the c_exception Class to Handle Complex Mathematics Errors

Note: The c_exception class is not related to the C++ exception handling

mechanism that uses the try, catch, and throw statements.

The c_exception class lets you handle errors that are created by the functions and

operations in the complex class. When the Complex Mathematics Library detects an

error in a complex operation or function, it invokes complex_error(). This friend

function of c_exception has a c_exception object as its argument. When the

function is invoked, the c_exception object contains data members that define the

function name, arguments, and return value of the function that caused the error, as

well as the type of error that has occurred. The data members are:

complex arg1; // First argument of the error-causing function
complex arg2; // Second argument of the error-causing function
char* name; // Name of the error-causing function
complex retval; // Value returned by default definition of complex_error
int type; // The type of error that has occurred.

If you do not define your own complex_error function, complex_error sets the

complex return value and the errno error number as defined in Table 2 in the
Open Class Library Reference.

18 VisualAge C++ Open Class Library User's Guide

Using the c_exception Class

Defining a Customized complex_error Function

You can either use the default version of complex_error() or define your own version

of the function. In the following example, complex_error() is redefined:

//Redefinition of the complex_error function

 #include <iostream.h>
 #include <complex.h>
 #include <float.h>

int complex_error(c_exception &c)
 {

cout << "================" << endl;
cout << " Exception " << endl;
cout << "type = " << c.type << endl;
cout << "name = " << c.name << endl;
cout << "arg1 = " << c.arg1 << endl;
cout << "arg2 = " << c.arg2 << endl;
cout << "retval = " << c.retval << endl;
cout << "================" << endl;

 return 0;
 }

 void main()
 {
 complex c1(DBL_MAX,0);
 complex result;

result = exp(c1);
cout << "exp" << c1 << "= " << result << endl;

 }

This example produces the following output:

================
 Exception
type = 3
name = exp
arg1 = (1.79769e+308, 0)
arg2 = (0, 0)
retval = (infinity, -infinity)
================
exp(1.79769e+308, 0)= (infinity, -infinity)

If the redefinition of complex_error() in the above code is commented out, the

default definition of complex_error() is used, and the program produces the following

output

exp(1.79769e+308, 0) = (infinity, -infinity)

Compiling a Program that Uses a Customized complex_error Function

If you define your own version of complex_error, when you compile your program

you must use the /NOE linker option.

 Chapter 2. Using the Complex Mathematics Classes 19

Complex Mathematics Library Example

Errors Handled Outside of the Complex Mathematics Library

There are some cases where member functions of the Complex Mathematics Library

call functions in the math library. These calls can cause underflow and overflow

conditions that are handled by the matherr() function that is declared in the math.h

header file. For example, the overflow conditions that are caused by the following

calls are handled by matherr():

 ¹ exp(complex(DBL_MAX, DBL_MAX))

¹ pow(complex(DBL_MAX, DBL_MAX), INT_MAX)

 ¹ norm(complex(DBL_MAX, DBL_MAX))

DBL_MAX is the maximum valid double value, and is defined in float.h. INT_MAX is

the maximum int value, and is defined in limits.h.

If you do not want the default error-handling defined by matherr(), you should define

your own version of matherr().

Linking to the Complex Library

You must specify the following library names when compiling or linking programs

that use the Complex Library:

¹ COMPLEX.LIB - for single-threaded programs

¹ COMPLEXM.LIB - for multi-threaded programs.

No dynamically linkable version of this library is provided.

An Example of Using the Complex Mathematics Library

The following example shows how you can use the Complex Mathematics Library to

calculate the roots of a complex number. For every positive integer n, each complex

number z has exactly n distinct nth roots. Suppose that in the complex plane the

angle between the real axis and point z is θ, and the distance between the origin and

the point z is r. Then z has the polar form (r, θ), and the n roots of z have the

values:

 σ

 σ·ω

 σ·ω2

 σ·ω3

 .
 .
 .
 σ·ωn-1

where ω is a complex number with the value:

20 VisualAge C++ Open Class Library User's Guide

Complex Mathematics Library Example

ω = (cos(2π/n), sin(2π/n))

and σ is a complex number with the value:

σ = r1/n (cos(θ/n), sin(θ/n))

The following code includes two functions, get_omega() and get_sigma(), to calculate

the values of ω and σ. The user is prompted for the complex value z and the value

of n. After the values of ω and σ have been calculated, the n roots of z are

calculated and printed.

// Calculating the roots of a complex number

 #include <iostream.h>
 #include <complex.h>
 #include <math.h>

// Function to calculate the value of omega for a given value of n

complex get_omega(double n) {
complex omega = complex(cos((2.0*M_PI)/n), sin((2.0*M_PI)/n));

 return omega;
 }

 //
// function to calculate the value of sigma for a given value of
// n and a given complex value

 //
complex get_sigma(complex comp_val, double n) {

double rn, r, theta;
 complex sigma;

r = abs(comp_val);
theta = arg(comp_val);
rn = pow(r,(1.0/n));
sigma = rn * complex(cos(theta/n),sin(theta/n));

 return sigma;
 }

void main() {
 double n;

complex input, omega, sigma;
 //

// prompt the user for a complex number
 //

cout << "Please enter a complex number: ";
cin >> input;

 //
// prompt the user for the value of n

 //
cout << "What root would you like of this number? ";
cin >> n;

 //
// calculate the value of omega

 //
omega = get_omega(n);
cout << "Here is omega " << omega << endl;

 //
// calculate the value of sigma

 //
sigma = get_sigma(input,n);
cout << "Here is sigma " << sigma << '\n'

<< "Here are the " << n << " roots of " << input << endl;

 Chapter 2. Using the Complex Mathematics Classes 21

Complex Mathematics Library Example

for (int i = 0; i < n ; i++) {
cout << sigma*(pow(omega,i)) << endl;

 }
 }

This example produces the output shown below in regular type, given the input

shown in bold:

Please enter a complex number: (-7, 24)
What root would you like of this number? 2
Here is omega (-1, 1.22465e-16)
Here is sigma (3, 4)
Here are the 2 roots of (-7, 24)
(3, 4)
(-3, -4)

22 VisualAge C++ Open Class Library User's Guide

Part 2. The I/O Stream Library

This part describes the I/O Stream Library, which you can use to perform a wide

range of input and output operations in your C++ programs.

Chapter 3. Introduction to the I/O Stream Classes 25

Linking to the I/O Stream Classes . 25

The I/O Stream Classes and stdio.h . 25

Overview of the I/O Stream Classes . 25

The I/O Stream Class Hierarchy . 27

The I/O Stream Header Files . 28

Predefined Streams . 29

Anonymous Streams . 30

Stream Buffers . 32

Format State Flags . 34

Chapter 4. Getting Started with the I/O Stream Library 35

Receiving Input from Standard Input . 35

Displaying Output on Standard Output or Standard Error 38

Flushing Output Streams with endl and flush . 40

Parsing Multiple Inputs . 42

Opening a File for Input and Reading from the File 43

Opening a File for Output and Writing to the File 46

Chapter 5. Advanced I/O Stream Topics . 47

Associating a File with a Standard Input or Output Stream 47

Using filebuf Functions to Move Through a File 48

Defining an Input Operator for a Class Type . 50

Defining an Output Operator for a Class Type 52

Correcting Input Stream Errors . 54

Changing the Formatting of Stream Output . 56

Defining Your Own Format State Flags . 62

Using the strstream Classes for String Manipulation 64

Chapter 6. Manipulators . 67

Introduction to Manipulators . 67

Simple Manipulators and Parameterized Manipulators 67

Creating Simple Manipulators for Your Own Types 68

Creating Parameterized Manipulators for Your Own Types 69

 Copyright IBM Corp. 1993, 1995 23

24 VisualAge C++ Open Class Library User's Guide

I/O Stream Overview

3 Introduction to the I/O Stream Classes

This chapter describes the overall structure of the I/O Stream Classes. These classes

provide you with the facilities to deal with many varieties of input and output.

Linking to the I/O Stream Classes

The I/O Stream Libraries are linked in automatically unless you specify the /Gn

option.

The I/O Stream Classes and stdio.h

In both C++ and C, input and output are described in terms of sequences of

characters, or streams. The I/O Stream Classes provide the same facilities in C++
that stdio.h provides in C, but it also has the following advantages over stdio.h:

¹ The input or extraction (>>) operator and the output or insertion (<<) operator are

typesafe. They are also easy to use.

¹ You can define input and output for your own types or classes by overloading the

input and output operators. This gives you a uniform way of performing input

and output for different types of data.

¹ The input and output operators are more efficient than scanf() and printf(), the

analogous C functions defined in stdio.h. Both scanf() and printf() take

format strings as arguments, and these format strings have to be parsed at run

time. This parsing can be time-consuming. The bindings for the I/O Stream

output and input operators are performed at compile time, with no need for

format strings. This can improve the readability of input and output in your

programs, and potentially the performance as well.

Overview of the I/O Stream Classes

The I/O Stream Classes provide the standard input and output capabilities for C++. In

C++, input and output are described in terms of streams. The processing of these

streams is done at two levels. The first level treats the data as sequences of

characters; the second level treats it as a series of values of a particular type.

There are two primary base classes for the I/O Stream Classes:

1. The streambuf class and the classes derived from it (strstreambuf, stdiobuf,

and filebuf) implement the stream buffers. Stream buffers act as temporary

repositories for characters that are coming from the ultimate producers of input or

 Copyright IBM Corp. 1993, 1995 25

I/O Stream Overview

are being sent to the ultimate consumers of output. See “Stream Buffers” on

page 32 for more details.

2. The ios class maintains formatting and error-state information for these streams.

The classes derived from ios implement the formatting of these streams. This

formatting involves converting sequences of characters from the stream buffer

into values of a particular type and converting values of a particular type into

their external display format.

The I/O Stream Classes predefine streams for standard input, standard output, and

standard error. See “Predefined Streams” on page 29 for more details on the

predefined streams. If you want to open your own streams for input or output, you

must create an object of an appropriate I/O Streams class. The iostream constructor

takes as an argument a pointer to a streambuf object. This object is associated with

the device, file, or array of bytes in memory that is going to be the ultimate producer

of input or the ultimate consumer of output.

Combining Input and Output of Different Types

The I/O Stream Classes overload the input (>>) and output (<<) operators for the

built-in types. As a result, you can combine input or output of values with different

types in a single statement without having to state the type of the values. For

example, you can code an output statement such as:

<< aFloat << " " << aDouble << "\n" << aString << endl;

without needing to provide type or formatting information for each output.

Input and Output for User-Defined Classes

You can overload the input and output operators for the classes that you create

yourself. Once you have overloaded the input and output operators for a class, you

can perform input and output operations on objects of that class in the same way that

you would perform input and output on char, int, double, and the other built-in

types.

See “Defining an Input Operator for a Class Type” on page 50 and “Defining an

Output Operator for a Class Type” on page 52 for information on how to define

class-type input and output operators.

26 VisualAge C++ Open Class Library User's Guide

I/O Stream Class Hierarchy

The I/O Stream Class Hierarchy

The I/O Stream Classes have two base classes, streambuf and ios, that correspond

to the two levels of processing described in “Overview of the I/O Stream Classes” on

page 25:

¹ The streambuf class implements stream buffers. See “Stream Buffers” on

page 32 for information on how and why to use stream buffers. streambuf is

the base class for the following classes:

 – strstreambuf
 – stdiobuf
 – filebuf

¹ The ios class maintains formatting and error state information for streams.

Streams are implemented as objects of the following classes that are derived from

ios:

 – stdiostream
 – istream
 – ostream

The classes that are derived from ios are themselves base classes:

¹ istream is the input stream class. It implements stream buffer input, or input

operations. The following classes are derived from istream:

 – istrstream
 – ifstream
 – istream_withassign
 – iostream

¹ ostream is the output stream class. It implements stream buffer output, or output

operations. The following classes are derived from ostream:

 – ostrsteam
 – ofstream
 – ostream_withassign
 – iostream

¹ iostream is the class that combines istream and ostream to implement input

and output to stream buffers. The following classes are derived from iostream:

 – strstream
 – iostream_withassign
 – fstream

Note: The I/O Stream Classes also define other classes, including fstreambase and

strstreambase. These classes are meant for the internal use of the I/O Stream

Classes. Do not use them directly.

 Chapter 3. Introduction to the I/O Stream Classes 27

I/O Stream Header Files

ios

streambuf

istream

strstreambuf

istream_
withassign

ostream_
withassign

stdiostream

stdiobuf

istrstream ostrstream

ostream

fstream

filebuf

ifstream ofstream

iostream

iostream_
withassign

strstream

Figure 5. I/O Stream Class Hierarchy

Figure 5 shows the relationship between the two base classes, ios and streambuf,

and their derived classes. In the figure, for any two classes connected by a line, the

class at the lower level is derived from the class at the higher level.

The I/O Stream Header Files

To use an I/O Stream class, you must include the appropriate header files for that

class. The following lists the I/O Stream header files and the classes that they cover:

¹ iostream.h contains declarations for the basic classes:

28 VisualAge C++ Open Class Library User's Guide

Predefined Streams

 – streambuf
 – ios
 – istream
 – istream_withassign
 – ostream
 – ostream_withassign
 – iostream
 – iostream_withassign

¹ fstream.h contains declarations for the classes that deal with files:

 – filebuf
 – ifstream
 – ofstream
 – fstream

¹ stdiostr.h contains declarations for stdiobuf and stdiostream, the classes

that specialize streambuf and ios, respectively, to use the FILE structures

defined in the C header file stdio.h.

¹ strstrea.h contains declarations for the classes that deal with character strings.

The first “str” in each of these names stands for “string”:

 – istrstream
 – ostrsteam
 – strstream
 – strstreambuf

¹ iomanip.h contains declarations for the parameterized manipulators.

Manipulators are values that you can insert into streams or extract from streams

to affect or query the behavior of the streams.

¹ stream.h is used for compatibility with earlier versions of the I/O Stream Classes.

It includes iostream.h, fstream.h, stdiostr.h, and iomanip.h, along with

some definitions needed for compatibility with the AT&T C++ Language System

Release 1.2. Only use this header file with existing code; do not use it with new

C++ code.

Note: If you use the obsolete function form() declared in stream.h, there is a

limit to the size of the format specifier. If you call form() with a format

specifier string longer than this limit, a runtime message (EDC5091) will be

generated and the program will terminate.

 Predefined Streams

In addition to giving you the facilities to define your own streams for input and

output, the I/O Stream Classes also provide the following predefined streams:

 Chapter 3. Introduction to the I/O Stream Classes 29

Anonymous Streams

¹ cin is the standard input stream.

¹ cout is the standard output stream.

¹ cerr is the standard error stream. Output to this stream is unit-buffered.

Characters sent to this stream are flushed after each output operation.

¹ clog is also an error stream, but unlike the output to cerr, the output to clog is

stream-buffered. Characters sent to this stream are flushed only when the stream

becomes full or when it is explicitly flushed.

The predefined streams are initialized before the constructors for any static objects are

called. You can use the predefined streams in the constructors for static objects.

The predefined streams cin, cerr, and clog are tied to cout. As a result, if you use

cin, cerr, or clog, cout is flushed. That is, the contents of cout are sent to their

ultimate consumer. See “tie” in the Open Class Library Reference for more

details on tying streams together.

 Anonymous Streams

An anonymous stream is a stream that is created as a temporary object. Because it is

a temporary object, an anonymous stream requires a const type modifier and is not a

modifiable lvalue. Unlike the AT&T C++ Language System Release 2.1,

VisualAge C++ does not allow a non-const reference argument to be matched with a

temporary object. User-defined input and output operators usually accept a

non-const reference (such as a reference to an istream or ostream object) as an

argument. Such an argument cannot be initialized by an anonymous stream, and thus

an attempt to use an anonymous stream as an argument to a user-defined input or

output operator will usually result in a compile-time error.

In the following example, three methods of writing a character to and reading it from

a file are shown:

1. This method uses anonymous streams with the built-in char type. This compiles

and runs successfully.

2. This method uses anonymous streams with a class that has a char as its only

data member, and that has input and output operators defined for it. This

produces a compilation error if you define anon when you compile. Otherwise,

this part of the program is not compiled.

3. This method uses named streams to write a class object to and read it from a file.

This compiles and runs successfully.

// Using anonymous streams

 #include <fstream.h>

class MyClass { public: char a; };

30 VisualAge C++ Open Class Library User's Guide

Anonymous Streams

istream& operator >> (istream& aStream, MyClass mc)
{ return aStream >> mc.a; }

ostream& operator << (ostream& aStream, MyClass mc)
{ return aStream << mc.a; }

void main() {
 char a='a';
 MyClass b,c;

b.a = 'b';
c.a = 'c';

// ▌1▐. Use an anonymous stream with a built-in type; this works
fstream("file1.abc",ios::out) << a << endl; // write to the file
fstream("file1.abc",ios::in) >> a; // read from the file
cout << a << endl; // show what was in the file

 #ifdef anon
// ▌2▐. Use an anonymous stream with a class type
// This produces compilation errors if "anon" is defined:

fstream("file1.abc",ios::out) << b << endl; // write to the file
fstream("file1.abc",ios::in) >> b; // read from the file
cout << b << endl; // show what was in the file

 #endif

// ▌3▐. Use a named stream with a class type; this works
fstream File2("file2.abc",ios::out); // define and open the file
File2 << c << endl; // write to the file
File2.close(); // close the file
File2.open("file2.abc",ios::in); // reopen for input
File2 >> c; // read from the file
cout << c << endl; // show what was in the file

 }

If you compile the program with anon defined, compilation fails with messages that

resemble the following:

Call does not match any argument list for "ostream::operator<<".
Call does not match any argument list for "istream::operator>>".

If you compile without anon defined, the letters 'a' and 'c' are written to standard

output.

 Chapter 3. Introduction to the I/O Stream Classes 31

Stream Buffers

 Stream Buffers

One of the most important concepts in the I/O Stream Classes is the stream buffer.

The streambuf class implements some of the member functions that define stream

buffers, but other specialized member functions are left to the classes that are derived

from streambuf: strstreambuf, stdiobuf, and filebuf.

Note: The AT&T and UNIX System Laboratories C++ Language System

documentation use the terms reserve area and buffer instead of stream buffer.

What Does a Stream Buffer Do?

A stream buffer acts as a buffer between the ultimate producer (the source of data) or

ultimate consumer (the target of data) and the member functions of the classes

derived from ios that format this raw data. The ultimate producer can be a file, a

device, or an array of bytes in memory. The ultimate consumer can also be a file, a

device, or an array of bytes in memory.

Why Use a Stream Buffer?

In most operating systems, a system call to read data from the ultimate producer or

write it to the ultimate consumer is an expensive operation. If your applications can

reduce the number of system calls they have to make, they will usually be more

efficient. By acting as a buffer between the ultimate producer or ultimate consumer

and the formatting functions, a stream buffer can reduce the number of system calls

that are made.

Consider, for example, an application that is reading data from the ultimate producer.

If there is no buffer, the application has to make a system call for each character that

is read. However, if the application uses a stream buffer, system calls will only be

made when the buffer is empty. Each system call will read enough characters from

the ultimate producer (if they are available) to fill the buffer again.

How Is a Stream Buffer Implemented?

A stream buffer is implemented as an array of bytes. For each stream buffer, pointers

are defined that point to elements in this array to define the get area, or the space that

is available to accept bytes from the ultimate producer, and the put area, or the space

that is available to store bytes that are on their way to the ultimate consumer.

A stream buffer does not necessarily have separate get and put areas. A stream

buffer that is used for input, such as one that is attached to an istream object, has a

get area. A stream buffer that is used for output, such as one that is attached to an

ostream object, has a put area. A stream buffer that is used for both input and

output, such as one that is attached to an iostream object, has both a get area and a

put area. In stream buffers implemented by the filebuf class that are specialized to

use files as an ultimate producer or ultimate consumer, the get and put areas overlap.

32 VisualAge C++ Open Class Library User's Guide

Stream Buffers

The following member functions of the streambuf class return pointers to boundaries

of areas in a stream buffer:

¹ base() returns a pointer to the beginning of the stream buffer.

¹ eback() returns a pointer to the beginning of the space available for putback.

Characters that are putback are returned to the get area of the stream buffer.

¹ gptr() returns the get pointer, a pointer to the beginning of the get area. The

space between gptr() and egptr() has been filled by the ultimate producer.

These characters are waiting to be extracted from the stream buffer. The space

between eback() and gptr() is available for putback.

¹ egptr() returns a pointer to the end of the get area.

¹ pbase() returns a pointer to the beginning of the space available for the put area.

¹ pptr() returns the put pointer, a pointer to the beginning of the put area. The

space between pbase() and pptr() is filled with bytes that are waiting to be sent

to the ultimate consumer. The space between pptr() and epptr() is available to

accept characters from the application program that are on their way to the

ultimate consumer.

¹ epptr() returns a pointer to the end of the put area.

¹ ebuf() returns a pointer to the end of the stream buffer.

Note: In the actual implementation of stream buffers, the pointers returned by these

functions point at char values. In the abstract concept of stream buffers, on the other

hand, these pointers point to the boundary between char values. To establish a

correspondence between the abstract concept and the actual implementation, you

should think of the pointers as pointing to the boundary just before the character that

they actually point at.

Figure 6 on page 34 shows how the pointers returned by these functions delineate

the stream buffer.

 Chapter 3. Introduction to the I/O Stream Classes 33

Format State Flags

Stream Buffer

get area put area

base() eback() gptr() egptr() pbase() pptr() epptr() ebuf()

Ultimate Producer Ultimate Consumer

Figure 6. The Structure of Stream Buffers

Format State Flags

The ios class defines an enumeration of format state flags that you can use to affect

the formatting of data in I/O streams. The following list shows the formatting

features and the format flags that control them:

¹ Whitespace and padding: ios::skipws, ios::left, ios::right, ios::internal

¹ Base conversion: ios::dec, ios::hex, ios::oct, ios::showbase

 ¹ Integral formatting: ios::showpos

¹ Floating-point formatting: ios::fixed, ios::scientific, ios::showpoint

¹ Uppercase and lowercase: ios::uppercase

 ¹ Buffer flushing: ios::stdio, ios::unitbuf

For examples of how to use these format state flags, see “Changing the Formatting of

Stream Output” on page 56. For descriptions of individual format state flags, see

“Format State Flags” in the Open Class Library Reference.

34 VisualAge C++ Open Class Library User's Guide

Receiving Input

 4 Getting Started with the I/O Stream Library

This chapter identifies common input and output tasks you may want to perform in

C++ programs, and shows how you can accomplish these tasks using the I/O Stream

Library. The tasks are:

¹ Receiving input from standard input

¹ Displaying output on standard output or standard error

¹ Flushing an output stream with the endl and flush manipulators

¹ Parsing multiple inputs

¹ Opening a file for input and reading from the file

¹ Opening a file for output and writing to the file.

 If a task you need help with is not listed here, you may find it in Chapter 5,

“Advanced I/O Stream Topics” on page 47.

Note: You can compile and run coding examples in this chapter that appear outside

of any function, by placing them inside a main() function and using #include <...>

to include necessary header files. Where the header file to include is not indicated,

include iostream.h.

Receiving Input from Standard Input

When you include the iostream.h header file in a program, four streams are

automatically defined for I/O use: cin, cout, cerr, and clog. The cin stream is the

standard input stream. Input to cin comes from the C standard input stream, stdin,

unless cin has been redirected by the user. The remaining streams can be used for

output, and their use is described in “Displaying Output on Standard Output or

Standard Error” on page 38.

You can receive standard input using the predefined input stream and the input

operator (operator>>) for the type being read. In the following example, an integer is

read from the input stream into a variable:

 int i;
cin >> i;

An input operator must exist for the type being read in. The I/O Stream Library

defines input operators for all C++ built-in types. For types you define yourself, you

need to provide your own input operators. See “Defining an Input Operator for a

Class Type” on page 50 for details on how to do this. If you attempt to read input

 Copyright IBM Corp. 1993, 1995 35

Receiving Input

into a variable and no input operator is defined for the type of that variable, the

compiler displays an error message with text similar to the following:

Call does not match any argument list for "istream::operator>>".

Multiple Variables in an Input Statement

You can receive input from a stream into a succession of variables with a single input

statement, by repeating the input operator (>>) after each input, and then specifying

the next variable to read in. You can combine variables of multiple types in an input

statement, without having to specify the types of those variables in the input

statement: For example:

 int i,j,k;
 float l,m;

cin >> i >> j >> k >> l >> m;

The above syntax provides identical results to the following multiple input statements:

 int i,j,k;
 float l,m;

cin >> i;
cin >> j;
cin >> k;
cin >> l;
cin >> m;

If you want to enhance the readability of your source code, break the single input

statement up with white space, instead of separating it into multiple input statements:

 int i,j,k;
 float l,m;

cin >> i
 >> j
 >> k
 >> l
 >> m;

 String Input

If you want to read input into a character array (a string), you should declare the

character array using array notation, with a length large enough to hold the largest

string being entered. If you declare the character array using pointer notation, you

must allocate storage to the pointer, for example by using new or malloc. The

following example shows a correct and an incorrect way of placing input in a

character array:

 char goodText[40];
 char* badText;

cin >> goodText; // works as long as input is less than 40 chars
cin >> badText; // may cause a runtime error because no storage

// is allocated to *badText

36 VisualAge C++ Open Class Library User's Guide

Receiving Input

In the above example, the input to badText can be made to work by inserting the

following code before the input:

 badText=new char[40];

This guideline applies to input to any pointer-to-type: storage must be allocated to the

pointer before input occurs.

White Space in String Input

The input operator uses white space to delineate items in the input stream, including

strings. If you want an entire line of input to be read in as a single string, you should

use the getline() function of istream:

// String input using operator << and getline()

 #include <iostream.h>

void main() {
char text1[100], text2[100];

// prompt and get input for text arrays
cout << "Enter two words:\n";
cin >> text1 >> text2;

// display the text arrays
cout << "<" << text1 << ">\n"

<< "<" << text2 << ">\n"
<< "Enter two lines of text:\n";

// ignore the next character if it is a newline
if (cin.peek()=='\n') cin.ignore(1,'\n');

// get a line of text into array text1
cin.getline(text1, sizeof(text1), '\n');

// get a line of text into array text2
cin.getline(text2, sizeof(text2), '\n');

// display the text arrays
cout << "<" << text1 << ">\n"

<< "<" << text2 << ">" << endl;
 }

The first argument of getline() is a pointer to the character array in which to store

the input. The second argument specifies the maximum number of bytes of input to

read. The third argument is the delimiter, which the library uses to determine when

the string input is complete. If you do not specify a delimiter, the default is the

new-line character.

Here are two samples of the input and output from this program. Input is shown in

bold type, and output is shown in regular type:

Enter two words:
Word1 Word2
<Word1>
<Word2>
Enter two lines of text:
First line of text

 Chapter 4. Getting Started with the I/O Stream Library 37

Displaying Output

Second line of text
<First line of text>
<Second line of text>

For the above input, the program works as expected. For the input in the sample

below, the first input statement reads two white-space-delimited words from the first

line. The check for a new-line character does not find one at the next position

(because the next character in the input stream is the space following “happens”), so

the first getline() call reads in the remainder of the first line of input. The second

line of input is read by the second getline() call, and the program ends before any

further input can be read.

Enter two words:
What happens if I enter more words than it asks for?
<What>
<happens>
Enter two lines of text:
I suppose it will skip over the extra ones
< if I enter more words than it asks for?>
<I suppose it will skip over the extra ones>

Incorrect Input and the Error State of the Input Stream

When your program requests input through the input operator and the input provided

is incorrect or of the wrong type, the error state may be set in the input stream and

further input from that input stream may fail. One runtime symptom of such a failure

is that your program's prompts for further input display without pausing for the input.

 See “Correcting Input Stream Errors” on page 54 for details on how to detect and

correct input stream errors.

Using Input Streams Other Than cin

You can use the same techniques for input from other input streams as for input from

cin. The only difference is that, for other input streams, your program must define

the stream. For information on how to define an input stream attached to a file,

see “Opening a File for Input and Reading from the File” on page 43. Assuming you

have defined a stream attached to a file opened for input, and have called that stream

myin, you can read into that stream from the file by specifying that stream's name

instead of cin:

// assume the input file is associated with stream myin
 int a,b;

myin >> a >> b;

Displaying Output on Standard Output or Standard Error

The I/O Stream library predefines three output streams as well as the cin input stream

described in “Receiving Input from Standard Input” on page 35 . The standard

output stream is cout, and the remaining streams, cerr and clog, are standard error

streams. Output to cout goes to the C standard output stream, stdout, unless cout

38 VisualAge C++ Open Class Library User's Guide

Displaying Output

has been redirected. Output to cerr and clog goes to the C standard error stream,

stderr, unless cerr or clog has been redirected.

cerr and clog are really two streams that write to the same output device; the

difference between them is that cerr flushes its contents to the output device after

each output, while clog must be explicitly flushed.

You can print to one of the predefined output streams by using the predefined

stream's name and the output operator (operator<<), followed by the value to print:

 #include <iostream.h>
void main(int argc, char* argv[]) {

if (argc==1) cout << "Good day!" << endl;
else cerr << "I don't know what to do with "

<< argv[1] << endl;
 }

If you name the compiled program myprog, the following inputs will produce the

following output to standard output or standard error:

An output operator must exist for any type being output. The I/O Stream Library

defines output operators for all C++ built-in types. For types you define yourself, you

need to provide your own output operators. See “Defining an Output Operator

for a Class Type” on page 52 for details on how to do this. If you attempt to place

the contents of a variable into an output stream and no output operator is defined for

the type of that variable, the compiler displays an error message with text similar to

the following:

Call does not match any argument list for "ostream::operator<<".

Invocation Output

myprog Good day!

(to standard output)

myprog hello there I don't know what to do with hello

(to standard error)

Multiple Variables in an Output Statement

You can place a succession of variables into an output stream with a single output

statement, by repeating the output operator (<<) after each output, and then specifying

the next variable to output. You can combine variables of multiple types in an output

statement, without having to specify the types of those variables in the output

statement: For example:

 int i,j,k;
 float l,m;
 // ...

cout << i << j << k << l << m;

 Chapter 4. Getting Started with the I/O Stream Library 39

Flushing Output Streams

The above syntax provides identical results to the following multiple output

statements:

 int i,j,k;
 float l,m;

cout << i;
cout << j;
cout << k;
cout << l;
cout << m;

If you want to enhance the readability of your source code, break the single output

statement up with white space, instead of separating it into multiple output statements:

 int i,j,k;
 float l,m;

cout << i
 << j
 << k
 << l
 << m;

Using Output Streams Other Than cout, cerr, and clog

You can use the same techniques for output to other output streams as for output to

the predefined output streams. The only difference is that, for other output streams,

your program must define the stream. For information on how to define an

output stream attached to a file, see “Opening a File for Output and Writing to the

File” on page 46. Assuming you have defined a stream attached to a file opened for

output, and have called that stream myout, you can write to that file through its

stream, by specifying the stream's name instead of cout, cerr or clog:

// assume the output file is associated with stream myout
 int a,b;

myout << a << b;

“Opening a File for Output and Writing to the File” on page 46 provides information

on all operations required to perform basic file output, including opening, writing to,

and closing output files.

Flushing Output Streams with endl and flush

Output streams must be flushed for their contents to be written to the output device.

Consider the following:

cout << "This first calculation may take a very long time\n";
 firstVeryLongCalc();

cout << "This second calculation may take even longer\n";
 secondVeryLongCalc();

cout << "All done!"

40 VisualAge C++ Open Class Library User's Guide

Flushing Output Streams

If the functions called in this excerpt do not themselves perform input or output to the

standard I/O streams, the first message will be written to the cout buffer before

firstVeryLongCalc() is called. The second message will be written before

secondVeryLongCalc() is called, but the buffer may not be flushed (written out to the

physical output device) until an implicit or explicit flush operation occurs. As a

result, the above program displays its messages about expected delays after the delays

have already occurred. If you want the output to be displayed before each function

call, you must flush the output stream.

A stream is flushed implicitly in the following situations:

¹ The predefined streams cout and clog are flushed when input is requested from

the predefined input stream (cin).

¹ The predefined stream cerr is flushed after each output operation.

¹ An output stream that is unit-buffered is flushed after each output operation. A

unit-buffered stream is a stream that has ios::unitbuf set. See “Buffer

Flushing” in the Open Class Library Reference for further details.

¹ An output stream is flushed whenever the flush() member function is applied to

it. This includes cases where the flush or endl manipulators are written to the

output stream. See “Placing endl or flush in an Output Stream.”

¹ The program terminates.

The above example can be corrected so that output appears before each calculation

begins, as follows:

cout << "This first calculation may take a very long time\n";
 cout.flush();
 firstVeryLongCalc();

cout << "This second calculation may take even longer\n";
 cout.flush();
 secondVeryLongCalc();

cout << "All done!"
 cout.flush();

Placing endl or flush in an Output Stream

The endl and flush manipulators give you a simple way to flush an output stream:

cout << "This first calculation may take a very long time" << endl;
 firstVeryLongCalc();

cout << "This second calculation may take even longer" << endl;
 secondVeryLongCalc();

cout << "All done!" << flush;

Placing the flush manipulator in an output stream is equivalent to calling flush() for

that output stream. When you place endl in an output stream, it is equivalent to

placing a new-line character in the stream, and then calling flush().

 Chapter 4. Getting Started with the I/O Stream Library 41

Parsing Multiple Inputs

Avoid using endl where the new-line character is required but buffer flushing is not,

because endl has a much higher overhead than using the new-line character. For

example:

cout << "Employee ID: " << emp.id << endl
<< "Name: " << emp.name << endl
<< "Job Category: " << emp.jobc << endl
<< "Hire date: " << emp.hire << endl;

is not as efficient as:

cout << "Employee ID: " << emp.id
<< "\nName: " << emp.name
<< "\nJob Category: " << emp.jobc
<< "\nHire date: " << emp.hire << endl;

You can include the new-line character as the start of the character string that

immediately follows the location where the endl manipulator would have been

placed, or as a separate character enclosed in single quotation marks:

cout << "Salary: " << emp.pay << '\n'
<< "Next raise: " << emp.elig_raise << endl;

Flushing a stream generally involves a high overhead. If you are concerned about

performance, only flush a stream when necessary.

Parsing Multiple Inputs

The I/O Stream Library input streams determine when to stop reading input into a

variable based on the type of variable being read and the contents of the stream. The

easiest way to understand how input is parsed is to write a simple program such as

the following, and run it several times with different inputs.

 #include <iostream.h>
void main() {

 int a,b,c;
cin >> a >> b >> c;
cout << "a: <" << a << ">\n"

<< "b: <" << b << ">\n"
<< "c: <" << c << '>' << endl;

 }

The following table shows sample inputs and outputs, and explains the outputs. In

the “Input” column, <\n> represents a new-line character in the input stream.

42 VisualAge C++ Open Class Library User's Guide

File Input

 See “White Space in String Input” on page 37 for information on how the input

operator interprets white space in the input stream during string input.

Input Output Remarks

123<\n> No output. a has been assigned the value 123, but

the program is still waiting on input for b and c.

1<\n>
2<\n>
3<\n>

a: <1>
b: <2>
c: <3>

White space (in this case, new-line characters) is

used to delimit different input variables.

1 2 3<\n> a: <1>
b: <2>
c: <3>

White space (in this case, spaces) is used to

delimit different input variables. There can be any

amount of white space between inputs.

123,456,789<\n> a: <123>
b: <-559038737>
c: <-559038737>

Characters are read into int a up to the first

character that is not acceptable input for an integer

(the comma). Characters are read into int b

where input for a left off (the comma). Because a

comma is not one of the allowable characters for

integer input, ios::failbit is set, and all further

input fails until ios::failbit is cleared. See

“Correcting Input Stream Errors” on page 54 for

details on how to clear an input stream.

1.2 2.3<\n>
3.4<\n>

a: <1>
b: <-559038737>
c: <-559038737>

As with the previous example, characters are read

into a until the first character is encountered that

is not acceptable input for an integer (in this case,

the period). The next input of an int causes

ios::failbit to be set, and so both it and the third

input result in errors.

Opening a File for Input and Reading from the File

Use the following steps to open a file for input and to read from the file. The steps

are described in detail in the subsections that follow the steps.

1. Construct an fstream or ifstream object to be associated with the file. The file

can be opened during construction of the object, or later.

2. Use the name of the fstream or ifstream object and the input operator or other

input functions of the istream class, to read the input.

3. Close the file by calling the close() member function or by implicitly or

explicitly destroying the fstream or ifstream object.

 Chapter 4. Getting Started with the I/O Stream Library 43

File Input

Constructing an fstream or ifstream Object for Input

You can open a file for input in one of two ways:

¹ Construct an fstream or ifstream object for the file, and call open() on the

object:

 #include <fstream.h>
void main() {

 fstream infile1;
 ifstream infile2;
 infile1.open("myfile.dat",ios::in);
 infile2.open("myfile.dat");
 // ...
 }

¹ Specify the file during construction, so that open() is called automatically:

 #include <fstream.h>
void main() {

 fstream infile1("myfile.dat",ios::in);
 ifstream infile2("myfile.dat");
 // ...
 }

The only difference between opening the file as an fstream or ifstream object is that,

if you open the file as an fstream object, you must specify the input mode (ios::in).

If you open it as an ifstream object, it is implicitly opened in input mode. The

advantage of using ifstream rather than fstream to open an input file is that, if you

attempt to apply the output operator to an ifstream object, this error will be caught

during compilation. If you attempt to apply the output operator to an fstream object,

the error is not caught during compilation, and may pass unnoticed at runtime.

The advantage of using fstream rather than ifstream is that you can use the same

object for both input and output. For example:

// Using fstream to read from and write to a file

 #include <fstream.h>
void main() {

 char q[40];
fstream myfile("test.x",ios::in); // open the file for input
myfile >> q; // input from myfile into q
myfile.close(); // close the file
myfile.open("test.x",ios::app); // reopen the file for output
myfile << q << endl; // output from q to myfile
myfile.close(); // close the file

 }

44 VisualAge C++ Open Class Library User's Guide

File Input

This example opens the same file first for input and later for output. It reads in a

character string during input, and writes that character string to the end of the same

file during output. If the contents of the file text.x before the program is run are:

barbers often shave

the file contains the following after the program is run:

barbers often shave
 barbers

Note that you can use the same fstream object to access different files in sequence.

In the above example, myfile.open("test.C",ios::app) could have read

myfile.open("test.out",ios::app) and the program would still have compiled and

run, although the end result would be that the first string of test.C would be

appended to test.out instead of to test.C itself.

Reading Input from a File

The statement myfile >> a in the above example reads input into a from the myfile

stream. Input from an fstream or ifstream object resembles input from the standard

input stream cin, in all respects except that the input is a file rather than standard

input, and you use the fstream object name instead of cin. The two following

programs produce the same output when provided with a given set of input. In the

case of stdin.C, the input comes from the standard input device. In the case of

filein.C, the input comes from the file file.in:

In both examples, the program reads the following, in sequence:

 1. Three integers

2. A whitespace-delimited string

3. A string that is delimited either by a new-line character or by a maximum length

of 39 characters.

4. A whitespace-delimited string.

 stdin.C filein.C

#include <iostream.h>

void main() {
 int ia,ib,ic;
 char ca[40],cb[40],cc[40];

// cin is predefined
cin >> ia >> ib >> ic

 >> ca;
 cin.getline(cb,sizeof(cb),'\n');

cin >> cc;
// no need to close cin
cout << ia << ca

<< ib << cb
<< ic << cc << endl;

 }

#include <fstream.h>

void main() {
 int ia,ib,ic;
 char ca[40],cb[40],cc[40];
 fstream myfile("file.in",ios::in);

myfile >> ia >> ib >> ic
 >> ca;
 myfile.getline(cb,sizeof(cb),'\n');

myfile >> cc;
 myfile.close();

cout << ia << ca
<< ib << cb
<< ic << cc << endl;

 }

 Chapter 4. Getting Started with the I/O Stream Library 45

File Output

Note that, when you define an input operator for a class type, this input operator is

available both to the predefined input stream cin and to any input streams you define,

such as myfile in the above example.

For more information on defining your own input operators, see “Defining an Input

Operator for a Class Type” on page 50.

For more details on reading input from a stream, see “Receiving Input from Standard

Input” on page 35. All techniques for reading input from the standard input stream

can be used to read input from a file, providing your code is changed so that the cin

object is replaced with the name of the fstream object associated with the input file.

Opening a File for Output and Writing to the File

The description of using a file as the input stream in “Opening a File for Input and

Reading from the File” on page 43 provides the basis for explanations in this section.

You may want to read that section first if you have not already done so.

To open a file for output, use the following steps:

1. Declare an fstream or ofstream object to associate with the file, and open it

either when the object is constructed, or later:

 #include <fstream.h>
void main() {

fstream file1("fiup 2out",ios::app);
 ofstream file2("file2.out");
 ofstream file3;
 file3.open("file3.out");
 }

You must specify one or more open modes when you open the file, unless you

declare the object as an ofstream object. Open modes are described in

“open” in the Open Class Library Reference. The advantage of accessing an

output file as an ofstream object rather than as an fstream object is that the

compiler can flag input operations to that object as errors.

2. Use the output operator or ostream member functions to perform output to the

file.

3. Close the file using the close() member function of fstream.

When you define an output operator for a class type, this output operator is available

both to the predefined output streams and to any output streams you define. For

more information on defining your own output operators, see “Defining an Output

Operator for a Class Type” on page 52.

46 VisualAge C++ Open Class Library User's Guide

Associating a File with Stdin or Stdout

 5 Advanced I/O Stream Topics

This chapter builds on the information in Chapter 4, “Getting Started with the I/O

Stream Library” on page 35, and shows you how to use the I/O Stream Classes to

accomplish these more advanced tasks:

¹ Associating a file with a standard input or output stream

¹ Using filebuf functions to move through a file

¹ Defining an input operator for a class type

¹ Defining an output operator for a class type

¹ Correcting input stream errors

¹ Changing the formatting of stream output

¹ Defining your own format state flags

¹ Using the strstream classes to accept input from and to send output to character

arrays (strings).

 If a task you need help with is not listed here, you may find it in Chapter 4,

“Getting Started with the I/O Stream Library” on page 35.

Associating a File with a Standard Input or Output Stream

The iostream_withassign class lets you associate a stream object with one of the

predefined streams cin, cout, cerr, and clog. You can do this, for example, to

write programs that accept input from a file if a file is specified, or from standard

input if no file is specified.

The following program is a simple filter that reads input from a file into a character

array, and writes the array out to a second file. If only one file is specified on the

command line, the output is sent to standard output. If no file is specified, the input

is taken from standard input. The program uses the iostream_withassign assignment

operator to assign an ifstream or ofstream object to one of the predefined streams.

// Generic I/O Stream filter, invoked as follows:
// filter [infile [outfile]]

 #include <iostream.h>
 #include <fstream.h>

void main(int argc, char* argv[])
 {
 ifstream* infile;
 ofstream* outfile;

char inputline[4096]; // used to read input lines
int sinl=sizeof(inputline);// used by getline() function
if (argc>1) { // if at least an input file was specified

infile = new ifstream(argv[1]); // try opening it
if (infile->good()) // if it opens successfully

cin = *infile; // assign input file to cin

 Copyright IBM Corp. 1993, 1995 47

Moving Through Files with filebuf

if (argc>2) { // if an output file was also specified
outfile = new ofstream(argv[2]); // try opening it
if (outfile->good()) // if it opens successfully

cout = *outfile; // assign output file to cout
 }
 }

 cin.getline(inputline,
sizeof(inputline),'\n'); // get first line
while (cin.good()) { // while input is good

 //
// Insert any line-by-line filtering here

 //
cout << inputline << endl; // write line
cin.getline(inputline,sinl,'\n'); // get next line (sinl specifies
} // max chars to read)

if (argc>1) { // if input file was used
infile->close(); // then close it
if (argc>2) { // if output file was used

outfile->close(); // then close it
 }
 }
 }

You can use this example as a starting point for writing a text filter that scans a file

line by line, makes changes to certain lines, and writes all lines to an output file.

Using filebuf Functions to Move Through a File

In a program that receives input from an fstream object (a file), you can associate

the fstream object with a filebuf object, and then use the filebuf object to move

the get or put pointer forward or backward in the file. You can also use filebuf
member functions to determine the length of the file.

To associate an fstream object with a filebuf object, you must first construct the

fstream object and open it. You then use the rdbuf() member function of the

fstream class to obtain the address of the file's filebuf object. Using this filebuf
object, you can move through the file or determine the file's length, with the

seekpos() and seekoff() functions. For example:

// Using the filebuf class to move through a file

#include <fstream.h> // for use of fstream classes
#include <iostream.h> // not really needed since fstream includes it
#include <stdlib.h> // for use of exit() function

void main() {
// declare a streampos object to keep track of the position in filebuf

 streampos Position;

// declare a streamoff object to set stream offsets
// (for use by seekoff and seekpos)

 streamoff Offset=0;

// declare an fstream object and open its file for input
 fstream InputFile("algonq.uin",ios::in);

48 VisualAge C++ Open Class Library User's Guide

Moving Through Files with filebuf

// check that input was successful, exit if not
if (!InputFile) {

cerr << "Could not open algonq.uin! Exiting...\n";
 exit(-1);
 }

// associate the fstream object with a filebuf pointer
 filebuf *InputBuffer=InputFile.rdbuf();

// read the first line, and display it
 char LineOfFile[128];
 InputFile.getline(LineOfFile,sizeof(LineOfFile),'\n');

cout << LineOfFile << endl;

// Now skip forward 100 bytes and display another line
 Offset=100;
 Position=InputBuffer->seekoff(Offset,ios::cur,ios::in);
 InputFile.getline(LineOfFile,sizeof(LineOfFile),'\n');

cout << "At position " << Position << ":\n"
<< LineOfFile << endl;

// Now skip back 50 bytes and display another line
 Offset=-50;
 Position=InputBuffer->seekoff(Offset,ios::cur,ios::in);

// ios::cur refers to current position in buffer
 InputFile.getline(LineOfFile,sizeof(LineOfFile),'\n');

cout << "At position " << Position << ":\n"
<< LineOfFile << endl;

// Now go to position 137 and display to the end of its line
 Position=137;
 InputBuffer->seekpos(Position,ios::in);
 InputFile.getline(LineOfFile,sizeof(LineOfFile),'\n');

cout << "At position " << Position << ":\n"
<< LineOfFile << endl;

// Now close the file and end the program
 InputFile.close();
 }

If the file algonq.uin contains the following text:

The trip begins on Round Lake.
We proceed through a marshy portage,
and soon find ourselves in a river whose water is the color of ink.

A heron flies off in the distance.
Frogs croak cautiously alongside the canoes.
We can feel the sun's heat glaring at us from grassy shores.

the output of the example program is:

The trip begins on Round Lake.
At position 131:
ink.
At position 86:
elves in a river whose water is the color of ink.
At position 137:
A heron flies off in the distance.

 Chapter 5. Advanced I/O Stream Topics 49

Defining Your Own Input Operator

Defining an Input Operator for a Class Type

An input operator is predefined for all built-in C++ types. If you create a class type

and want to read input from a file or the standard input device into objects of that

class type, you need to define an input operator for that class's type. You define an

istream input operator that has the class type as its second argument. For example:

myclass.h #include <iostream.h>

class PhoneNumber {
 public:
 int AreaCode;
 int Exchange;
 int Local;

// Copy Constructor:
PhoneNumber(int ac, int ex, int lc) :

AreaCode(ac), Exchange(ex), Local(lc) {}
//... Other member functions

 };

istream& operator>> (istream& aStream, PhoneNumber& aPhoneNum) {
int tmpAreaCode, tmpExchange, tmpLocal;
aStream >> tmpAreaCode >> tmpExchange >> tmpLocal;
aPhoneNum=PhoneNumber(tmpAreaCode, tmpExchange, tmpLocal);

 return aStream;
 }

The input operator must have the following characteristics:

¹ Its return type must be a reference to an istream.

¹ Its first argument must be a reference to an istream. This argument must be

used as the function's return value.

¹ Its second argument must be a reference to the class type for which the operator

is being defined.

You can define the code performing the actual input any way you like. In the above

example, input is accomplished for the class type by requesting input from the

istream object for all data members of the class type, and then invoking the copy

constructor for the class type. This is a typical format for a user-defined input

operator.

Using the cin Stream in a Class Input Operator
Be careful not to use the cin stream as the input stream when you define an input

operator for a class type, unless this is what you really want to do. In the example

above, if the line

aStream >> tmpAreaCode >> tmpExchange >> tmpLocal;

is rewritten as:

cin >> tmpAreaCode >> tmpExchange >> tmpLocal;

50 VisualAge C++ Open Class Library User's Guide

Defining Your Own Input Operator

the input operator functions identically, when you use statements in your main

program such as cin >> myNumber. However, if the stream requesting input is not the

predefined stream cin, then redefining an input operator to read from cin will

produce unexpected results. Consider how the following code's behavior changes

depending on whether cin or aStream is used as the stream in the input statement

within the input operator defined above:

 #include <iostream.h>
 #include <fstream.h>
 #include "myclass.h"

void main() {
 PhoneNumber addressBook[40];
 fstream infile("address.txt",ios::in);

for (int i=0;i<40;i++)
infile >> addressBook[i]; // does this read from "address.txt"

// or from standard input?
 //...
 }

In the original example, the definition of the input operator causes the program to

read input from the provided istream object (in this case, the fstream object infile).

The input is therefore read from a file. In the example that uses cin explicitly within

the input operator, the input that is supposedly coming from infile according to the

input statement infile >> addressBook[i] actually comes from the predefined stream

cin.

Displaying Prompts in Input Operator Code
You can display prompts for individual data members of a class type within the input

operator definition for that type. For example, you could redefine the PhoneNumber

input operator shown above as:

istream& operator>> (istream& aStream, PhoneNumber& aPhoneNum) {
int tmpAreaCode, tmpExchange, tmpLocal;
cout << "Enter area code: ";
aStream >> tmpAreaCode;
cout << "Enter exchange: ";
aStream >> tmpExchange;
cout << "Enter local: ";
aStream >> tmpLocal;
aPhoneNum=PhoneNumber(tmpAreaCode, tmpExchange, tmpLocal);

 return aStream;
 }

You may be tempted to do this when you anticipate that the source of all input for

objects of a class will be the standard input stream cin. Avoid this practice wherever

possible, because a program using your class may later attempt to read input into an

object of your class from a different stream (for example, an fstream object attached

to a file). In such cases, the prompts are still written to cout even though input from

cin is not consumed by the input operation. Such an interface does not prevent

programs from using your class, but the unnecessary prompts may puzzle end users.

 Chapter 5. Advanced I/O Stream Topics 51

Defining Your Own Output Operator

Defining an Output Operator for a Class Type

An output operator is predefined for all built-in C++ types. If you create a class type

and want to write output of that class type to a file or to any of the predefined output

streams, you need to define an output operator for that class's type. You define an

ostream output operator that has the class type as its second argument. For example:

 // myclass.h
 #include <iostream.h>

class PhoneNumber {
 public:
 int AreaCode;
 int Exchange;
 int Local;

// Copy Constructor:
PhoneNumber(int ac, int ex, int lc) :

AreaCode(ac), Exchange(ex), Local(lc) {}
//... Other member functions

 };

ostream& operator<< (ostream& aStream, PhoneNumber aPhoneNum) {
aStream << "(" << aPhoneNum.AreaCode << ") "

<< aPhoneNum.Exchange << "-"
<< aPhoneNum.Local << '\n';

 return aStream;
 }

The output operator must have the following characteristics:

¹ Its return type should be a reference to an ostream.

¹ Its first argument must be a reference to an ostream. This argument must be

used as the function's return value.

¹ Its second argument must be of the class type for which the operator is being

defined.

You can define the code performing the actual output any way you like. In the above

example, output is accomplished for the class type by placing in the output stream all

data members of the class, along with parentheses around the area code, a space

before the exchange, and a hyphen between the exchange and the local.

Class Output Operators and the Format State

You should consider checking the state of applicable format flags for any stream you

perform output to in a class output operator. At the very least, if you change the

format state in your class output operator, before your operator returns it should reset

the format state to what it was on entry to the operator. For example, if you design

an output operator to always write floating-point numbers at a given precision, you

should save the precision in a temporary on entry to your operator, then change the

precision and do your output, and reset the precision before returning.

The ios::x_width setting determines the field width for output. Because

ios::x_width is reset after each insertion into an output stream (including insertions

52 VisualAge C++ Open Class Library User's Guide

Defining Your Own Output Operator

within class output operators you define), you may want to check the setting of

ios::x_width and duplicate it for each output your operator performs. Consider the

following example, in which class Coord_3D defines a three-dimensional co-ordinate

system. If the function requesting output sets the stream's width to a given value

before the output operator for Coord_3D is invoked, the output operator applies that

width to each of the three co-ordinates being output. (Note that it lets the width reset

after the third output, so that, from the client code's perspective, ios::x_width is reset

by the output operation, as it would be for built-in types such as float.)

// Setting the output width in a class output operator

 #include <iostream.h>
 #include <iomanip.h>

class Coord_3D {
 public:
 double X,Y,Z;

Coord_3D(double x, double y, double z) : X(x), Y(y), Z(z) {}
 };

ostream& operator << (ostream& aStream, Coord_3D coord) {
 int startingWidth=aStream.width();

aStream << coord.X
 #ifndef NOSETW

<< setw(startingWidth) // set width again
 #endif
 << coord.Y
 #ifndef NOSETW

<< setw(startingWidth) // set width again
 #endif
 << coord.Z;
 return aStream;
 }

void main() {
 Coord_3D MyCoord(38.162168,1773.59,17293.12);

cout << setw(17) << MyCoord << '\n'
<< setw(11) << MyCoord << endl;

 }

If you add #define NOSETW to prevent the two lines containing setw() in the output

operator definition from being compiled, the program produces the output shown

below; notice that only the first data member of class Coord_3D is formatted to the

desired width.

 38.16221773.5917293.1
 38.16221773.5917293.1

If you do not comment out the lines containing setw(), all three data members are

formatted to the desired width, as shown below:

 38.1622 1773.59 17293.1
 38.1622 1773.59 17293.1

 See “Changing the Formatting of Stream Output” on page 56 for more

information on the format state and how to change it, within output operators and in

client code.

 Chapter 5. Advanced I/O Stream Topics 53

Correcting Input Stream Errors

Correcting Input Stream Errors

When an input statement is requesting input of one type, and erroneous input or input

of another type is provided, the error state of the input stream is set to ios::badbit

and ios::failbit, and further input operations may not work properly. For example,

the following code repeatedly displays the text: Enter an integer value: if the first

input provided is a string whose initial characters do not form an integer value:

 #include <iostream.h>
void main() {

 int i=-1;
while (i<=0) {

cout << "Enter a positive integer: " ;
cin >> i;

 }
cout << "The value was " << i << endl;

 }

This program loops indefinitely, given an input such as ABC12, because the erroneous

input causes the error state to be set in the stream, but does not clear the error state or

advance the get pointer in the stream beyond the erroneous characters. Each time the

input operator is called for an int (as in the while loop above), the same characters

are read in.

To clear an input stream and repeat an attempt at input you must add code to do the

following:

1. Clear the stream's error state.

2. Remove the erroneous characters from the stream.

3. Attempt the input again.

You can determine whether the stream's error state has been set in one of the

following ways:

¹ By calling fail() for the stream (shown in the example below)

¹ By calling bad(), oef(), good(), or rdstate().

¹ By using the void* type conversion operator (for example, if (cin)).

¹ By using operator! operator (shown in the comment in the example below)

All of these methods are described in “ios Class” on page 31 in the Open Class

Library Reference.

You can clear the error state by calling clear(), and you can remove the erroneous

characters using ignore(). The example above could be improved, using these

suggestions, as follows:

54 VisualAge C++ Open Class Library User's Guide

Correcting Input Stream Errors

 #include <iostream.h>
void main() {

 int i=-1;
while (i==-1) {

cout << "Enter a positive integer: ";
cin >> i;
while (cin.fail()) { // could also be "while (!cin) {"

 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Please try again: ";
cin >> i;

 }
 }

cout << "The value was " << i << endl;
 }

The ignore() member function with the arguments shown above removes characters

from the input stream until the total number of characters removed equals 1000, or

until the new-line character is encountered, or until EOF is reached. This example

produces the output shown below in regular type, given the input shown in bold:

Enter an integer value:
 ABC12

Please try again:
 12ABC

The value was 12

Note that, for the second attempt at input, the error state is set after the input of 12,

so the call to cin.fail() after the corrected input returns false. If another integer

input were requested after the while loop ends, the error state would be set and that

input would fail.

When you define an input operator of class type, you can build error-checking code

into your definition. If you do so, you do not have to check for error-causing input

every time you use the input operator for objects of your class type. Consider the

class definition for the PhoneNumber data type shown in “myclass.h” on page 50, and

the following input operator definition:

istream& operator>> (istream& aStream, PhoneNumber& aPhoneNum) {
int AreaCode, Exchange, Local;
aStream >> AreaCode;
while (aStream.fail()) eatNonInts(aStream,AreaCode);

aStream >> Exchange;
while (aStream.fail()) eatNonInts(aStream,Exchange);

aStream >> Local;
while (aStream.fail()) eatNonInts(aStream,Local);

aPhoneNum=PhoneNumber(AreaCode, Exchange, Local);
 return aStream;
 }

The eatNonInts() function in this example should be defined to ignore all characters

in the input stream until the next integer character is encountered, and then to read

the next integer value into the variable provided as its second argument. The function

could be defined as follows:

 Chapter 5. Advanced I/O Stream Topics 55

Formatting Your Output

void eatNonInts(istream& aStream, int& anInt) {
 char someChar;
 aStream.clear();

while (someChar=aStream.peek(), !isdigit(someChar))
 aStream.get(someChar);

aStream >> anInt;
 }

Now whenever input is requested for a PhoneNumber object and the provided input

contains nonnumeric data, this data is skipped over. Note that this is only a primitive

error-handling mechanism; if the input provided is 416 555 2p45 instead of 416 555

2045, the characters p45 will be ignored and the local is set to 2 rather than 2045. A

more complete example would check each input for the correct number of digits.

Changing the Formatting of Stream Output

The I/O Stream Classes let you define how output should be formatted on a

stream-by-stream basis within your program. Most formatting applies to numeric

data: what base integers should be written to the output stream in, how many digits of

precision floating-point numbers should have, whether they should appear in scientific

or fixed-point format. Other formatting applies to any of the built-in types, and to

your own types if you design your class output operators to check the format state of

a stream to determine what formatting action to take. (See “Defining an Output

Operator for a Class Type” on page 52 for suggestions on checking the format state

in user-defined output operators.)

This section describes a number of techniques you can use to change the way data is

written to output streams. One common characteristic of most of the methods

described (other than the method of changing the output field's width) is that each

format state setting applies to its output stream until it is explicitly cleared, or is

overridden by a mutually exclusive format state. This differs from the C printf()

family of output functions, in which each printf() statement must define its

formatting information individually.

ios Methods and Manipulators

For some of the format flags defined for the ios class, you can set or clear them

using an ios function and a flag name, or by using a manipulator. (Manipulators are

described in more detail in Chapter 6, “Manipulators” on page 67) With manipulators

you can place the change to a stream's state within a list of outputs for that stream.

The following example shows two ways of changing the base of an output stream

from decimal to octal. The first, which is more difficult to read, uses the setf()

function to set the basefield field in the format state to octal. The second way uses

a manipulator, oct, within the output statement, to accomplish the same thing:

56 VisualAge C++ Open Class Library User's Guide

Formatting Your Output

 #include <iostream.h>
void main() {

 int a;
 cout.setf(ios::oct,ios::basefield);

cout << a << endl;
// assume format state gets changed here, so we must change it back

cout << oct << a << endl;
 }

Note that you do not need to qualify a manipulator, provided you do not create a

variable or function of the same name as the manipulator. If a variable oct were

declared at the start of the above example, cout << oct ... would write the variable

oct to standard output. cout << ios::oct ... would change the format state.

Using setf, unsetf, and flags

There are two versions of the setf() function of ios. One version takes a single

long value newset as argument; its effect is to set any flags set in newset, without

affecting other flags. This version is useful for setting flags that are not mutually

exclusive with other flags (for example, ios::uppercase). The other version takes

two long values as arguments. The first argument determines what flags to set, and

the second argument determines which groups of flags to clear before any flags are

set. The second argument lets you clear a group of flags before setting one of that

group. The second argument is useful for flags that are mutually exclusive. If you

try to change the base field of the cout output stream using cout.setf(ios::oct);,

setf() sets ios::oct but it does not clear ios::dec if it is set, so that integers

continue to be written to cout in decimal notation. However, if you use

cout.setf(ios::oct,ios::basefield);, all bits in basefield are cleared (oct, dec, and

hex) before oct is set, so that integers are then written to cout in octal notation.

To clear format state flags, you can use the unsetf() function, which takes a single

argument indicating which flags to clear.

To set the format state to a particular combination of flags (without regard for the

pre-existing format state), you can use the flags(long flagset) member function of

ios. The value of flagset determines the resulting values of all the flags of the

format state.

The following example demonstrates the use of flags(), setf(), and unsetf(). The

main() function changes the flags as follows:

1. The original settings of the format state flags are determined, using flags().

These settings are saved in the variable originalFlags.

2. ios::fixed is set, and all other flags are cleared, using flags(ios::fixed).

3. ios::adjustfield is set to ios::right, without affecting other fields, using

setf(ios::right).

 Chapter 5. Advanced I/O Stream Topics 57

Formatting Your Output

4. ios::floatfield is set to ios::scientific, and ios::adjustfield is set to

ios::left, without affecting other fields. The call to setf() is

setf(ios::scientific | ios::left, ios::floatfield|ios::adjustfield).

5. The original format state is restored, by calling flags() with an argument of

originalFlags, which contains the format state determined in step 1.

The function showFlags() determines and displays the current flag settings. It obtains

the value of the settings using flags(), and then excludes ios::oct from the result

before displaying the result in octal. This exclusion is done to display the result in

octal without causing the octal setting for ios::basefield to show up in the

program's output.

//Using flags(), flags(long), setf(long), and setf(long,long)

 #include <iostream.h>

void showFlags() {
// save altered flag settings, but clear ios::oct from them

long flagSettings = cout.flags() & (˜ios::oct) ;
// display those flag settings in octal

cout << oct << flagSettings << endl;
 }

void main () {
// get and display current flag settings using flags()

cout << "flags(): ";
long originalFlags = cout.flags();

 showFlags();

// change format state using flags(long)
cout << "flags(ios::fixed): ";

 cout.flags(ios::fixed);
 showFlags();

// change adjust field using setf(long)
cout << "setf(ios::right): ";

 cout.setf(ios::right);
 showFlags();

// change floatfield using setf(long, long)
cout << "setf(ios::scientific | ios::left,\n"

<< "ios::floatfield | ios::adjustfield): ";
cout.setf(ios::scientific | ios::left,ios::floatfield |ios::adjustfield);

 showFlags();

// reset to original setting
cout << "flags(originalFlags): ";

 cout.flags(originalFlags);
 showFlags();
 }

This example produces the following output:

flags(): 21
flags(ios::fixed): 10000
setf(ios::right): 10004
setf(ios::scientific | ios::left,
ios::floatfield | ios::adjustfield): 4002
flags(originalFlags): 21

58 VisualAge C++ Open Class Library User's Guide

Formatting Your Output

Note:

If you specify conflicting flags, the results are unpredictable. For example,

the results will be unpredictable if you set both ios::left and ios::right in

the format state of iosobj. You should set only one flag in each set of the

following three sets:

¹ ios::left, ios::right, ios::internal

¹ ios::dec, ios::oct, ios::hex

 ¹ ios::scientific, ios::fixed.

Changing the Notation of Floating-Point Values

You can change the notation and precision of floating-point values to match your

program's output requirements. To change the precision with which floating-point

values are written to output streams, use ios::precision(). By default, an output

stream writes float and double values using six significant digits. The following

example changes the precision for the cout predefined stream to 17:

 cout.precision(17);

You can also change between scientific and fixed notations for floating-point values.

Use the two-parameter version of the setf() member function of ios to set the

appropriate notation. The first argument indicates the flag to be set; the second

argument indicates the field of flags the change applies to. For example, to change

the notation of an output stream called File6, use:

 File6.setf(ios::scientific,ios::floatfield);

This statement clears the settings of the ios::floatfield field and then sets it to

ios::scientific.

The ios::uppercase format state variable affects whether the “e” used in

scientific-notation floating-point values is in uppercase or lowercase. By default, it is

in lowercase. To change the setting to uppercase for an output stream called

TaskQueue, use:

 TaskQueue.setf(ios::uppercase);

The following example shows the effect on floating-point output of changes made to

an output stream using ios format state flags and the precision member function:

// How format state flags and precision() affect output

 #include <iostream.h>

void main() {
 double a=3.14159265358979323846;
 double b;
 long originalFlags=cout.flags();
 int originalPrecision=cout.precision();

 Chapter 5. Advanced I/O Stream Topics 59

Formatting Your Output

for (double exp=1.;exp<1.0E+25;exp*=100000000.) {
cout << "Printing new value for b:\n";
b=a*exp; // Initialize b to a larger magnitude of a

// Now print b in a number of ways:
// In fixed decimal notation

 cout.setf(ios::fixed,ios::floatfield);
cout << " " << b << '\n';
// In scientific notation

 cout.setf(ios::scientific,ios::floatfield);
cout << " " <<b << '\n';
// Change the exponent from lower to uppercase

 cout.setf(ios::uppercase);
cout << " " <<b << '\n';
// With 12 digits of precision, scientific notation

 cout.precision(12);
cout << " " <<b << '\n';
// Same precision, fixed notation

 cout.setf(ios::fixed,ios::floatfield);
// Now set everything back to defaults

 cout.flags(originalFlags);
 cout.precision(originalPrecision);
 }
 }

The output from this program is:

Printing new value for b:
 3.141593
 3.141593e+00
 3.141593E+00
 3.141592653590E+00
Printing new value for b:
 314159265.358979
 3.141593e+08
 3.141593E+08
 3.141592653590E+08
Printing new value for b:
 31415926535897932.000000
 3.141593e+16
 3.141593E+16
 3.141592653590E+16
Printing new value for b:
 3141592653589792800000000.000000
 3.141593e+24
 3.141593E+24
 3.141592653590E+24

Changing the Base of Integral Values

For output of integral values, you can choose decimal, hexadecimal, or octal notation.

You can either use setf() to set the appropriate ios flag, or you can place the

appropriate parameterized manipulator in the output stream. The following example

shows both methods:

//Showing the base of integer values

 #include <iostream.h>
 #include <iomanip.h>

60 VisualAge C++ Open Class Library User's Guide

Formatting Your Output

void main() {
 int a=148;

cout.setf(ios::showbase); // show the base of all integral output:
// leading 0x means hexadecimal,
// leading 01 to 07 means octal,
// leading 1 to 9 means decimal

 cout.setf(ios::oct,ios::basefield);
// change format state to octal

cout << a << '\n';
 cout.setf(ios::dec,ios::basefield);

// change format state to decimal
cout << a << '\n';

 cout.setf(ios::hex,ios::basefield);
// change format state to hexadecimal

cout << a << '\n';
cout << oct << a << '\n'; // Parameterized manipulators clear the
cout << dec << a << '\n'; // basefield, then set the appropriate
cout << hex << a << '\n'; // flag within basefield.

 }

The ios::showbase flag determines whether numbers in octal or hexadecimal notation

are written to the output stream with a leading “0” or “0x,” respectively. You can set

ios::showbase where you intend to use the output as input to an I/O Stream input

stream later on. If you do not set ios::showbase and you try to use the output as

input to another stream, octal values and those hexadecimal values that do not contain

the digits a-f will be interpreted as decimal values; hexadecimal values that do

contain any of the digits a-f will cause an input stream error.

Setting the Width and Justification of Output Fields

For built-in types, the output operator does not write any leading or trailing spaces

around values being written to an output stream, unless you explicitly set the field

width of the output stream, using the width() member function of ios or the setw()

parameterized manipulator. Both width() and setw() have only a short-term effect on

output. As soon as a value is written to the output stream, the field width is reset, so

that once again no leading or trailing spaces are inserted. If you want leading or

trailing blanks to appear on successively written values, you can use the setw()

manipulator within the output statement. For example:

 #include <iostream.h>
#include <iomanip.h> // required for use of setw()
void main() {

 int i=-5,j=7,k=-9;
cout << setw(5) << i << setw(5) << j << setw(5) << k << endl;

 }

You can also specify how values should be formatted within their fields. If the

current width setting is greater than the number of characters required for the output,

you can choose between right justification (the default), left justification, or, for

numeric values, internal justification (the sign, if any, is left-justified, while the value

is right-justified). For example, the output statement above could be replaced with:

 Chapter 5. Advanced I/O Stream Topics 61

Defining Your Own Format State Flags

cout << setw(5) << i; // -5
 cout.setf(ios::left,ios::adjustfield);

cout << setw(5) << j; // 7
 cout.setf(ios::internal,ios::adjustfield);

cout << setw(5) << k << endl; // -9

The following shows two lines of output, the first from the original example, and the

second after the output statement has been modified to use the field justification

shown above:

 -5 7 -9
 -57 - 9

Defining Your Own Format State Flags

If you have defined your own input or output operator for a class type, you may want

to offer some flexibility in how you handle input or output of instances of that class.

The I/O Stream Classes let you define stream-specific flags that you can then use

with the format state member functions such as setf() and unsetf(). You can then

code checks for these flags in the input and output operators you write for your class

types, and determine how to handle input and output according to the settings of

those flags.

For example, suppose you develop a program that processes customer names and

addresses. In the original program, the postal code for each customer is written to the

output file before the country name. However, because of postal regulations, you are

instructed to change the record order so that the postal code appears after the country

name. The following example shows a program that translates from the old file

format to the new file format, or from the new file format to the old.

The program checks the input file for an exclamation mark as the first byte. If one is

found, the input file is in the new format, and the output file should be in the old

format. Otherwise the reverse is true. Once the program knows which file should be

in which format, it requests a free flag from each file's stream object. It reads in and

writes out each record, and closes the file. The input and output operators for the

class check the format state for the defined flag, and order their output accordingly.

// Defining your own format flags

 #include <fstream.h>
 #include <stdlib.h>

 long InFileFormat=0;
 long OutFileFormat=0;

class CustRecord {
 public:
 int Number;
 char Name[48];
 char Phone[16];
 char Street[128];

62 VisualAge C++ Open Class Library User's Guide

Defining Your Own Format State Flags

 char City[64];
 char Country[64];
 char PostCode[10];
 };

ostream& operator<<(ostream &os, CustRecord &cust) {
os << cust.Number << '\n'

 << cust.Name << '\n'
 << cust.Phone << '\n'

<< cust.Street << '\n'
 << cust.City << '\n';

if (os.flags() & OutFileFormat) // New file format
os << cust.Country << '\n'

<< cust.PostCode << endl;
else // Old file format

os << cust.PostCode << '\n'
<< cust.Country << endl;

 return os;
 }

istream& operator>>(istream &is, CustRecord &cust) {
is >> cust.Number;
is.ignore(1000,'\n'); // Ignore anything up to and including new line

 is.getline(cust.Name,48);
 is.getline(cust.Phone,16);
 is.getline(cust.Street,128);
 is.getline(cust.City,64);

if (is.flags() & InFileFormat) { // New file format!
 is.getline(cust.Country,64);
 is.getline(cust.PostCode,10);
 }
 else {
 is.getline(cust.PostCode,10);
 is.getline(cust.Country,64);
 }
 return is;
 }

void main(int argc, char* argv[]) {
if (argc!=3) { // Requires two parameters

cerr << "Specify an input file and an output file\n";
 exit(1);
 }
 ifstream InFile(argv[1]);
 ofstream OutFile(argv[2],ios::out);

InFileFormat = InFile.bitalloc(); // Allocate flags for
OutFileFormat = OutFile.bitalloc(); // each fstream

if (InFileFormat==0 || // Exit if no flag could
OutFileFormat==0) { // be allocated
cerr << "Could not allocate a user-defined format flag.\n";

 exit(2);
 }

if (InFile.peek()=='!') { // '!' means new format
InFile.setf(InFileFormat); // Input file is in new format
OutFile.unsetf(OutFileFormat); // Output file is in old format
InFile.get(); // Clear that first byte

 }
else { // Otherwise, write '!' to

OutFile << '!'; // the output file, set the
OutFile.setf(OutFileFormat); // output stream's flag, and
InFile.unsetf(InFileFormat); // clear the input stream's

 } // flag

 Chapter 5. Advanced I/O Stream Topics 63

String Manipulation Using strstream

 CustRecord record;
while (InFile.peek()!=EOF) { // Now read the input file

InFile >> record; // records and write them
OutFile << record; // to the output file,

 }

InFile.close(); // Close both files
 OutFile.close();
 }

The following shows sample input and output for the program. If you take the output

from one run of the program and use it as input in a subsequent run, the output from

the later run is the same as the input from the preceding one.

Note that, in this example, a simpler implementation could have been to define a

global variable that describes the desired form of output. The problem with such an

approach is that later on, if the program is enhanced to support input from or output

to a number of different streams simultaneously, all output streams would have to be

in the same state (as far as the user-defined format variable is concerned), and all

input streams would have to be in the same state. By making the user-defined format

flag part of the format state of a stream, you allow formatting to be determined on a

stream-by-stream basis.

Input File Output File

3848
John Smith
4163341234
35 Baby Point Road
Toronto
M6S 2G2
Canada
1255
Jean Martin
0418375882
48 bis Ave. du Belloy
Le Vesinet
78110
France

!3848
John Smith
4163341234
35 Baby Point Road
Toronto
Canada
M6S 2G2
1255
Jean Martin
0418375882
48 bis Ave. du Belloy
Le Vesinet
France
78110

Using the strstream Classes for String Manipulation

You can use the strstream classes to perform formatted input and output to arrays of

characters in memory. If you create formatted strings using these classes, your code

will be less error-prone than if you use the sprintf() function to create formatted

arrays of characters.

Note: For new applications, you may want to consider using the Data Type class

IString, rather than strstream, to handle strings. The IString class provides a much

broader range of string-handling capabilities than strstream, including the ability to

use mathematical operators such as + (to concatenate two strings), = (to copy one

string to another), and == (to compare two strings for equality). See Chapter 17,

“String Classes” on page 197 for further information.

64 VisualAge C++ Open Class Library User's Guide

String Manipulation Using strstream

You can use the strstream classes to retrieve formatted data from strings and to write

formatted data out to strings. This capability can be useful in situations such as the

following:

¹ Your application needs to send formatted data to an external function that will

display, store, or print the formatted data. In such cases, your application, rather

than the external function, formats the data.

¹ Your application generates a sequence of formatted outputs, and requires the

ability to change earlier outputs as later outputs are determined and placed in the

stream, before all outputs are sent to an output device.

¹ Your application needs to parse the environment string or another string already

in memory, as if that string were formatted input.

You can read input from an strstream, or write output to it, using the same I/O

operators as for other streams. You can also write a string to a stream, then read that

string as a series of formatted inputs. In the following example, the function add() is

called with a string argument containing representations of a series of numeric values.

The add() function writes this string to a two-way strstream object, then reads

double values from that stream, and sums them, until the stream is empty. add()

then writes the result to an ostrstream, and returns OutputStream.str(), which is a

pointer to the character string contained in the output stream. This character string is

then sent to cout by main().

// Using the strstream classes to parse an argument list

 #include <strstream.h>
 char* add(char*);

void main() {
cout << add("1 27 32.12 518") << endl;

 }

char* add(char* addString) {
 double value=0,sum=0;
 strstream TwoWayStream;
 ostrstream OutputStream;

TwoWayStream << addString << endl;
for (;;) {

TwoWayStream >> value;
if (TwoWayStream) sum+=value;

 else break;
 }

OutputStream << "The sum is: " << sum << "." << ends;
 return OutputStream.str();
 }

This program produces the following output:

The sum is: 578.12.

 Chapter 5. Advanced I/O Stream Topics 65

String Manipulation Using strstream

66 VisualAge C++ Open Class Library User's Guide

Simple and Parameterized Manipulators

 6 Manipulators

This chapter introduces manipulators. Manipulators let you change the format state of

streams, using the same syntax you use to insert or extract values from those streams.

Introduction to Manipulators

Manipulators provide a convenient way of changing the characteristics of an input or

output stream, using the same syntax that is used to insert or extract values. With

manipulators, you can embed a function call in an expression that contains a series of

insertions or extractions. Manipulators usually provide shortcuts for sequences of

iostream library operations. See “Simple Manipulators and Parameterized

Manipulators” for a description of the two kinds of manipulators.

The iomanip.h header file contains a definition for a macro IOMANIPdeclare().

IOMANIPdeclare() takes a type name as an argument and creates a series of classes

you can use to define manipulators for a given kind of stream. Calling the macro

IOMANIPdeclare() with a type as an argument creates a series of classes that let you

define manipulators for your own classes. If you call IOMANIPdeclare() with the

same argument more than once in a file, you will get a syntax error.

Simple Manipulators and Parameterized Manipulators

There are two kinds of manipulators:

¹ Simple manipulators do not take any arguments. The following classes have

built-in simple manipulators:

 – ios
 – istream
 – ostream

¹ Parameterized manipulators require one or more arguments. setfill (near the

bottom of the iomanip.h header file) is an example of a parameterized

manipulator. You can create your own parameterized manipulators and your own

simple manipulators.

The following example shows the uses of both simple and parameterized

manipulators. It defines a parameterized manipulator that prints the character <, sets

the format state of the output stream to right-justified, and sets the width to the

argument with which the manipulator was called. The next output is then

right-justified within the specified field width, after the <. The example also defines

 Copyright IBM Corp. 1993, 1995 67

Creating Simple Manipulators

a simple manipulator that inserts the character > into the output stream, and inserts a

new-line and flushes the stream by using the endl predefined simple manipulator.

// Using simple and parameterized manipulators

 #include <iostream.h>
 #include <iomanip.h>

ostream& rjust(ostream& os, int n) { // Parameterized manipulator - set
os.setf(ios::right,ios::adjustfield); // format flags to right justify,
return os << '<' << setw(n); // then print '<', then set width
} // to manipulator's parameter.

OMANIP(int) rjust(int n) { return OMANIP(int)(rjust,n);}

ostream& endrj (ostream& os) { // Simple manipulator -- place the
return os << '>' << endl; // character '>' in stream, then
} // a newline character, and flush.

// Notice that, in this example, the simple manipulator uses a
// predefined simple manipulator (endl), while the parameterized
// manipulator uses a predefined parameterized manipulator (setw).

void main() {
cout << "Employee name:" << rjust(20) << "Sceeles, Darryn" << endrj

<< "Salary: " << rjust(20) << "$4.25/hour" << endrj
<< "Next raise: " << rjust(20) << "9/19/98" << endrj;

 }

This program produces the following output:

Employee name:< Sceeles, Darryn>
Salary: < $4.25/hour>
Next raise: < 9/19/98>

Creating Simple Manipulators for Your Own Types

The I/O Stream Library gives you the facilities to create simple manipulators for your

own types. Simple manipulators that manipulate istream objects are accepted by the

following input operators:

istream &istream::operator>> (istream&, istream& (*f) (istream&));
istream &istream::operator>> (istream&, ios&(*f) (ios&));

Simple manipulators that manipulate ostream objects are accepted by the following

output operators:

ostream &ostream::operator<< (ostream&, ostream&(*f) (ostream&));
ostream &ostream::operator<< (ostream&, ios&(*f) (ios&));

The definition of a simple manipulator depends on the type of object that it modifies.

The following table shows sample function definitions to modify istream, ostream,

and ios objects.

68 VisualAge C++ Open Class Library User's Guide

Creating Parameterized Manipulators

For example, if you want to define a simple manipulator line that inserts a line of

dashes into an ostream object, the definition could look like this:

ostream &line(ostream& os) {
return os << "\n--------------------------------"

 << "--------------------------------\n";
 }

Thus defined, the line manipulator could be used like this:

cout << line << "WARNING! POWER-OUT IS IMMINENT!" << line << flush;

This statement produces the following output:

--
WARNING! POWER-OUT IS IMMINENT!
--

Class of object Sample function definition

istream istream &fi(istream&){ /*...*/ }

ostream ostream &fo(ostream&){ /*...*/ }

ios ios &fios(ios&){ /*...*/ }

Creating Parameterized Manipulators for Your Own Types

The I/O Stream Library gives you the facilities to create parameterized manipulators

for your own types. Follow these steps to create a parameterized manipulator that

takes an argument of a particular type tp:

1. Call the macro IOMANIPdeclare(tp). Note that tp must be a single identifier.

For example, if you want tp to be a reference to a long double value, use

typedef to make a single identifier to replace the two identifiers that make up the

type label long double:

typedef long double& LONGDBLREF

2. Determine the class of your manipulator. If you want to define the manipulator

as shown in “Example of Defining an APP Parameterized Manipulator” on

page 70, choose a class that has APP in its name (an APP class, also known as an

applicator). If you want to define the manipulator as shown in “Example of

Defining a MANIP Parameterized Manipulator” on page 71, choose a class that

has MANIP in its name (a MANIP class). Once you have determined which type of

class to use, the particular class that you choose depends on the type of object

that the manipulator is going to manipulate. The following table shows the class

of objects to be modified, and the corresponding manipulator classes.

 Chapter 6. Manipulators 69

Creating Parameterized Manipulators

3. Define a function f that takes an object of the class tp as an argument. The

definition of this function depends on the class you chose in step 2, and is shown

in the following table:

4. If you chose one of the APP classes in step 2, define the manipulator as shown in

“Example of Defining an APP Parameterized Manipulator.” If you chose one of

the MANIP classes in step 2, define the manipulator as shown in “Example of

Defining a MANIP Parameterized Manipulator” on page 71. These two methods

produce equivalent manipulators.

Note: Parameterized manipulators defined with IOMANIP or IOAPP are not

associative. This means that you cannot use such manipulators more than once

in a single output statement. See “Examples of Nonassociative Parameterized

Manipulators” on page 72 for more details.

Class to be modified Manipulator class

istream IMANIP(tp) or IAPP(tp)

ostream OMANIP(tp) or OAPP(tp)

iostream IOMANIP(tp) or IOAPP(tp)

The ios part of istream objects or ostream
objects

SMANIP(tp) or SAPP(tp)

Class chosen Sample definition

IMANIP(tp) or IAPP(tp) istream &f(istream&, tp){/ *... */ }

OMANIP(tp) or OAPP(tp) ostream &f(ostream&, tp){/* ... */ }

IOMANIP(tp) or IOAPP(tp) iostream &f(iostream&, tp){/* ... */ }

SMANIP(tp) or SAPP(tp) ios &f(ios&, tp){/* ... */ }

Example of Defining an APP Parameterized Manipulator

In the following example, the macro IOMANIPdeclare is called with the user-defined

class my_class as an argument. One of the classes that is produced, OAPP(my_class),

is used to define the manipulator pre_print.

 // Creating and using parameterized manipulators

 #include <iomanip.h>

// declare class

class my_class {
 public:

char * s1;
const char c;
unsigned short ctr;
my_class(char *theme, const char suffix,

unsigned short times):
s1(theme), c(suffix), ctr(times) {}

 };

70 VisualAge C++ Open Class Library User's Guide

Creating Parameterized Manipulators

// print a character an indicated number of times
// followed by a string

ostream& produce_prefix(ostream& o, my_class mc) {
for (register i=mc.ctr; i; --i) o << mc.c ;
o << mc.s1;

 return o;
 }

 IOMANIPdeclare(my_class);

// define a manipulator for the class my_class

 OAPP(my_class) pre_print=produce_prefix;

void main() {
 my_class obj("Hello",'-',10);

cout << pre_print(obj) << endl;
 }

This program produces the following output:

----------Hello

Example of Defining a MANIP Parameterized Manipulator

In the following example, the macro IOMANIPdeclare is called with the user-defined

class my_class as an argument. One of the classes that is produced,

OMANIP(my_class), is used to define the manipulator pre_print().

#include <iostream.h>
#include <iomanip.h>

class my_class {
public:

char * s1;
const char c;
unsigned short ctr;
my_class(char *theme, const char suffix,

unsigned short times):
s1(theme), c(suffix), ctr(times) {};

};

// print a character an indicated number of times
// followed by a string

ostream& produce_prefix(ostream& o, my_class mc) {
for (register int i=mc.ctr; i; --i) o << mc.c ;
o << mc.s1;

 return o;
}

IOMANIPdeclare(my_class);

// define a manipulator for the class my_class

OMANIP(my_class) pre_print(my_class mc) {
return OMANIP(my_class) (produce_prefix,mc);

}

 Chapter 6. Manipulators 71

Creating Parameterized Manipulators

void main()
{
 my_class obj("Hello",'-',10);

cout << pre_print(obj) << "\0" << endl;
}

This example produces the same output as the previous example.

Examples of Nonassociative Parameterized Manipulators

The following example demonstrates that parameterized manipulators defined with

IOMANIP or IOAPP are not associative. The parameterized manipulator mysetw() is

defined with IOMANIP. mysetw() can be applied once in any statement, but if it is

applied more than once, it causes a compile-time error. To avoid such an error, put

each application of mysetw into a separate statement.

// Nonassociative parameterized manipulators

 #include <iomanip.h>

iostream& f(iostream & io, int i) {
 io.width(i);
 return io;
 }

IOMANIP (int) mysetw(int i) {
return IOMANIP(int) (f,i);

 }

 iostream_withassign ioswa;

void main() {
ioswa = cout;
int i1 = 8, i2 = 14;

 //
// The following statement does not cause a compile-time

 // error.
 //

ioswa << mysetw(3) << i1 << endl;
 //

// The following statement causes a compile-time error
// because the manipulator mysetw is applied twice.

 //
ioswa << mysetw(3) << i1 << mysetw(5) << i2 << endl;

 //
// The following statements are equivalent to the previous
// statement, but they do not cause a compile-time error.

 //
ioswa << mysetw(3) << i1;
ioswa << mysetw(5) << i2 << endl;

 }

72 VisualAge C++ Open Class Library User's Guide

Part 3. The Collection Class Library

Chapter 7. Overview of the Collection Class Library 75

Concrete Classes Provided by the Library . 75

Benefits of the Collection Class Library . 79

Types of Classes in the Collection Class Library 80

Flat Collections . 80

Restricted Access . 86

Trees . 87

Auxiliary Classes . 87

The Overall Implementation Structure . 88

Linking to the Collection Classes . 93

Chapter 8. Instantiating and Using the Collection Classes 95

Instantiation and Object Definition . 95

Bounded and Unbounded Collections . 96

Adding, Removing, and Replacing Elements . 96

Cursors . 98

Iterating over Collections . 101

Copying and Referencing Collections . 105

Chapter 9. Element Functions and Key-Type Functions 107

Introduction to Element Functions and Key-Type Functions 107

Using Member Functions . 108

Using Separate Functions . 109

Using Element Operation Classes . 110

Functions for Derived Element Classes . 114

Using Pointer Classes . 115

Chapter 10. Tailoring a Collection Implementation 125

Introduction . 125

Replacing the Default Implementation . 125

The Based-On Concept . 126

Provided Implementation Variants . 128

Features of Provided Implementation Variants 130

Chapter 11. Polymorphic Use of Collections 139

Introduction to Polymorphism . 139

Using Reference Classes . 140

Chapter 12. Support for Visual Builder for C++ 141

 Copyright IBM Corp. 1993, 1995 73

Chapter 13. Exception Handling . 145

Introduction to Exception Handling . 145

Precondition and Defined Behavior . 146

Levels of Exception Checking . 147

List of Exceptions . 147

The Hierarchy of Exceptions . 149

Chapter 14. Collection Class Library Tutorials 151

Preparing for the Lessons . 152

Lesson 1: Defining a Simple Collection of Integers 153

Lesson 2: Adding, Listing, and Removing Elements 156

Lesson 3: Changing the Element Type . 161

Lesson 4: Changing the Collection . 167

Lesson 5: Changing the Implementation Variant 176

Errors When Compiling or Running the Lessons 179

Other Tutorials . 179

Chapter 15. Solving Problems in the Collection Class Library 181

Cursor Usage . 182

Element Functions and Key-Type Functions 182

Key Access Function - How to Return the Key (1) 184

Key Access Function - How to Return the Key (2) 185

Definition of Key-Type Functions . 185

Exception Tracing . 186

Declaration of Template Arguments and Element Functions (1) 186

Declaration of Template Arguments and Element Functions (2) 186

Declaration of Template Arguments and Element Functions (3) 187

Default Constructor . 187

Considerations when Linking with Templates 188

74 VisualAge C++ Open Class Library User's Guide

Concrete Classes

 7 Overview of the Collection Class Library

A C++ collection is an abstract concept, or a C++ class implementing an abstract

concept, that allows you to manipulate objects in a group. Collections are used to

store and manage elements (or objects) of a user-defined type. Different collections

have different internal structures, and different access methods for storage and

retrieval of objects.

This chapter describes the types of concrete collections provided by the library,

introduces the classes that make up the Collection Class Library, and explains some

of the key concepts that are used to describe the Collection Class Library.

Concrete Classes Provided by the Library

This section lists the concrete collections of the Collection Class Library, and

provides a verbal description of a potential application of each collection type. These

descriptions are also found in the individual class chapters in the Collection Class

Library section of the Open Class Library Reference. You can use these descriptions

to understand the characteristics and behavior of each concrete collection, and of the

overall capabilities of the Collection Classes.

Bag An example of using a bag is a program for entering observations on species of

plants and animals found in a river. Each time you spot a plant or animal in the

river, you enter the name of the species into the collection. If you spot a species

twice during an observation period, the species is added twice, because a bag supports

multiple elements. You can locate the name of a species that you have observed, and

you can determine the number of observations of that species, but you cannot sort the

collection by species, because a bag is an unordered collection. If you want to sort

the elements of a bag, use a sorted bag instead.

Deque An example of using a deque is a program for managing a lettuce warehouse. Cases

of lettuce arriving into the warehouse are registered at one end of the queue (the

“fresh” end) by the receiving department. The shipping department reads the other

end of the queue (the “old” end) to determine which case of lettuce to ship next.

However, if an order comes in for very fresh lettuce, which is sold at a premium, the

shipping department reads the “fresh” end of the queue to select the freshest case of

lettuce available.

Equality

Sequence

An example of using an equality sequence is a program that calculates members of

the Fibonacci sequence and places them in a collection. Multiple elements of the

same value are allowed. For example, the sequence begins with two instances of the

 Copyright IBM Corp. 1993, 1995 75

Concrete Classes

value 1. You can search for a given element, for example 8, and find out what

element follows it in the sequence. Element equality allows you to do this, using the

locate() and setToNext() functions.

Heap You can compare using a heap collection to managing the scrap metal entering a

scrapyard. Pieces of scrap are placed in the heap in an arbitrary location, and an

element can be added multiple times (for example, the rear left fender from a

particular kind of car). When a customer requests a certain amount of scrap,

elements are removed from the heap in an arbitrary order until the required amount is

reached. You cannot search for a specific piece of scrap except by examining each

piece of scrap in the heap and manually comparing it to the piece you are looking for.

Key Bag An example of using a key bag is a program that manages the distribution of

combination locks to members of a fitness club. The element key is the number that

is printed on the back of each combination lock. Each element also has data

members for the club member's name, member number, and so on. When you join

the club, you are given one of the available combination locks, and your name,

member number, and the number on the combination lock are entered into the

collection. Because a given number on a combination lock may appear on several

locks, the program allows the same lock number to be added to the collection

multiple times. When you return a lock because you are leaving the club, the

program finds the elements whose key matches your lock's serial number, and deletes

the matching element that has your name associated with it.

Key Set An example of using a key set is a program that allocates rooms to patrons checking

into a hotel. The room number serves as the element's key, and the patron's name is

a data member of the element. When you check in at the front desk, the clerk pulls a

room key from the board, and enters that key's number and your name into the

collection. When you return the key at check-out time, the record for that key is

removed from the collection. You cannot add an element to the collection that is

already present, because there is only one key for each room. If you attempt to add

an element that is already present, the add() function returns False to indicate that

the element was not added.

Key Sorted

Bag

An example of using a key sorted bag is a program that maintains a list of families,

sorted by the number of family members in each family. The key is the number of

family members. You can add an element whose key is already in the collection

(because two families can have the same number of members), and you can generate

a list of families sorted by size. You cannot locate a family except by its key,

because a key sorted bag does not support element equality.

76 VisualAge C++ Open Class Library User's Guide

Concrete Classes

Key Sorted

Set

An example of using a key sorted set is a program that keeps track of canceled

credit card numbers and the individuals to whom they are issued. Each card number

occurs only once, and the collection is sorted by card number. When a merchant

enters a customer's card number into a point-of-sale terminal, the collection is

checked to see if that card number is listed in the collection of canceled cards. If it is

found, the name of the individual is shown, and the merchant is given directions for

contacting the card company. If the card number is not found, the transaction can

proceed because the card is valid. A list of canceled cards is printed out each month,

sorted by card number, and distributed to all merchants who do not have an automatic

point-of-sale terminal installed.

Map An example of using a map is a program that translates integer values between the

ranges of 0 and 20 to their written equivalents, from their written forms to their

numeric forms. Two maps are created, one with the integer values as keys, one with

the written equivalents as keys. You can enter a number, and that number is used as

a key to locate the written equivalent. You can enter a written equivalent of a

number, and that text is used as a key to locate the value. A given key always

matches only one element. You cannot add an element with a key of 1 or “one” if

that element is already present in the collection.

Priority

Queue

An example of a priority queue is a program used to assign priorities to service

calls in a heating repair firm. When a customer calls with a problem, a record with

that person's name and the seriousness of the situation is placed in a priority queue.

When a service person becomes available, customers are chosen by the program

beginning with those whose situation is most severe. In this example, a serious

problem such as a nonfunctioning furnace would be indicated by a low value for the

priority, and a minor problem such as a noisy radiator would be indicated by a high

value for the priority.

Queue An example of using a queue is a program that processes requests for parts at the

cash sales desk of a warehouse. A request for a part is added to the queue when the

customer's order is taken, and is removed from the queue when an order picker

receives the order form for the part. Using a queue collection in such an application

ensures that all orders for parts are processed on a first-come, first-served basis.

Relation An example of using a relation is a program that maintains a list of all your

relatives, with an individual's relationship to you as the key. You can add an aunt,

uncle, grandmother, daughter, father-in-law, and so on. You can add an aunt even if

an aunt is already in the collection, because you can have several relatives who have

the same relationship to you. (For unique relationships such as mother or father, your

program would have to check the collection to make sure it did not already contain a

family member with that key, before adding the family member.) You can locate a

member of the family, but the family members are not in any particular order.

 Chapter 7. Overview of the Collection Class Library 77

Concrete Classes

Sequence An example of a sequence is a program that maintains a list of the words in a

paragraph. The order of the words is obviously important, and you can add or

remove words at a given position, but you cannot search for individual words except

by iterating through the collection and comparing each word to the word you are

searching for. You can add a word that is already present in the sequence, because a

given word may be used more than once in a paragraph.

Set An example of a set is a program that creates a packing list for a box of free samples

to be sent to a warehouse customer. The program searches a database of in-stock

merchandise, and selects ten items at random whose price is below a threshold level.

Each item is then added to the set. The set does not allow an item to be added if it is

already present in the collection, ensuring that a customer does not get two samples

of a single product. The set is not sorted, and elements of the set cannot be located

by key.

Sorted Bag An example of using a sorted bag is a program for entering observations on the

types of stones found in a riverbed. Each time you find a stone on the riverbed, you

enter the stone's mineral type into the collection. You can enter the same mineral

type for several stones, because a sorted bag supports multiple elements. You can

search for stones of a particular mineral type, and you can determine the number of

observations of stones of that type. You can also display the contents of the

collection, sorted by mineral type, if you want a complete list of observations made to

date.

Sorted Map An example of using a sorted map is a program that matches the names of rivers

and lakes to their coordinates on a topographical map. The river or lake name is the

key. You cannot add a lake or river to the collection if it is already present in the

collection. You can display a list of all lakes and rivers, sorted by their names, and

you can locate a given lake or river by its key, to determine its coordinates.

Sorted

Relation

An example of using a sorted relation is a program used by telephone operators to

provide directory assistance. The computerized directory is a sorted relation whose

key is the name of the individual or business associated with a telephone number.

When a caller requests the number of a given person or company, the operator enters

the name of that person or company to access the phone number. The collection can

have multiple identical keys, because two individuals or companies might have the

same name. The collection is sorted alphabetically, because once a year it is used as

the source material for a printed telephone directory.

Sorted Set An example of using a sorted set is a program that tests numbers to see if they are

prime. Two complementary sorted sets are used, one for prime numbers, and one for

nonprime numbers. When you enter a number, the program first looks in the set of

nonprime numbers. If the value is found there, the number is nonprime. If the value

78 VisualAge C++ Open Class Library User's Guide

Benefits of the Collection Class Library

is not found there, the program looks in the set of prime numbers. If the value is

found there, the number is prime. Otherwise the program determines whether the

number is prime or nonprime, and places it in the appropriate sorted set. The

program can also display a list of prime or nonprime numbers, beginning at the first

prime or nonprime following a given value, because the numbers in a sorted set are

sorted from smallest to largest.

Stack An example of using a stack is a program that keeps track of daily tasks that you

have begun to work on but that have been interrupted. When you are working on a

task and something else comes up that is more urgent, you enter a description of the

interrupted task and where you stopped it into your program, and the task is pushed

onto the stack. Whenever you complete a task, you ask the program for the most

recently saved task that was interrupted. This task is popped off the stack, and you

resume your work where you left off. When you attempt to pop an item off the stack

and no item is available, you have completed all your tasks.

Benefits of the Collection Class Library

In addition to implementing the common abstract data types efficiently and reliably,

the Collection Class Library gives you the following benefits:

¹ A framework of properties to help you decide which abstract data type is

appropriate in a given situation

¹ A choice about how the abstract data type you have chosen is implemented by

the Collection Class Library

The Collection Class Library lets you choose the appropriate abstract data type for a

given situation by providing collection classes that are a complete, systematic, and

consistent combination of basic properties. These properties, which are explained in

“Flat Collections” on page 80 , help you to select abstract data types that are at

the appropriate level of abstraction. In a particular application, for example, you may

have the choice between using a bag and a key sorted set. The properties of these

two collections will help you decide which one is more appropriate.

Once you have chosen the appropriate abstract data type, the Collection Class Library

offers you a choice of implementations for it. Each abstract data type has a common

interface with all of its possible implementations. It is easy to replace one

implementation with another for performance reasons or if the requirements of your

application change.

 Chapter 7. Overview of the Collection Class Library 79

Flat Collections

Types of Classes in the Collection Class Library

The classes that make up the Collection Class Library are divided into three types:

Flat Collections

Flat collections include abstractions such as sequence, set, bag, and map.

Unlike trees, flat collections have no hierarchy of elements or recursive

structure.

 See “Flat Collections” for more information on flat collections and

their properties.

Trees

Trees are recursive collections of nodes, where each node holds an

element and has a given number of nodes as children.

 See “Trees” on page 87 for more details on trees.

Auxiliary Classes

The auxiliary classes include classes for cursors, iterators, and simple and

managed pointers.

Cursors and iterators give you convenient methods for accessing the

elements stored in the collections. See “Cursors” on page 98 for more

details on cursor classes. See “Iteration Using Iterators” on page 102 for

more details on iterator classes.

The pointer classes provide the means to store in collections a pointer to

an object instead of the object itself. The managed pointer class offers

this object management together with automatic storage management.

See “Using Pointer Classes” on page 115 and “Managed Pointers” on

page 119 for more details on pointer classes.

 Flat Collections

Four basic properties are used to differentiate between different flat collections:

Ordering

Whether a next or previous relationship exists between elements.

Access by key

Whether a part of the element (a key) is relevant for accessing an element

in the collection. When keys are used, they are compared using relational

operators.

Equality for elements

Whether equality is defined for the element.

80 VisualAge C++ Open Class Library User's Guide

Flat Collections

Uniqueness of entries

Whether any given element or key is unique, or whether multiple

occurrences of the same element or key are allowed.

Figure 7 shows the flat collection that results from each combination of properties.

For example, “Map” appears in the Unique, Unordered column for the Key, Element

Equality row. This means that a map is unordered, each element is unique, keys are

defined, and element equality is defined. The figure contains N/A where no flat

collection corresponds to the combination of properties. For example, the N/A in the

first two rows of the rightmost column indicates that an ordered collection that is

sequential instead of sorted and offers access by key is not available. This implies

that there are no flat collections that have all of the following properties:

¹ The collection is ordered.

¹ The collection is sequential.

¹ The collection allows an element to appear more than once.

¹ Keys are defined for elements in the collection.

The rationale for not implementing collections with these combinations of properties

is that there is no reason to choose them over another collection that is already

available. For example, for an ordered collection that is sequential and offers access

by key, the key access would only have advantages if the elements are stored in a

position depending on their key. Because they are not, there is no flat collection with

key access that maintains a sequential order.

Figure 7. Combination of Flat Collection Properties

Unordered Ordered

Sorted Sequential

Unique Multiple Unique Multiple Multiple

Key (Key

equality

must be

defined)

Element

Equality

Map Relation Sorted map Sorted

relation

N/A

No

Element

Equality

Key set Key bag Key sorted

set

Key sorted

bag

N/A

No Key Element

Equality

Set Bag Sorted set Sorted bag Equality

sequence

No

Element

Equality

N/A Heap N/A N/A Sequence

 Chapter 7. Overview of the Collection Class Library 81

Flat Collections

Ordering of Collection Elements

The elements of a flat collection class can be ordered in three ways:

¹ Unordered collections have elements that are not ordered.

¹ Sorted collections have their elements sorted by an ordering relation defined for

the element type. For example, integers can be sorted in ascending order, and

strings can be ordered alphabetically. The ordering relation is determined by the

instantiations for the collection class. For elements where the ordering relation

returns the same position, elements are added in chronological order.

¹ Sequential collections have their ordering determined by an explicit qualifier to

the add() function, for example, addAtPosition().

A particular element in a sorted collection can be accessed quickly by using the

ordering relation to determine its position. Unordered collections can also be

implemented to allow fast access to the elements, by using, for example, a hash table

or a sorted representation. The Collection Class Library provides a fast locate()

function that uses this structure for unordered and sorted collections. Even though

unordered collections are often implemented by sorting the elements, do not assume

that all unordered collections are implemented in this way. If your program requires

this assumption to be true, use a sorted collection instead.

For each flat collection, the Collection Class Library provides both unordered and

sorted abstractions. For example, the Collection Class Library supports both a set and

a sorted set. The ordering property is independent of the other properties of flat

collections: you have the choice of making a given flat collection unordered or sorted

regardless of the choices that you make for the other properties.

Access by Key

A given flat collection can have a key defined for its elements. A key is usually a

data member of the element, but it can also be calculated from the data members of

the element by some arbitrary function. Keys let you:

¹ Organize the elements in a collection

¹ Access a particular element in a collection

For collections that have a key defined, an equality relation must be defined for the

key type. Thus, a collection with a key is said to have key equality.

Equality for Keys and Elements

A flat collection can have an equality relation defined for its elements. The default

equality relation is based on the element as a whole, not just on one or more of its

data members (for example, the key). For two elements to be equal, all data

members of both elements must be equal. The equality relation is needed for

82 VisualAge C++ Open Class Library User's Guide

Flat Collections

functions such as those that locate or remove a given element. A flat collection that

has an equality relation has element equality.

Note that, for non-built-in types, you can define your own equality relation to behave

differently. For example, your equality relation could test only certain data members

of two elements to determine element equality. In such cases, element equality may

apply to two elements even when the elements are not exactly equal.

The equality relation for keys may be different than the equality relation for elements.

Consider, for example, a job control block that has a priority and a job identifier that

defines equality for jobs. You could choose to implement a job collection as

unordered, with the job ID as key, or as sorted by priority, with the priority as key.

The Job class for this job control block could look like this:

typedef unsigned long JobId;
typedef int Priority;
class Job {

JobId ivId; // These are private data members.
 Priority ivPriority;
 public:

JobId id () const { return ivId; }
Priority priority () { return ivPriority; }

 };
// If ivId is the key:
JobId const& key (Job const& t)
{ return t.id (); }
// If ivPriority is the key:
Priority const& key (Job const& t)
{ return t.priority (); }

 // ...

In the first case, you have fast access through the job ID but not through the priority;

in the second case, you have fast access through the priority but not through the job

ID. The ordering relation on the priority key in the second case does not yield a job

equality, because two jobs can have equal priorities without being the same.

Functions like locateElementWithKey() (described in “Flat Collection Member

Functions” in the Open Class Library Reference) use the equality relation on keys to

locate elements within a collection. A collection that defines key equality may also

define element equality. Functions that are based on equality (such as locate()) are

only provided for collections that define element equality. Collections that define

neither key equality nor element equality, such as heaps and sequences, provide no

functions for locating elements by their values or testing for containment. Elements

can be added and retrieved from such collections by iteration. For sequences,

elements can also be added and retrieved by position.

 Chapter 7. Overview of the Collection Class Library 83

Flat Collections

A sorted collection must define either key equality or element equality. A sorted

collection that does not have a key defined must have an ordering relation defined for

the element type. This relation implicitly defines element equality.

Keys can be used to access a particular element in a collection. The alternative to

defining element equality as equality of all data members is to define it as equality of

keys only. (In the job control block example on page 83, this means defining job

equality as equality of the job ID.) Use this alternative only when you are sure that

keys are unique. When you use this alternative, you can locate an element only with

the key (using locateElementWithKey(key) instead of locate(element). Locating

elements by key improves performance, particularly if the complete element is large

or difficult to construct in comparison to the key alone. Consider the two alternatives

in the following example:

// First solution
JobId const& key (Job const& t) { return t.id; }
KeySet < Job, int > jobs;

 // ...
 jobs.locateElementWithKey (1);

// Second solution
IBoolean operator== (Job const& t1, Job const& t2)
{ return t1.id == t2.id; }
Set < Job > jobs;

 // ...
 Job t1;

t1.id = 1;
 jobs.locate (t1);

The first solution is superior, if job construction (Job t1) requires a significant

proportion of the total system resources used by the program.

The Collection Class Library provides sorted and unsorted versions of maps and

relations, for which both key and element equality must be defined. These collections

are similar to key set and key bag, except that they define functions based on element

equality, namely union and intersection. The add() function behaves differently

toward maps and relations than it does toward key set and key bag.

Uniqueness of Entries

The terms unique and multiple relate to the key, in the case of collections with a key.

For collections with no key, unique and multiple relate to the element.

In some flat collections, such as map, key set, and set, no two elements are equal or

have equal keys. Such collections are called unique collections. Other collections,

including relation, key bag, bag, and HEAP, can have two equal elements or elements

with equal keys. Such collections are called multiple collections.

For those multiple collections with key that have element equality (relation and sorted

relation), elements are always unique while keys can occur multiple times. In other

84 VisualAge C++ Open Class Library User's Guide

Flat Collections

words, if element equality is defined for a multiple collection with key, element

equality is tested before inserting a new element.

A unique collection with no keys and no element equality is not provided because a

containment function cannot be defined for such a collection. A containment function

determines whether a collection contains a given element.

The behavior during element insertion (when one of the add... methods is applied to

a collection) distinguishes unique and multiple collections. In unique collections, the

add() function does not add an element that is equal to an element that is already in

the collection. In multiple collections, the add() function adds elements regardless of

whether they are equal to any existing elements or not.

The add() function has two general properties:

¹ All elements that are contained in the collection before an element is added are

still contained in the collection after the element is added.

¹ The element that is added will be contained in the collection after it is added.

Operations that contradict these properties are not valid. You cannot add an element

to a map or sorted map that has the same key as an element that is already contained

in the collection, but is not equal to this element (as a whole). In the case of a map

and sorted map, an exception is thrown. Note that both map and sorted map are

unique collections. The functions locateOrAddElementWithKey() and

addOrReplaceElementWithKey() specify what happens if you try to add an element to a

collection that already contains an element with the same key.

Figure 8 on page 86 shows the result of adding a series of four elements to a map, a

relation, a key set, and a key bag. The first row shows what each collection looks

like after the element <a,1> has been added to each collection. Each following row

shows what the collections look like after the element in the leftmost column is added

to each.

The elements are pairs of a character and an integer. The character in the pair is the

key. An element equality relation, if defined, holds between two elements if both the

character and the integer in each pair are equal.

 Chapter 7. Overview of the Collection Class Library 85

Restricted Access

Figure 8. Behavior of add for Unique and Multiple Collections

add Map or sorted

map

Relation or

sorted relation

Key set or key

sorted set

Key bag or key

sorted bag

<a,1> <a,1> <a,1> <a,1> <a,1>

<b,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1>

<a,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1>,

<a,1>

<a,2> exception:

Key Already

Exists

<a,1>, <b,1>,

<a,2>

<a,1>, <b,1> <a,1>, <b,1>,

<a,1>, <a,2>

 Restricted Access

Flat collections with restricted access have a restricted set of functions that can be

applied to them; that is, only a subset of the functions listed in “Flat Collection

Member Functions” in the Open Class Library Reference can be applied. Examples

of such flat collections are stack and priority queue.

You may want to restrict the set of functions for reasons such as:

1. You can simplify the interface to the collection.

2. The normal rules for restricted flat collections apply, so certain assumptions can

be made when validating and inspecting the code. A stack, for example, does not

allow the removal of any element except the top one.

3. You can create new implementation options.

The Collection Class Library provides the following flat collections with restricted

access:

¹ Stack, deque, and queue, which are all based on sequence

¹ Priority queue, which is based on key sorted bag

 See Part 3, “Flat Collection Classes” in the Open Class Library Reference for

descriptions of collections with restricted access. These descriptions are

alphabetically merged with descriptions for other collections. You can use Table 2

on page 87 to select the appropriate flat collection with restricted access for a given

set of properties.

86 VisualAge C++ Open Class Library User's Guide

Auxilliary Classes

Table 2. Properties for Collections with Restricted Access

Add Remove Sorted (with key) Unsorted (no key)

According to

key

First Priority queue N/A

Last Last N/A Stack

Last First N/A Queue

First or last First or last N/A Deque

 Trees

Trees can be described either as structures where the elements have a hierarchy or as

a special form of recursive structure. Recursively a tree can be described as a node

(parent) with pointers to other nodes (children). Every node has a fixed number of

pointers, which are set to null at initialization time. Insertion of a new node involves

setting a pointer in the parent so that it points to the inserted child. Figure 9

illustrates the structure of an n-ary tree.

Node:
Element

Element Element

child 1

child 1 child 1

child 2

null pointer

0

child 2 child 2

child n

child n child n

Figure 9. The Structure of N-ary Trees

Similarly, you can obtain tree-like or recursive structures by implementing the array

of children of a node as a flat collection of nodes. This will give you different

functionality for the children, for example, the ability to locate a child with a given

value.

 Auxiliary Classes

To use the collection classes, you also need a cursor and an iterator class. These are

described in “Cursors” on page 98 and “Iteration Using Iterators” on page 102.

 Chapter 7. Overview of the Collection Class Library 87

Implementation Structure

You can use the pointer and managed pointer classes to manage objects; they enable

automatic storage management. “Using Pointer Classes” on page 115 and “Managed

Pointers” on page 119 explain the concepts and usage in detail.

The Overall Implementation Structure

To achieve maximum runtime efficiency and ease of use, the Collection Class Library

combines the common features of object-oriented techniques, such as class

hierarchies, polymorphism and late binding, with an efficient class structure that uses

advanced optimization techniques. This section gives a brief overview of the

Collection Class structure that is shown in Figure 10 on page 90. A more detailed

explanation of the particular concepts is found in subsequent sections.

You need not understand the entire implementation structure to begin using the

collections in their basic forms. The following is a list of the implementation

strategies offered by the Collection Class Library, in order of increasing complexity:

Use the Defaults

Default implementations are provided for every collection. If you do not want to be

concerned with choosing an implementation for an abstract data type, you can use the

default classes provided by the Collection Classes. In chapters of the Open Class

Library Reference that describe particular collections, the default implementation is

the first implementation in the “Class Implementation Variants” table for that chapter,

if a table is present. If no table is present, the default implementation is stated in the

chapter's “Class Implementation Variants” section.

 Use Variants

If you want to choose a particular implementation variant for a collection, you can

easily replace the default implementation by an implentation variant of the same

collection that behaves externally in the same way but offers improved performance.

 Use Polymorphism

If you want to have a more generalized collection class than those offered by the

concrete classes, you can take advantage of polymorphism. For example, when

working with a set, instead of using the concrete classes ISet, IGSet,

ISetOnBSTKeySortedSet, and so on, you can use the abstract class IASet or, for more

generic behavior, the abstract class IAEqualityCollection. Abstract classes, which

are accessed using reference classes, let you program to a more generalized interface,

without necessarily knowing what abstract data types (collections) your code will

operate on. You can leave the implementation details for later.

88 VisualAge C++ Open Class Library User's Guide

Implementation Structure

Categories of Classes

The hierarchy of abstract classes lets you overload selected collection class member

functions. You can inherit from an appropriate reference class, and then implement

the member functions that you want to overload. For all other member functions, the

reference class calls the corresponding methods from the concrete (“based-on”) class

hierarchy. You can also use the reference classes to achieve polymorphism, which is

discussed on page 139.

Figure 10 on page 90 illustrates the relationships between the categories of classes

for the collection known as a set. Each class falls within one of five categories:

concrete, typed implementation, typeless implementation, abstract, and reference

classes. Arrows indicate a relationship between classes. Text beside each arrow

indicates the relationship between the two classes. The relationships are:

 ¹ Instantiates

 ¹ Is a

 ¹ Uses

In this figure, you will notice certain naming conventions. For example, default

classes begin with the letter I, while abstract classes begin with the letters IA.

For information on naming conventions, see “Class Template Naming Conventions”

on page 93.

 Chapter 7. Overview of the Collection Class Library 89

Implementation Structure

IAEquality
Collection

IAOrdered
Collection

IACollection

IASet

IRSet

ISetOn
AVL

KeySortedSet

ISetOn
Hash

KeySet

ISetOn
SortedTabular

Sequence

ISet ISequence

IAvl
KeySortedSet

Impl

IGAvl
KeySortedSet

IWSetOn
KeySortedSet

typed
implementation
classes

KeySortedSet
implementations

Set
implementations

uses

uses

default
classes

variant
classes

abstract
classes

concrete
classes

typedef

(partially) instantiates

isa

isauses

reference
classes

typeless
implementation
classes

Figure 10. Overall Library Structure

The following sections describe the categories of collections in the Collection Class

Library.

 Default Classes

The default classes provide the easiest way to use the collection classes. Two default

classes are provided for each abstract data type:

¹ A class that is instantiated only with the element type, and possibly the key type.

ISet is an example of this type of default class.

¹ A class that takes element-specific functions. IGAvlKeySortedSet is an example

of this type of default class. See “Using Element Operation Classes” on
page 110 for information on element-specific functions.

 Variant Classes

Each abstract data type can be instantiated either by its default class or by one of

several variant classes. Sets can be implemented, for example, as key sorted sets or

as hash tables. Key sorted sets, in turn, can be implemented as linked or tabular or

diluted sequences. Default classes and variant classes are also called the

90 VisualAge C++ Open Class Library User's Guide

Implementation Structure

implementation variants of a collection. All implementation variants of a collection

have the same interface and external behavior.

 Abstract Classes

The classes in the Collection Classes are all related through the hierarchy of abstract

classes shown in Figure 11 on page 92. In the figure, abstract classes have a grey

shadow. Concrete collections have a black shadow, or a white shadow for restricted

access collections. The leaves of the abstract class hierarchy (that is, those classes

that have no derived classes within the abstract class hierarchy tree) define the

collection for which concrete implementations are provided. The lines in the figure

represent an is a relationship from a lower collection to the collection above it. For

example, a set is an equality collection, which is a collection. Note that Tree does

not inherit from any abstract class. The names of abstract collections start with IA.

 Reference Classes

To avoid the overhead of virtual function calls, the Collection Classes do not allow

concrete classes to be derived directly from abstract classes. The compiler can

usually optimize function calls when it knows the exact type of the object, but

because collections are mostly passed by reference, such an optimization is not

possible with the collection classes. If you do not want to take advantage of

polymorphism, you do not have to deal with the overhead of virtual function calls.

Abstract and concrete classes are linked through reference classes. These classes are

derived from the abstract classes, and implement the member functions using one of

the corresponding concrete classes. Names of reference classes start with IR.

See Chapter 11, “Polymorphic Use of Collections” on page 139 for more details on

the use of polymorphism in the Collection Classes.

Support Classes for Visual Builder for C++

The collection classes have special classes which support Visual Builder for C++.

See Visual Builder User's Guide for more information on Visual Builder.

Typed and Typeless Implementation Classes

Typed implementation classes implement the concrete classes. They provide an

interface that is specific to a given element type.

Typed implementation classes may be basic or based on another implementation.

Basic classes have names that start with I or IG. Based-on classes have names that

start with IW. For further details, see “The Based-On Concept” on page 126.

Typeless implementation classes prevent unnecessary code expansion, which could

occur if all code for a collection were fully implemented through its templates. For

example, the add(Element const& element) function is offered with a typed interface,

 Chapter 7. Overview of the Collection Class Library 91

Implementation Structure

Collection

Key
Collection

Equality Key
Collection

Key Sorted
Collection

Equality
Collection

Equality
Key Sorted
Collection

Key Sorted
Set

Key Sorted
Bag

Stack

Sorted Map

Sorted Relation

DequeuePriority
Queue

Key Set Map Set

Key Bag Relation Bag

Sorted Set

Sorted Bag

Queue

Equality
Sequence

Sequence

Heap Tree

Sorted
Collection

Equality
Sorted

Collection

Sequential
Collection

Ordered
Collection

Figure 11. The Abstract Class Hierarchy. Abstract classes have a grey background. Concrete classes have a black background.

Restricted access classes have a white background. Dotted lines show a “based-on” relationship, not an actual derivation.

so that the compiler can check whether a program tries to add a string to a collection

of integers. However, suppose an application were to use all of the following:

 integerCollection.add(anInteger);
 stringCollection.add(aString);
 elementCollection.add(anElement);
 //...

Without typeless implementations, each collection's template instantiation of the add()

function would need to contain the full functionality for adding an element. By

having each of these typed add() functions use the same typeless

(void*)implementation code, the library avoids unnecessary code expansion.

The collection classes, however, use functions that return specific types. The

implementation classes provide an untyped (void*) interface that the concrete class

implementations use.

92 VisualAge C++ Open Class Library User's Guide

Linking to the Collection Class Library

Class Template Naming Conventions

All class templates begin with an uppercase I. Table 3 shows the naming

conventions used to distinguish between different types of class templates, given a

default class template of ISet. Underscored letters in each class template name are

those that indicate the stated convention:

Table 3. Class Template Naming Conventions

Class name Meaning of letters

ISet Default class template.

IGSet Default generic class template. The element operations class can

be specified as template argument.

ISetOn... Variant class template.

IVSet Support class template for Visual Builder

IVGSetOn Generic support class template for Visual Builder. The element

operations class can be specified as a template argument.

IWSetOn... Typed implementation based on another typed implementation.

You can think of the W as a shorthand for “wrapping another

implementation with a new interface.” (See “Typed and

Typeless Implementation Classes” on page 91 for further details.)

IASet Abstract class template.

IRSet Reference class template.

Linking to the Collection Classes

The Collection Class Library uses the library files shown below. By default the

compiler uses dynamic linking, and you should not have to specify any library. The

files are shown here in case you want to override the default behavior:

¹ CPPOOC3O.LIB - for static linking

¹ CPPOOC3I.LIB - import library for dynamic linking

¹ CPPOOC3O.DLL - for dynamic linking

 Chapter 7. Overview of the Collection Class Library 93

Linking to the Collection Class Library

94 VisualAge C++ Open Class Library User's Guide

Instantiation and Object Definition

 8 Instantiating and Using the Collection Classes

This chapter describes how to instantiate and use collection classes.

To use a collection class, you normally follow these three steps:

1. Instantiate a collection class template and provide arguments for the formal

template arguments.

2. Define one or more objects of this instantiated class, possibly providing

constructor arguments.

3. Apply functions to these objects.

Instantiation and Object Definition

This section describes instantiation for the default implementation. For a given class,

such as ISet, and a given element type, such as a class named Job, the instantiation

for a new class that represents sets of jobs could look like this:

typedef ISet < Job > JobSet;

The instantiation could also look like this:

class JobSet : public ISet < Job > {
 public:

JobSet (INumber n = 100) : ISet < Job > (n) {}
 };

The second form defines a new class called JobSet that has a constructor that takes a

single argument. The definition of the constructor is necessary if the program needs

to create JobSets with different estimates for the number of elements. Because

derived classes do not inherit their constructors from their base classes, JobSet does

not inherit the constructor of ISet < Job >.

Once the JobSet collection is defined, you can define JobSet objects toBeDone,

pending, and delayed as follows:

JobSet toBeDone, pending, delayed;

You can also define the objects without introducing a new type name (JobSet):

ISet < Job > toBeDone, pending, delayed;

However, you should begin by explicitly defining a named class, such as JobSet, that

uses the default implementation. It is then easier to replace the default

 Copyright IBM Corp. 1993, 1995 95

Adding, Removing, and Replacing Elements

implementation with a better implementation later on. See Chapter 10, “Tailoring

a Collection Implementation” on page 125 for more details on replacing default

implementations.

Bounded and Unbounded Collections

A bounded collection limits the number of elements it can contain. There are no

bounded collections in the Collection Classes. The concept of bounded collections is

supported so that you can create your own bounded collection implementations.

When a bounded collection contains the maximum number of elements (its bound),

the collection is said to be full. This condition can be tested by the function

isFull(). If elements are added to a full collection, the exception IFullException is

thrown. This behavior is useful for collections that are to have their storage allocated

completely on the runtime stack.

You can determine the maximum number of elements in a bounded collection by

calling the function maxNumberOfElements(). You can only call this function if the

collection is bounded. You can determine whether a collection is bounded by calling

the function isBounded().

In the current implementation of the Collection Classes, all collections are unbounded.

The functions isBounded() and isFull() always return False. The function

maxNumberOfElements() throws the exception INotBoundedException.

Adding, Removing, and Replacing Elements

You can perform three operations to modify a collection:

¹ Adding elements. Use the add() function and its variants.

¹ Removing elements. Use the remove() function and its variants.

¹ Replacing elements. Use the replace() function and its variants.

 Adding Elements

The function add() places the element identified by its argument into the collection.

After an element has been added, all cursors of the collection become undefined.

Cursors are used to point to elements of the collection; an undefined cursor is one

that might not currently point to a valid element. add() behaves differently

depending on the properties of the collection:

¹ In unique collections, an element is not added if it is already contained in the

collection.

¹ In sorted collections, an element is added according to the ordering relation of the

collection.

¹ In sequential collections, an element is added to the end of the collection.

96 VisualAge C++ Open Class Library User's Guide

Adding, Removing, and Replacing Elements

In general, you can copy one collection to another collection that is initially empty by

iterating through the elements of the first collection and calling add() with each

element as an argument. In particular, for a sequential collection, add() must add the

element last, because iteration iterates from the first toward the last element.

For sequential collections, elements can be added at a given position using add

functions other than add(), such as addAtPosition(), addAsFirst(), and addAsNext().

Elements after and including the given position are shifted. Positions can be specified

by a number, with 1 for the first element, by using the addAtPosition() function.

Positions can also be specified relative to another element by using the addAsNext()

or addAsPrevious() functions, or relative to the collection as a whole by using the

addAsFirst() or addAsLast functions.

 Removing Elements

In the Collection Classes, you can remove an element that is pointed to by a given

cursor by using the removeAt() function. All other removal functions operate on the

model of first generating a cursor that refers to the desired position and then

removing the element to which the cursor refers. There is an important difference

between element values and element occurrences. An element value may, for

nonunique collections, occur more than once. The basic remove() function always

removes only one occurrence of an element.

For collections with key equality or element equality, removal functions remove one

or all occurrences of a given key or element. These functions include remove(),

removeElementWithKey(), removeAllOccurrences(), and removeAllElementsWithKey().

Ordered collections provide functions for removing an element at a given numbered

position. Ordered collections also allow you to remove the first or last element of a

collection using the removeFirst() or removeLast() functions.

After an element has been removed, all cursors of the collection become undefined.

Therefore, removing all elements with a given property from a collection cannot be

done efficiently using cursors. After you have removed one element with the

property, the entire collection would have to be searched for the next element with

the property. If you want to remove all of the elements in a collection that have a

given property, you should use the function removeAll() and provide a predicate

function as its argument. This predicate function has an element as argument and

returns an IBoolean value. The IBoolean result tells whether the element will be

removed. The following example removes all even elements from an integer

collection:

 Chapter 8. Instantiating and Using the Collection Classes 97

Cursors

IBoolean isEven (int const& i, void*)
 {

return i % 2 == 0;
 }
 // ...
 intSet.removeAll (isEven);

Sometimes you may want to pass more information to the predicate function. You

can use an additional argument of type void*. The pointer then can be used to access

a structure containing further information. See the last example under “Iteration

Using Iterators” on page 102 for information on how to use the additional argument.

 Replacing Elements

It is possible to modify collections by replacing the value of an element occurrence.

Adding and removing elements usually changes the internal structure of the

collection. Replacing an element leaves the internal structure unchanged. If an

element of a collection is replaced, the cursors in the collection do not become

undefined.

For collections that are organized according to element properties, such as an ordering

relation or a hash function, the replace function must not change this element

property. For key collections, the new key must be equal to the key that is replaced.

For nonkey collections with element equality, the new element must be equal to the

old element as defined by the element equality relation. The key or element value

that must be preserved is called the positioning property of the element in the given

collection type.

Sequential collections and heaps do not have a positioning property. Element values

in sequences and heaps can be changed freely. Replacing element values involves

copying the whole value. If only a small part of the element is to be changed, it is

more efficient to use the elementAt() access function described in “Using Cursors for

Locating and Accessing Elements” on page 100. The replaceAt() function checks

whether the replacing element has the same positioning property as the replaced

element. (See Chapter 13, “Exception Handling” on page 145 for more details on

preconditions.) When you use the elementAt() function to replace part of the element

value, this check is not performed. If you want to ensure safe replacement (a

replacement that does not change the positioning property), use replaceAt() rather

than elementAt().

 Cursors

A cursor is a reference to an element in a collection. If the position of the element

changes, the cursor is invalidated. This occurs because the cursor refers only to the

position of the element and not to the element itself.

98 VisualAge C++ Open Class Library User's Guide

Cursors

A cursor is always associated with a collection. The collection is specified when the

cursor is created. Each collection function that takes a cursor argument has a

precondition that the cursor actually belong to the collection. Simple functions, such

as advancing the cursor, are also functions of the cursor itself. For example, given

the following definitions:

typedef ISet<Job> JobSet;
 JobSet myJobSet;
 JobSet::Cursor myCursor(myJobSet);

the following two lines of code are functionally equivalent:

 myCursor.setToNext();
 myJobSet.setToNext(myCursor);

Cursors and iteration by cursors can be used with any collection. With cursors the

Collection Classes provide:

¹ An iteration scheme that is simpler than using iterators. (See “Iteration Using

Iterators” on page 102.)

¹ The ability to define functions that return cursors. Such functions can give you

fast access to an element if it exists, or indicate the non-existence of an element

by returning an invalid cursor.

Cursors are only temporarily defined. As soon as elements are added to or removed

from the collection, existing cursors become undefined. One of the three following

situations occurs:

1. The cursor is invalidated (isValid() will return False).

2. The cursor remains valid and points to an element of the collection; however, it

may point to a different element than before.

3. The cursor remains valid but no longer points to an element of the collection.

Do not use an undefined cursor as an argument to a function that requires the cursor

to point to an element of the collection.

Each concrete collection class, such as ISet<int>, has an inner definition of a class

Cursor that can be accessed as ISet<int>::Cursor.

Because abstract classes declare functions on cursors just as concrete classes do,

there is a base class ICursor for these specific cursor classes. To allow the creation

of specific cursors for all kinds of collections, every abstract class has a virtual

member function newCursor(). newCursor() creates an appropriate cursor for the

given collection object.

 Chapter 8. Instantiating and Using the Collection Classes 99

Cursors

Using Cursors for Locating and Accessing Elements

Cursors provide a basic mechanism for accessing elements of collection classes. For

each collection, you can define one or more cursors, and you can use these cursors to

access elements. Collection Class functions such as elementAt(), locate() and

removeAt() use cursors.

elementAt() lets you access an element using a cursor.

elementAt() returns a reference to an element, thereby avoiding copying the elements.

Suppose that an element had a size of 20KB and you want to access a 2-byte data

member of that element. If you use elementAt() to return a reference to this element,

you avoid having to copy the entire element to a local variable.

Several other functions, such as firstElement() or elementWithKey(), return a

reference to an element. They can be thought of as first executing a corresponding

cursor function, such as setToFirst() or locateElementWithKey(), and then accessing

the element using the cursor.

You must determine if the element exists before trying to access it. If its existence is

not known from the context, it must first be checked. To save the extra effort of

locating the desired element twice (once for checking whether it exists and then for

actually retrieving its reference), use the cursor that is returned by the locate function

for fast element access:

if (myCollection.locateElementWithKey (someKey, myCursor)) {
 // ...

myVariable = myCollection.elementAt (myCursor);
 // ...
 }

The elementAt() function can also be used to replace the value of the referenced

element. You must ensure that the positioning property of the element is not changed

with respect to the given collection. See “Adding, Removing, and Replacing

Elements” on page 96 for more details.

There are two versions of elementAt():

Element const& elementAt (ICursor const&) const;
Element& elementAt (ICursor const&);

Use the first version of elementAt() if you want to assert to the compiler that no

elements in the collection can be changed by this function.

100 VisualAge C++ Open Class Library User's Guide

Iteration

Iterating over Collections

Iterating over all or some elements of a collection is a common operation. The

Collection Class Library gives you two methods of iteration:

 ¹ Using cursors

¹ Using iterators or iteration functions

Ordered (including sorted) collections have a well-defined ordering of their elements,

while unordered collections have no defined order in which the elements are visited

in an iteration. Each element is visited exactly once.

You cannot add or remove elements from a collection while you are iterating over a

collection, or all elements may not be visited once. You cannot use any of the

iterations described in this section if you want to remove all of the elements of a

collection that have a certain property. Use the function removeAll() (described in

“Flat Collection Member Functions” in the Open Class Library Reference), that

takes a predicate function as argument. See “Removing Elements” on page 97

for details on removing elements.

Iteration Using Cursors

Cursor iteration can be done with a for loop. Consider the following example:

 ISet<int> myCollection;
ISet<int>::Cursor myCursor (myCollection);
for (myCursor.setToFirst (); myCursor.isValid ();

 myCursor.setToNext ())
 {
 // ...

int currentElement = myCollection.elementAt (myCursor) ;
// change currentElement

 // ...
 }

ISet<int>::Cursor is the class Cursor that is defined within the class ISet<int>.

This is referred to as a nested class. myCursor is the name of the cursor object. Its

constructor takes myCollection as argument.

The Collection Class Library defines a macro forCursor that you can use to write an

elegant cursor iteration:

 Chapter 8. Instantiating and Using the Collection Classes 101

Iteration

 #define forCursor(c) \
 for ((c).setToFirst(); \
 (c).isValid(); \
 (c).setToNext())

// myCollection and myCursor are the same as before.

 forCursor(myCursor)
 {
 // ...

int currentElement = myCollection.elementAt (myCursor);
// change currentElement

 // ...
 }

If the element is used as read-only, a function of the cursor can be used instead of

elementAt(myCursor):

// myCollection and myCursor are the same as before.
// myCursor's construction associated it to myCollection.

 forCursor(myCursor)
 {
 // ...

int currentElement = myCursor.element ();
// print currentElement

 }

The function element() above is a function of the Cursor class (see “Cursors” on

page 98). It returns a const reference to the element currently pointed at by the

cursor.

Note: You should remove multiple elements from a collection using the removeAll()

function, with a predicate function as an argument. This function is more efficient

and less error-prone than the alternative of removing elements using cursor iteration.

 See “Adding, Removing, and Replacing Elements” on page 96 for further details.

Iteration Using Iterators

Cursor iteration has two possible drawbacks:

¹ For unordered collections, the explicit notion of an (arbitrary) ordering may be

undesirable for stylistic reasons. For example, it could mislead you (or another

programmer) into perceiving or exploiting an order where in fact the order does

not exist or is not guaranteed.

¹ Iteration in an arbitrary order might be done more efficiently using something

other than cursors. For example, with tree representations, a recursive descent

iteration may be faster than the cursor navigation, even though the time for extra

function calls must be considered.

102 VisualAge C++ Open Class Library User's Guide

Iteration

The Collection Class Library provides the allElementsDo() function that addresses

both drawbacks by calling a function that is applied to all elements. The function

returns an IBoolean value that tells whether the iteration should be continued or not.

For ordered collections, the function is applied in the order of elements within the

collection. Otherwise the order is unspecified.

The function that is applied in each iteration step can be given in two ways: directly

as a C++ function, or by defining the function as a method of a user-defined iterator

class:

¹ As a C++ function: Code the function that you want to be applied to all elements

as a C++ function, then use allElementsDo() to apply the function to the

elements.

¹ As an object of an iterator class: Code the function as a member function of an

iterator class that you create (for example, myIteratorClass). Then let the

iterator apply this function to every element, by using

allElementsDo(myIteratorObject), where myIteratorObject is an object of

myIteratorClass.

The second possibility is more flexible. You can better encapsulate the member

function, and you can use additional arguments to that function if needed. If the

function is a method that you can use for various classes, you can reuse the iteration

class.

Note: Do not add or remove elements while using the iterator.

For both these possibilities (the C++ function and the object of an iterator class), an

additional distinction is made as to whether the function leaves the element constant

or not. This means that four definitions of the function allElementsDo() are offered

by every collection. The following example shows the definition of allElementsDo()

for ISet:

template < class Element, ... >
class ISet {

 // ...
// Iteration applying a C++ function:

IBoolean allElementsDo (IBoolean (*function)(Element&, void*),
void* additionalArgument = 0);

IBoolean allElementsDo (IBoolean (*function)(Element const&, void*),
void* additionalArgument = 0) const;

// Iteration applying an iterator object:
IBoolean allElementsDo (IIterator < Element > &);
IBoolean allElementsDo (IConstantIterator < Element > &)const;

};

 Chapter 8. Instantiating and Using the Collection Classes 103

Iteration

If you use an object of an iterator class, this class must offer an applyTo() function.

It also must be derived from the abstract base class IIterator or IConstantIterator.

These abstract iterator base classes are defined in the following way:

template < class Element >

class IIterator {
 public:

virtual IBoolean applyTo (Element&) = 0;
 };

template < class Element >
class IConstantIterator {

 public:
virtual IBoolean applyTo (Element const&) = 0;

 };

Additional arguments that are needed for the iteration can, for example, be passed as

arguments to the constructor of the derived iterator class. You must define the

function with the given argument and return types. For additional arguments, you

may have to define a separate class or structure.

The following example shows the use of iterators. The example adds all integers in a

bag using two methods: by iterating the applied function as an object of an iterator

class or as a function.

// An example of using Iterators

 #include <ibag.h>
 #include <iostream.h>

typedef IBag < int > IntBag;

class SumIterator : public IConstantIterator < int > {
 int ivSum;
 public:

SumIterator () : ivSum (0) {}
IBoolean applyTo (int const& i) {

ivSum += i; // Increments ivSum by the value
return True; // of the current element

 }
int sum () { return ivSum; } // used to return the sum of

// integers in the bag as
// calculated by applyTo

 };

int sumUsingIteratorObject (IntBag const& bag) {
SumIterator sumUp; // Instantiates an iterator object
bag.allElementsDo (sumUp); // of SumIterator in order to
return sumUp.sum (); // apply its methods to the bag

} // of integers

IBoolean sumUpFunction (int const& i, void* sum) {
(int)sum += i; // Increments sum by current value
return True; // of i. This function is applied

} // to all elements of the bag.

104 VisualAge C++ Open Class Library User's Guide

Copying and Referencing Collections

int sumUsingIteratorFunction (IntBag const& bag) {
int sum = 0; // Applies sumUpFunction (an
bag.allElementsDo // iterator function) to all

(sumUpFunction, &sum); // elements in the bag.
 return sum;
 }

int main (int argc, char* argv[]) {
 IntBag intbag;

for (int cnt=1; cnt < argc; cnt++)
 intbag.add(atoi(argv[cnt]));

cout << "Sum obtained using an Iterator Object = "
<< sumUsingIteratorObject(intbag) << "\n";

cout << "Sum obtained using an Iterator Function = "
<< sumUsingIteratorFunction(intbag) << "\n";

 return 0;
 }

If you invoke this program by entering:

sumup 1 2 3 4 5

the program produces the following output:

Sum obtained using an Iterator Object = 15
Sum obtained using an Iterator Function = 15

Copying and Referencing Collections

The Collection Classes implement no structure sharing between different collection

objects. The assignment operator and the copy constructor for collections are defined

to copy all elements of the given collection into the assigned or constructed

collection. You should remember this point if you are using collection types as

arguments to functions. If the argument type is not a reference or pointer type, the

collection is passed by the copy constructor, and changes made to the collection

within the called function do not affect the collection in the calling function.

If you want a function to modify a collection, pass the collection as a reference:

void removePrimes (ISet < int > mySet) { /* ... */ } // wrong
void removePrimes (ISet < int >& mySet) { /* ... */ } // right

For the sake of efficiency, avoid having a collection type as the return type of a

function:

ISet < int > f () {
ISet < int > result;

 // ...
 return result;
 }
 // ...

intSet = f (); // inefficient

 Chapter 8. Instantiating and Using the Collection Classes 105

Copying and Referencing Collections

In this program intSet becomes a reference argument to the assignment operation,

which would again copy the set. A better approach is:

void f (ISet < int > &result) { /* ... */ }
 // ...
 f (intSet);

106 VisualAge C++ Open Class Library User's Guide

Element and Key-Type Functions

 9 Element Functions and Key-Type Functions

This chapter describes the functions that are required by member functions of the

Collection Classes to manipulate elements and keys. The following topics are

discussed:

¹ Element functions and key-type functions

¹ Using standard operators to provide element and key-type functions

¹ Using separate functions

¹ Using element operation classes

¹ Functions for derived element classes

Introduction to Element Functions and Key-Type Functions

The member functions of the Collection Class Library call other functions to

manipulate elements and keys. These functions are called element functions and

key-type functions, respectively.

Member functions of the Collection Class Library may, for example, use the element's

assignment or copy constructors for adding an element, or they may use the element's

equality operator for locating an element in the collection. In addition, Collection

Class functions use memory management functions for the allocation and deallocation

of dynamically created internal objects (such as nodes in a tree or a linked list).

The element functions that may be required by a given collection are:

¹ Default and copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

 ¹ Key access

 ¹ Hash function

The key-type functions that may be required by a given collection are:

 ¹ Equality test

 ¹ Ordering relation

 ¹ Hash function

Note: For implementation variants where both equality test and ordering relation are

required element functions (or where both are required key-type functions), the library

does not define which of the two is used to determine element or key equality.

 Copyright IBM Corp. 1993, 1995 107

Using Member Functions

The memory management functions that may be required by a given collection are:

 ¹ Allocation

 ¹ Deallocation

The lists above are the superset of all element functions and key-type functions that a

Collection Class can ever require. For example, a collection without keys does not

require any key-type functions, and a collection without element equality does not

require an equality test. Element functions and key-type functions required for a

certain collection are listed with the description of each collection in the Open Class

Library Reference.

Where possible, these functions are already defined by the Collection Class Library.

Default memory management functions are provided for usage with any element and

key type. For the standard C++ data types int and char*, defaults are offered for all

element and key-type functions. For all other element and key types, you must

provide these functions.

There are three different methods of providing element functions and key-type

functions, each of which offers a different level of flexibility and tailoring:

1. Using member functions

2. Using separate functions in the global name space

3. Using element operation classes.

The second and third methods can also be used to replace the default memory

management functions for some of the collections.

Using Member Functions

The easiest way to provide the required element or key-type functions is to use

member functions. For assignment, equality, and ordering relation, operator=,

operator==, and operator< are used, respectively. Certain element functions and

key-type functions must be defined as member functions. Others cannot be defined

as member functions, but must be defined as separate functions.

You must define these functions using member functions:

 ¹ Constructors

 ¹ Destructors

You cannot define these functions using member functions. Instead you must define

them as separate functions that are not members of any class:

¹ Functions for key access

¹ Functions for hashing

¹ Functions for memory management

108 VisualAge C++ Open Class Library User's Guide

Using Separate Functions

Except for assignment, you must define member functions of a class as const. You

will get a compile-time error if you do not include const in these definitions.

The following example shows how member functions must be defined as const:

 class Element
 {
 public:
 Element& operator= (Element const&);

IBoolean operator== (Element const&) const;
IBoolean operator< (Element const&) const;

 };

The result type of the assignment operator is irrelevant to the Collection Class

Library. The result type of equality and ordering relation must be compatible with

type IBoolean.

Using Separate Functions

You can use separate functions to provide the required element and key functions.

Use separate functions when, in instantiating the Collection Class, you have no

control over the element class, and the element class does not define the appropriate

functions. You can also use separate functions to provide key access and hash

function.

The following shows what the declarations for these separate functions must look

like:

void assign (Element&, Element const&);
IBoolean equal (Element const&, Element const&);
long compare (Element const&, Element const&);

 Key const& key (Element const&);
unsigned long hash (Element const&, unsigned long);
IBoolean equal (Key const&, Key const&);
long compare (Key const&, Key const&);
unsigned long hash (Key const&, unsigned long);

You can find examples of these functions in the tutorials (see Chapter 14, “Collection

Class Library Tutorials” on page 151) and in the coding examples in the Open Class

Library Reference.

You can also use separate functions for the standard memory management functions,

as defined by the C++ language:

void* operator new (size_t);
void operator delete (void*);

The compare() function must return a value that is less than, equal to, or greater than

zero, depending on whether the first argument is less than, equal to, or greater than

the second argument. The hash function must return a value that is less than the

second argument; this value may be achieved, for example, by computing the

remainder (operator%) with the second argument. The hash function should evenly

 Chapter 9. Element Functions and Key-Type Functions 109

Using Element Operation Classes

distribute over the range between zero and the second argument. For equal elements

or keys, the hash element must yield equal results.

An efficient hash function is very important to the performance of your program. If

you are unsure of how to implement an efficient hash function, see the suggested

reading material on data structures and algorithms in “Other Books You Might Need”

on page 716.

For assign(), equal(), and compare(), template functions are defined that will be

instantiated unless otherwise defined. The default for assign() uses the assignment

operator, the default for equal() uses the equality operator, and the default for

compare() uses two comparisons with operator<. It is therefore advisable to define

your own compare() function if the given element type has a more efficient

implementation available. Such definitions are already provided for integer types

using operator- and for char* using strcmp(). By default, the standard memory

management functions are used. (Using operator- works for integer types because

the result of a-b can be used to determine whether a<b evaluates to True.)

The following example demonstrates the use of a separate function for the definition

of the key access. The element class is Task, its data member ivId is the key, and its

member function id() is used to access the key:

typedef unsigned long TaskId;
typedef int Priority;
class Task {

TaskId ivId; // This will be used as the key.
Priority ivPriority; // These are private data members.

 public:
TaskId id () const { return ivId; }
Priority priority () { return ivPriority; }
// ... other member functions, for example one that
// sets or changes a task's priority

 };
 // ...

TaskId const& key (Task const& t) // Key access.
{ return t.id (); }
// The key() function cannot directly return the key (ivId)
// because the key is a private data member.

 // ...
IKeySet <Task, TaskId> runningTasks;

Using Element Operation Classes

You can use element operation classes in cases where you want to place elements of

one type into more than one collection, and where the element or key-type functions

are different for each collection. For example, suppose you require an element type

that is used to instantiate employee records that can be sorted either by name or by

salary. You can declare an element class Person, and then place references to each

Person instance into each of two collections. In one collection, the key is the name;

in the other, the key is the salary. In your program, you need to define different

element and key-type functions for hashing, comparison, and so on. Because these

110 VisualAge C++ Open Class Library User's Guide

Using Element Operation Classes

functions are not identical for both collections, you cannot define them within the

class Person.

You can provide different sets of element and key-type functions for a given element

type and multiple collections, by using the IG... class template for the collection you

want to use. This class template lets you define element functions separately from

the element class. In the case of the employee program, you can declare two classes

as follows:

IGKeySortedSet <PersonPtr, int, SalaryOps> SalaryKSet;
IGKeySortedSet <PersonPtr, IString, NameOps> NameKSet;

You then need to define two other classes, SalaryOps and NameOps, which must

contain appropriate element and key-type functions.

When you do not provide element or key operations by using an IG... collection, the

standard class template (I... as opposed to IG...) defines default operations. These

default operations are declared in istdops.h.

For an example of using element operation classes, see “Coding Example for Map” in

the Open Class Library Reference.

The following excerpt shows the definition of the class templates for ILinkedSequence

and IGLinkedSequence:

template < class Element, class ElementOps >
class IGLinkedSequence { /* ... */ };

template < class Element >
class ILinkedSequence :
public IGLinkedSequence < Element, IStdOps < Element > > {

/* ... */ };

The advantage of passing the arguments using an extra class instead of passing them

as function pointers is that the class solution allows inlining.

The following is a skeleton for operation classes. The keyOps member must only be

present for key collections. Note that all element and key operations must be defined

as const.

template < class Element, class Key >
 class ...Ops
 {
 void* allocate (size_t) const;
 void deallocate (void*) const;

void assign (Element&, Element const&) const;

IBoolean equal (Element const&, Element const&) const;
long compare (Element const&, Element const&) const;
Key const& key (Element const&) const;
unsigned long hash (Element const&, unsigned long) const;

 Chapter 9. Element Functions and Key-Type Functions 111

Using Element Operation Classes

 class KeyOps
 {

IBoolean equal (Key const&, Key const&) const;
long compare (Key const&, Key const&) const;
unsigned long hash (Key const&, unsigned long) const;

 }
 keyOps;
 };

You can inherit from the following class templates when you define your own

operation classes. Templates with argument type T can be used for both the element

and the key type.

 class IStdMemOps
 {

void* allocate (size_t) const;
void deallocate (void*) const;

 };

template < class T >
 class IStdAsOps
 {

void assign (T&, T const&) const;
 };

template < class T >
 class IStdEqOps
 {

IBoolean equal (T const&, T const&) const;
 };

template < class T >
 class IStdCmpOps
 {

long compare (T const&, T const&) const;
 };

template < class Element, class Key >
 class IStdKeyOps
 {

Key const& key (Element const&) const;
 };

template < class T >
 class IStdHshOps
 {

unsigned long hash (T const&, unsigned long) const;
 };

The file istdops.h defines the above templates. It also defines other templates that

combine the properties of one or more of the templates. The following table shows

all template class names defined in istdops.h, and the element and key-type

functions they implement:

112 VisualAge C++ Open Class Library User's Guide

Using Element Operation Classes

To define an operations class, use the predefined templates for standard functions, and

define the specific functions individually. Consider, for example, tasks that have an

identifier and a priority. The identifier might serve as the key in a collection that

keeps track of all active tasks, while the priority might be used for implementing

priority-controlled task queues. Because the key() function is already defined to yield

the task identifier, the priority queue has to be instantiated in the following way:

class TaskPrioOps : public IStdMemOps,
public IStdAsOps < Task >

 {
 public:

Priority key (Task const& t) { return t.priority (); }
IStdCmpOps < Priority > keyOps;

 };
 // ...

IGPriorityQueue < Task, Priority, TaskPrioOps >
 taskPriorityQueue;

The functions that are required for a particular Collection Class depend not only on

the abstract class but also on the concrete implementation choice. If you choose a set

to be implemented through a hash table, the elements require a hash function. If you

choose a (sorted) AVL tree implementation, elements need a comparison function.

Even the default implementations may require more functions to be provided than

would be necessary for the collection interface. Each chapter in the Open Class

Library Reference that describes a particular collection defines which functions must

be provided for keys and elements for each implementation of that collection.

Template allocate

deallocate

assign equal compare hash key

using

compare

key using

equality

and hash

IStdMemOps √

IStdAsOps √

IStdEqOps √

IStdCmpOps √

IStdHshOps √

IStdOps √ √

IEOps √ √ √

IECOps √ √ √ √

IEHOps √ √ √ √

IKCOps √ √ √

IKEHOps √ √ √

IEKCOps √ √ √ √

IEKEHOps √ √ √ √

 Chapter 9. Element Functions and Key-Type Functions 113

Functions for Derived Element Classes

Memory Management with Element Operation Classes

The following scenario illustrates the use of memory management with element

operation classes.

Suppose you want to use your own element operation class to provide a special form

of memory management. For example, you want an entire collection (the collection

body plus the elements) to reside in a database, or in shared memory. To do this you

can code:

IGLinkedSequence<Element, MyOperationsClass>

where MyOperationsClass is an element operations class you have coded, which

provides your own element operations allocate() and deallocate(). This class may

or may not inherit from previously described template classes, except that it must

inherit from IStdMemOps).

A certain instance of your collection is instantiated together with an instance of your

MyOperationsClass. You can retrieve the this pointer of this instance of

MyOperationsClass to find out where the collection is instantiated, and you can use

this address in your implementation of the allocate() element function to allocate

your elements in the same memory pool where your collection resides.

Functions for Derived Element Classes

One of the C++ language rules states that function template instantiations are

considered before conversions. Because the Collection Class Library defines default

templates for element functions, functions such as equal() or compare(), defined for a

class, will not be considered for that class's derived classes; the default template

functions will be instantiated instead. In the following example, the compiler would

attempt to instantiate the template compare() function for class B, instead of inheriting

the compare() function of class A and converting B to A:

class A { /* ... */ };
long compare (A const&, A const&);
class B : public A { /* ... */ };
ISortedSet < B > BSet;

The instantiated default compare() function for class B uses the operator< of B, if

defined. Otherwise, a compilation error occurs, because class B's operator< is not

found. You must define standard functions such as equal() or compare() for the

actual element type B to prevent the template instantiation of those functions, in case

you want to provide a class-specific equal() or compare() function for B.

The classes IElemPointer, IMngElemPointer, and IAutoElemPointer (see “Managed

Pointers” on page 119) internally use a function called elementForOps() to direct

functions such as equal() and compare() to the referenced element, so that they are

not applied to the pointer itself and so that instantiations such as ISet <IElemPointer

114 VisualAge C++ Open Class Library User's Guide

Using Pointer Classes

<Task>> perform the functions on the elements. This indirection is usually transparent

but you must consider it when you derive classes from the IElemPointer class. The

standard operation classes first apply a function elementForOps() to the element

before they apply the corresponding non-member (equal(), ...) function. By default, a

corresponding template function is instantiated for elementForOps() which takes an

element as input and returns that element. For pointer classes that perform operations

on the pointers themselves (IAutoPointer, IMngPointer), this function takes the

pointer as input and returns the same pointer. For pointer classes that perform the

operations on the referenced elements (IElemPointer, IAutoElemPointer,

IMngElemPointer), this function takes the pointer as input and returns the referenced

element. If a class derived from IElemPointer<E> is used as a collection element

type, the default template functions must be instantiated before a conversion will be

considered. A derived class must therefore explicitly redefine the elementForOps()

function, as shown in the following example, where class TaskPtr redefines both

versions of elementForOps() by calling the default elementForOps() with a TaskPtr as

argument. Both versions are then made to return a cast to Task reference:

class TaskPtr : public IElemPointer < Task > {
friend Task& elementForOps (TaskPtr & t) {

return (Task &) elementForOps (t); }
friend Task const & elementForOps (TaskPtr const & t) {

return (Task const &) elementForOps (t); }
 };

ISet < TaskPtr > taskSet;

Using Pointer Classes

In C++, variables and function arguments have their values copied when they are

assigned. This copying can decrease a program's efficiency, especially when the

objects are large. To improve efficiency, pointers or references are often used for

common objects. For example, a pointer or reference to the object can be copied,

instead of the object itself. Polymorphism is achieved with pointers through the use

of virtual functions. Pointers to elements can be used as collection element types,

rather than the elements themselves. (References are not allowed as collection

element types).

The Collection Classes define five pointer classes:

 ¹ IElemPointer

 ¹ IAutoPointer

 ¹ IAutoElemPointer

 ¹ IMngPointer

 ¹ IMngElemPointer

These types are referred to as pointer classes. Their main characteristics are:

 Chapter 9. Element Functions and Key-Type Functions 115

Using Pointer Classes

¹ Certain pointer classes perform storage management. Storage management in this

context means that referenced objects are automatically deleted under certain

conditions.

¹ Certain pointer classes, if stored in a collection, perform all element and key-type

functions, for example equality test, on the referenced elements, instead of on the

pointers themselves.

¹ Certain pointer classes combine both of the above features.

You can use pointer classes that perform element and key functions on the referenced

elements, by storing pointers from these classes in collections. For pointers from

pointer classes that perform storage management only, you can use the pointers

instead of native C++ pointers for general purposes.

You can store pointers from these pointer classes, as well as C++ pointers, as

elements in any collection. The following sections describe the enhancements that

pointers from the above classes provide over native C++ pointers.

Overview of Pointer Classes

If you store standard C++ pointers in a collection, the collection performs all element

functions (for example, equality test) on the pointers themselves. This is not always

what you intend. If you want the collections to perform those element functions on

the referenced elements instead, use one of the following pointer classes:

 ¹ IElemPointer

 ¹ IAutoElemPointer

 ¹ IMngElemPointer

If you use pointers from these classes, and you check, for example, the equality of

two pointers from your collection of pointers, True is only returned if the referenced

elements are equal as defined by the equality relation of the element type, even if the

elements are located at different addresses in memory. The same equality test for a

collection of C++ pointers only returns True if the pointers point to the same address.

Pointers from the three I...Elem... classes are also called element pointers. Element

pointers are only useful when you store them in a collection. The elements

themselves are not “stored” in the collection, although information from the elements

is used by Collection Classes functions. See “Element Pointers” on page 118 for

more information on the element pointer types.

116 VisualAge C++ Open Class Library User's Guide

Using Pointer Classes

If you prefer to perform all element functions (for example, equality test) on the

pointers themselves, and not on the referenced objects (elements), you can use one of

the following pointer classes:

 ¹ IMngPointer

 ¹ IAutoPointer

For example, if you check the equality of two such pointers from your collection of

pointers, True is only returned if the pointers point to the same address. (This is the

same behavior as you would expect for native C++ pointers.)

Most pointer classes perform automatic storage deallocation for objects that are no

longer referenced. They are:

 ¹ IAutoPointer

 ¹ IAutoElemPointer

 ¹ IMngPointer

 ¹ IMngElemPointer

Pointers of classes IAuto... are called automatic pointers. They perform memory

management so that referenced objects are deleted as soon as the pointer passes out

of scope. See “Automatic Pointers” on page 119 for more information on

automatic pointers.

Pointers of classes IMng... are called managed pointers. They perform memory

management so that the references to objects are counted, and objects are deleted only

when they are no longer referenced by any managed pointer. See “Managed

Pointers” on page 119 for more information on managed pointers.

To exploit the advantage of memory management, you can use non-element pointers

(for example, IMngPointer) instead of standard C++ pointers without storing the

pointers in a collection.

Automatic storage management is particularly useful when functions return pointers

or references to objects that they have created (dynamically allocated), and the last

user of the object is responsible for cleaning up.

The following features of Collection Classes pointer types give you the choices

shown in the table below. Standard C++ pointers are included for comparison.

¹ Element functions performed on referenced elements

¹ Element functions performed on pointers

¹ Automatic storage management

 Chapter 9. Element Functions and Key-Type Functions 117

Using Pointer Classes

The pointer classes can only take arguments of type class or struct. The reason is

that the overloaded operator-> needs to return an object of such a type. You can

apply pointer objects from these five classes in the same way you use ordinary C++
pointers, with the * and -> operators. Elements are implicitly deleted, except in the

case of IElemPointer. To delete an element referred to by an IElemPointer, you must

use an explicit conversion to the referenced element type:

IElemPointer < E > ptr;
 // ...

delete (E*) ptr;

 Destruction of Pointed Objects

Not managed When

out-of-scope

Reference

counted

Collections call element

operations on pointer

Standard C++
pointer

IAutoPointer IMngPointer

Collections call element

operations on

referenced object

IElemPointer IAutoElemPointer IMngElemPointer

 Element Pointers

If you create a collection of C++ pointers or pointers of type IMngPointer or

IAutoPointer, Collection Classes methods that use element comparison functions will

do the comparison on the pointers to the elements, instead of on the elements

themselves.

If you do want element functions to work on the pointers instead of the referenced

elements, you do not need to implement equality and ordering relation for the chosen

pointer type (IAutoPointer, IMngPointer or C++ pointers). The compiler can

instantiate the default element function templates. If necessary, you can implement

your element functions for the referenced element type.

In the following example, adding, locating, and other functions are based on pointer

equality and ordering, and not on the equality defined for the Task type.

 class Task
 {
 TaskId ivId;
 //...

IBoolean operator== (Task const& t)
{ return ivId == t.ivId; }

 };
typedef IMngPointer < Task > MngPointerToTask;
ISet < MngPointerToTask > setOfTaskPointers;

// equality will refer to pointer
// though it is defined for Task

118 VisualAge C++ Open Class Library User's Guide

Using Pointer Classes

On the other hand, if you want element functions to work on the elements referenced

by the pointers, the Collection Classes offer the IElemPointer, IAutoElemPointer, and

IMngElemPointer pointer classes, which are instantiated with the element type.

Pointers of these classes automatically apply all element functions, except for

assignment, to the referenced object. Element pointers are constructed from C++
pointers. The C++ dereferencing operators * and -> are defined, for element pointers,

to refer to the referenced objects.

 class Task
 {
 TaskId ivId;

Priority priority () const;
 };

typedef IElemPointer < Task > TaskPtr;
ISet < TaskPtr > taskSet; // taskSet is a set of task pointers
TaskPtr t1 (new Task); // convert a new C++ task pointer to

// Collection Class task pointer
taskSet.add (t1); // add the pointer to taskSet

 //...
taskSet.elementAt (cursor)->priority(); // apply priority function

// to the element (priority is
// a member function of Task)

 // ...
taskSet.remove(t1); // remove pointer from collection
delete (Task*)t1; // delete task pointed to by t1.

The dynamically created elements are not automatically deleted when they are

removed from the collection.

 Managed Pointers

Managed pointers keep a reference count for each referenced object (element). When

the last managed pointer to the object is destructed, the object is automatically

deleted. Use managed pointers when you are unsure who is responsible for deleting

an object. If several pointers to an object may be introduced over time, the order in

which the pointers are released is not known.

The following example shows how to use pointers from the IMngElemPointer class:

typedef IMngElemPointer < Task > TaskPtr;
ISet < TaskPtr > tasks;
TaskPtr t1 (new Task, IINIT);

 tasks.add (t1);
 // ...
 tasks.remove (t1);

In the example, the allocated task will automatically be deleted by the remove()

function unless it is referenced through another TaskPtr.

 Automatic Pointers

Automatic pointers do not keep a reference count. A referenced object (element) is

automatically deleted in two cases:

 Chapter 9. Element Functions and Key-Type Functions 119

Using Pointer Classes

¹ The automatic pointer is destructed. Use automatic pointers when the lifetime of

the element is the same as the lifetime of the pointer, and an explicit deletion of

the element is awkward or even impossible. This case applies in particular to

pointers to objects that are dynamically created within a function, and whose

lifetime is the scope of the function. The function may be left through several

return statements or through an exception being thrown from some other function

being called.

¹ Using the assignment operator, the automatic pointer is used to point to another

element (which is implicitly a new element). The assigned pointer is set to NULL.

If you define a collection taking automatic pointers as elements, the elements are

automatically deleted when the collection is destructed, when an element is removed,

or, if the element was not added to the collection, when the variable or temporary

holding the pointer is destructed:

 {
ISet < IAutoElemPointer < IString > > eSet;
eSet.add (IAutoElemPointer (new IString ("abc"), IINIT));
eSet.add (IAutoElemPointer (new IString ("def"), IINIT));
// the temporary automatic pointer variables have been set
// to NULL when the pointer was copied to the collection

 {
eSet.add (IAutoElemPointer (new IString ("def"), IINIT));
} // deletes the second IString ("def"), because it was not added
// (note that in a set each element occurrs only once)

} // deletes the IString ("abc") and first IString ("def")
// with the destruction of the eSet

Transfer of

Automatic

Pointers

You should be aware of the implementation details described below when

transferring automatic pointers between functions. Consider the following cases:

¹ A calling function passes an automatic pointer to a called function and the

pointer is returned.

IAutoPointer <Int> f (IAutoPointer <Int> i) { return i; }
 // ...

main () {
IAutoPointer <Int> i (new Int (5), IINIT);
cout << *f(i) << endl;

 }

This program results in the following taking place at run time:

– main constructs an IAutoPointer object i and initializes it with the address

of Int object 5.

– On invocation of f(), the copy constructor of IAutoPointer is called, and the

new constructed auto pointer is initialized with the address of the given input

pointer. The given pointer is set to NULL. On return from f(), the copy

constructor of IAutoPointer constructs a new auto pointer in main() and

initializes it with the address of the auto pointer object from f(), which is

then destructed.

120 VisualAge C++ Open Class Library User's Guide

Using Pointer Classes

– When main exits, it calls the destructors for all auto pointer objects and the

destructor for Int object 5.

¹ A called function has no input, but returns an object that has been dynamically

been created using an automatic pointer.

Int g() {
IAutoPointer <Int> j (new Int (6), IINIT);

 return *j;
 }
 // ...

main () {
cout << g() << endl;

 }

This program results in the following taking place at run time:

– On invocation of g(), this function constructs an IAutoPointer object,

constructs an Int(6) object, and initializes the auto pointer with the address

of Int(6).

– On return from g(), the copy constructor of Int constructs a new Int(6)

object in main(). The auto pointer object and the Int(6) object in g() are

destructed.

– On exit from main(), the Int(6) object is destructed.

Constructing Pointers from the Pointer Classes

All pointers from the pointer classes have two constructors: a default constructor that

initializes the pointer to NULL, and a constructor taking a C++ pointer to an element

that you must have created before (using new).

Implicit conversions from a C++ pointer to a managed or automatic pointer are

dangerous: elements might be implicitly deleted without your being aware that they

have been. Therefore, the conversion functions for these classes take an extra

argument IINIT to make the construction explicit. Hence, the notation for creating a

managed or automatic pointer is:

IAutoPointer < E > ePtr (new E, IINIT);

Note: After you have constructed a managed or automatic pointer from a C++
pointer, do not use the C++ pointer. You should only access the element

through the pointer of the given class. Otherwise, the element could be

implicitly destructed while a C++ pointer still refers to it. In particular, you

must not construct two managed pointers or two automatic pointers from the

same C++ pointer, because the managed pointers would keep two separate

reference counts, and to implicitly delete the referenced element twice. For

example:

IString *s = new IString("...");
IMngPointer < IString > p1 (s, IINIT); // OK
IMngPointer < IString > p2 (s, IINIT); // NO!
// Do not use s a second time, because the compiler may try to
// delete the IString object referred to by s, p1, and p2 twice.

 Chapter 9. Element Functions and Key-Type Functions 121

Using Pointer Classes

You should keep the following rule in mind when using managed or

automatic pointers created from standard pointers: Never use the C++ pointer

once the managed or automatic pointer has been created from it, because this

may interfere with the automatic storage management. For example, the

object that is referenced by a C++ pointer and by an automatic pointer created

from this C++ pointer is deleted as soon as the automatic pointer gets out of

scope. The C++ pointer then points to undefined storage.

The extra IINIT argument is introduced to make such situations explicit and especially

to avoid the usage of the constructor as an implicit conversion operator. The IINIT

argument is defined as follows:

enum IExplicitInit {IINIT};

Without the IINIT argument, you might try to write code such as the following:

typedef IMngPointer < Task > TaskPtr;
 void func (TaskPtr currentTask);
 // ...

Task* stndP = new Task; //creating a C++ pointer
TaskPtr mngdP = TaskPtr (stndP); // creating a managed pointer from

// a C++ pointer
func (stndP); // Error: Second use of the C++ pointer

For the call to func(), the compiler would call a constructor for implicit conversion if

the constructor did not require IINIT. On function return, the temporary managed

pointer would be destructed and the Task object deleted.

Notes on

Pointer

Classes

1. The pointer classes do not work with basic types such as int, long, and char.

2. If you implement a key collection containing element pointers, you must define

your key() function with the element as input, not the pointer to the element, for

example:

typedef IKeySortedSet <IMngElemPointer <Element>, int> keySortedSetOfPointers;
 // ...

int const& key(Element const& element) {
 return element.elementKey();
 }

where elementKey() returns the element's key.

3. The copy constructor and assignment operator of an automatic pointer are defined

in a way that resets the source pointer to NULL. This prevents multiple automatic

pointers from pointing to the same element. In the following example, p2 is

implicitly set to NULL:

IAutoPointer < E > p1, p2;
 ...

p1 = p2;

However, the copy constructor and assignment operator still take a const

argument (using a const cast-away) to maintain compliance with the standard

122 VisualAge C++ Open Class Library User's Guide

Using Pointer Classes

interface for these operations. This standard interface is required, for example,

when you use these types as element types in collections, because the copy

constructor and assignment operator are required to have such an interface. (If

this interface were not a requirement, the collection's add() function could not

take a const argument.)

 Chapter 9. Element Functions and Key-Type Functions 123

Using Pointer Classes

124 VisualAge C++ Open Class Library User's Guide

Replacing the Default Implementation

10 Tailoring a Collection Implementation

This chapter describes how to tailor a collection implementation for your specific

applications. It describes the based-on concept and predefined implementation

variants.

 Introduction

When you are developing a program that uses a collection, you should begin by using

the default implementation and go on to a final tuning phase where you choose

implementations according to the actual requirements of your application. You can

determine these requirements by profiling or by using other measurement tools. This

section describes how to choose between a variety of implementations provided by

the Collection Classes as well as how to create your own implementation classes.

As described in “The Overall Implementation Structure” on page 88, each abstract

data type has several possible implementations. Some of these implementations are

basic; that is, the collection class is implemented directly as a concrete class. These

basic implementations include:

 ¹ AVL trees

 ¹ Hash tables

 ¹ Linked sequences

 ¹ Tabular sequences

Other implementations, including bags, are based on other collection classes. The

based-on concept provides a systematic framework for choosing the most appropriate

implementations. It is also useful for extending the Collection Classes with other

basic implementations, such as specific kinds of search trees, and for using these

implementations as the basis for other data abstractions such as sets, maps, and bags.

Replacing the Default Implementation

You can easily replace the default implementation with another implementation.

Suppose that you have a key set class called MyType that has been defined with the

default implementation IKeySet. The definition of this class would look like this:

typedef IKeySet < Element, Key > MyType;

If you want to replace the default implementation, which uses an AVL tree, with a

hash table implementation, you can replace the above implementation with the

following definition:

 Copyright IBM Corp. 1993, 1995 125

The Based-On Concept

typedef IHashKeySet < Element, Key > MyType;

If you replace a collection's default implementation with one of its implementation

variants, you must determine what element functions and key-type functions need to

be provided for the variant. You must then provide those functions. The list of

required functions is not always the same for a collection's default implementation as

for particular implementation variants. Required functions for a collection's default

implementation or an implementation variant are listed in the collection's chapter in

the Open Class Library Reference. See the section “Template Arguments and

Required Functions” in each such chapter.

The Based-On Concept

The Collection Class Library achieves a high degree of implementation flexibility by

basing several collection class implementations on other abstract classes, rather than

by implementing them directly through a concrete implementation variant of the class.

This design feature results in an implementation path rather than the selection of an

implementation in a single step. The Collection Class Library contains type

definitions for the most common implementation paths; they are described in the

corresponding sections of the Open Class Library Reference. See Figure 12 on

page 129 for an illustration of implementation paths. The figure is explained in

“Provided Implementation Variants” on page 128.

The element functions that are needed by a particular implementation depend on all

collection class templates that participate in the implementation. While ISet requires

at least element equality to be defined, an AVL tree implementation of this set also

requires the element type to provide a comparison function. A hash table

implementation also requires the element type to have a hash function. The required

element functions for all predefined implementation variants are listed in the chapters

for individual collection types in the Open Class Library Reference.

For a concrete implementation, such as a set based on a key-sorted set that is in turn

based on a tabular sequence, these class templates have to be plugged together. The

plug mechanism requires class templates to be used as template arguments. Because

C++ does not allow class templates as template arguments, the Collection Class

Library implements the plug mechanism using macros. Two macros are provided:

¹ One for defining a template with an additional operations class argument, for

example, IDefineGSetOnGKeySortedSet. See “Using Element Operation

Classes” on page 110 for information on why you would use such additional

arguments.

¹ One for defining a template with only the element type, or the element and key

types, as arguments, for example, IDefineCollectionWithOps and

IDefineKeyCollectionWithOps.

126 VisualAge C++ Open Class Library User's Guide

The Based-On Concept

The second macro needs, as an element operations class, an argument as is described

in “Using Element Operation Classes” on page 110. Standard operations class

templates are predefined that can be used for this purpose. Their names are

systematically derived from the operations they define. The name structure is:

 I<elem-ops>[K<key-ops>]Ops

where <elem-ops> and <key-ops> are a sequence of letters: E for equality, C for

comparison, and H for hashing. IEKEHOps, for example, is an operations template that

provides element equality, key equality, and hashing on keys as well as the basic

memory management and element assignment operations.

For the following example, assume you have a specific form of a sorted tree called

IGMySortedTree, which is a new implementation for a KeySorted Set. It must exactly

implement the interface provided for a KeySortedSet:

¹ It must have three template arguments, the element type, the key type, and an

element operations class.

¹ It must implement all of the member functions defined for KeySortedSet.

A set implementation IGMySet that is based on this new sorted tree is defined as

follows:

IDefineGSetOnGKeySortedSet (IGMySortedTree, IGMySet)

IGMySet is defined as a template with the element type and an element operations

class as arguments. A template that only takes the element type as argument and that

uses the standard element operations for equality and comparison can then be defined:

IDefineCollectionWithOps (IGMySet, IECOps, IMySet)

This expands to the code shown below. The expansion is not intended to give you an

in-depth understanding of how the mechanism works internally. It merely illustrates

the value of the macros.

template < class Element, class ElementOps >

class IGMySet :
 IWSetOnKeySortedSet

< Element, ElementOps,
 IGMySortedTree

< Element, Element,
IOpsWithKey < Element, ElementOps > > >

{ /* ... constructor redefinition ... */ };
template < class Element >
class IMySet : public IGMySet < Element, IECOps < Element > >
{ /* ... constructor redefinition ... */ };

 Chapter 10. Tailoring a Collection Implementation 127

Provided Implementation Variants

Provided Implementation Variants

Figure 12 on page 129 lists the basic and based-on implementations provided by the

Collection Classes. The upper left corner of each cell contains the name of the

(abstract) collection class; basic implementations are written in smaller letters in bold

face, while based-on implementations are described by arrows starting from the class

that they implement and ending in the (abstract) class on which they are based. An

implementation choice for a given class must use either a basic implementation for

this class or follow a based-on implementation path that ultimately leads to a basic

implementation.

Take the example of the Bag abstraction. The Bag is not implemented directly. (You

can tell this from the figure because no implementation variant name appears in bold

in the box containing Bag.) To determine the possible implementation variants for

Bag, follow the arrows out of the Bag box:

¹ One arrow leads to the KeySet box. The KeySet box contains an implementation

variant, HashTable KeySet, so this is one possibility. An arrow also points from

the KeySet Box to the KeySortedSet box, which allows the following

possibilities:

– AVL Tree Key Sorted Set (appears in KeySorted Set box)

– B* Tree Key Sorted Set (appears in KeySorted Set box)

– An arrow leads from KeySorted Set to Sequence, which contains the

following implementation variants:

 - LinkedSequence

 - TabularSequence

 - DilutedSequence

A Bag can therefore be implemented using any of the six implementation variants

cited in bold face above.

128 VisualAge C++ Open Class Library User's Guide

Provided Implementation Variants

Map

KeySet KeyBag

Set Bag Sorted Set Sorted Bag Equality Sequence

Heap Sequence

HashTable KeySet HashTable KeyBag AVL Tree K.S.Set
B* Tree K.S.Set

LinkedSequence
TabularSequence
DilutedSequence

KeySorted Set KeySorted Bag

Relation Sorted Map Sorted Relation

Figure 12. Possible Implementation Paths

The following table lists the based-on implementations of the Collection Classes, and

the header files that provide the IDefine... macros. Usually, you do not need to use

the IDefine... macros. You can use them, however, to define your own

implementation variant for a collection class and to integrate it into the scheme of

implementation paths shown in Figure 12.

Macro Name Header File

IDefineGBagOnGKeySet ibagks.h

IDefineGBagOnGKeySortedSet ibagkss.h

IDefineGDequeOnSequence ideqseq.h

IDefineGEqualitySequenceOnGSequence iesseq.h

IDefineGHeapOnGSequence iheapseq.h

IDefineGKeySetOnGKeySortedSet ikskss.h

IDefineGKeySortedBagOnGSequence iksbseq.h

IDefineGKeySortedSetOnGSequence ikssseq.h

IDefineGMapOnGKeySet imapks.h

IDefineGMapOnGKeySortedSet imapkss.h

IDefineGPriorityQueueOnGKeySortedBag ipquksb.h

IDefineGQueueOnSequence iqueseq.h

IDefineGRelationOnGKeyBag irelkb.h

 Chapter 10. Tailoring a Collection Implementation 129

Provided Implementation Variants

Macro Name Header File

IDefineGSetOnGKeySet isetks.h

IDefineGSetOnGKeySortedSet isetkss.h

IDefineGSortedBagOnGKeySortedSet isbkss.h

IDefineGSortedMapOnGKeySortedSet ismkss.h

IDefineGSortedRelationOnGKeySortedBag isrksb.h

IDefineGSortedSetOnGKeySortedSet isskss.h

IDefineGStackOnSequence istkseq.h

Features of Provided Implementation Variants

You can implement a given collection type (bag, key sorted set, etc.) in a number of

different ways. The possible implementation variants are described in “Provided

Implementation Variants” on page 128, and are listed in the “Class Implementation

Variants” section of each collection chapter in the Open Class Library Reference.

The Collection Classes provide multiple implementation variants for collections

because different variants have different performance and storage use characteristics.

After you have coded and debugged an application that uses the Collection Classes,

you can change an implementation to a variant that is well-suited to the ways in

which you use the collection. For example, in “Key Set” in the Open Class Library

Reference, the section “Variants and Header Files” on page 159 lists six

implementation variants, including the default key set. These variants are

implemented using the following concrete techniques:

¹ AVL tree (the technique used for the default key set)

 ¹ B* tree

 ¹ Hash table

¹ Sorted linked sequence

¹ Sorted tabular sequence

¹ Sorted diluted sequence

As it turns out, the implementation variants for key set encompass all the concrete

techniques used by the Collection Classes. Other collections may only use some of

the techniques in the list above. If you want to choose the best implementation

variant for your program, you need to know the advantages of each concrete

technique. The remainder of this section describes each technique and presents its

advantages and the trade-offs it entails.

130 VisualAge C++ Open Class Library User's Guide

Provided Implementation Variants

 Sequences

Sequences are generally used to store elements sequentially. Each of the three

available implementation variants for sequences allows certain operations to be done

more efficiently than others. The benefits of each variant are described first, and then

each variant is explained in detail.

Tabular sequences provide good performance where a collection is primarily used

for reading data but elements are not frequently added or deleted once the

collection is created.

Diluted sequences are more suitable for collections where some elements are

inserted or deleted after the collection is created, but where the collection is still

primarily read from rather than written to.

Linked sequences are more suitable than tabular or diluted sequences when you

anticipate that many elements will be added or deleted, and where you cannot

accurately predict the maximum size of the collection when it is first created.

Following are descriptions of each type of sequence.

Tabular

Sequence

A tabular sequence is an array implementation of a list. The elements are stored in

contiguous cells of an array. In this representation, a list can easily be traversed, and

new elements can easily be added to the tail of the list. If an element needs to be

inserted into the middle of the list, however, all following elements need to be shifted

to make room for the new element. Similarly, if an element needs to be removed

from the list, and the element is not the last element in the list, all elements following

the element to be deleted must be shifted in to close up the gap.

A tabular sequence can access all elements quickly because all elements can be stored

in a single storage block. If all of the following conditions hold true for your use of

a collection, a tabular sequence is a suitable implementation variant to use:

¹ The elements to be stored are small.

¹ You can predict with some accuracy how many elements your application will

have to handle.

¹ Few or no elements will need to be added or deleted once the collection is first

created.

Note that memory is statically allocated for tabular sequences, at the beginning of

your program.

Figure 13 on page 132 shows a tabular sequence implementation variant.

 Chapter 10. Tailoring a Collection Implementation 131

Provided Implementation Variants

el 1 el 2 el 3 ...el 4 el 5 el n max

last
filled free

Figure 13. Tabular Sequence Implementation Variant

Diluted

Sequence

A diluted sequence, like a tabular sequence, is an array implementation of a list.

However, when you delete an element from a diluted sequence, it is not actually

deleted, but only flagged as deleted. This provides a performance advantage, in that

elements following a deleted element do not need to be shifted. The additional

overhead of using a dilution flag is trivial.

If you want to add a new element at a certain position, only those elements between

that position and the next element flagged as deleted need to be shifted. (If no

elements later in the list are flagged as deleted, then all elements beyond the insertion

position must be shifted.)

Use a diluted sequence rather than a tabular sequence if your application will be

doing much adding or deleting of elements after the collection is established.

Figure 14 shows a diluted sequence implementation variant.

el 1 el 2 el 3 ...el 4 el n max

Diluted Diluted

last
filled free

Figure 14. Diluted Sequence Implementation Variant

Linked

Sequence

A linked sequence uses pointers to link each element to its predecessor and

successor. This implementation does not require contiguous memory for storing an

array, which means that elements do not have to be shifted to make room for new

elements or to close up gaps created by deleted elements.

Because storage is dynamically allocated and freed, this implementation variant is a

good choice in applications that add or delete many elements, particularly where you

cannot predict the amount of storage required. Figure 15 on page 133 shows a

linked sequence implementation variant.

132 VisualAge C++ Open Class Library User's Guide

Provided Implementation Variants

header last element

el 1 el 2 el n. . .

Figure 15. Linked Sequence Implementation Variant

 Trees

A tree is a collection of nodes. The nodes either contain the data of the collection or

pointers to that data.

A node normally contains a reference to one or more other nodes. Referenced nodes

are children of the referencing node. One node is the entry point to the tree. This

node is designated as the root. Nodes without any references to other nodes are

called leaf nodes or terminal nodes.

Trees in general are more useful for searching elements than for adding and deleting

elements. For this reason, they are often called search trees. The descriptions of

AVL and B* trees below explain why trees are well-suited for searching.

AVL Tree AVL trees are a special form of binary tree. You can better understand AVL trees if

you know how a binary tree is structured.

Trees are binary trees when all nodes have either zero, one, or two children. Binary

trees are often used in applications where you want to store elements in a certain

order. In such cases, the left child always points to an element that comes earlier in

the order than the parent node, and the right child points to an element that comes

later than the parent. A search through a binary tree begins at the root node. The

search then continues downward until the desired element is found, by determining

whether a node comes before or after the searched-for node, and then following the

appropriate branch. For example, the binary tree shown in Figure 16 on page 134

has elements added in the following sequence: 8 - 10 - 5 - 1 - 9 - 6 - 11. A search for

element 9 begins at the root node (element 8). Assuming that the element value

defines the ordering relation, the search would take the right node from element 8

(because 9 is greater than 8) and would arrive at element 10. The search would take

the left node from element 10 (because 9 is smaller than 10) and would arrive at

element 9, the desired element.

 Chapter 10. Tailoring a Collection Implementation 133

Provided Implementation Variants

8

5

61 9 11

10

Figure 16. Binary Search Tree

One drawback of a binary search tree is that the tree can easily become unbalanced.

Figure 17 shows how unbalanced the tree becomes when the elements 12 through 15

are added.

8

105

1 6 9 11

12

13

14

15

Figure 17. Unbalanced Binary Search Tree

This tree looks almost like a linked sequence, without the performance advantage of a

normal binary search tree. To obtain this performance advantage, a binary search tree

should always remain balanced. The AVL Tree is a special form of binary search tree

that maintains balance.

The AVL tree was invented by the two mathematicians, Adel'son-Vel'skii and Landis,

from whom it derives its name. AVL trees are height-balanced. They have the

property that, for every node in the tree, the height of that node's left subtree minus

the height of the right subtree is always -1, 0, or +1. AVL trees provide better

performance than ordinary binary search trees because they do not become

unbalanced. Unbalanced trees often have very poor search characteristics. If adding

or removing an element from an AVL tree causes the tree to lose its AVL property,

134 VisualAge C++ Open Class Library User's Guide

Provided Implementation Variants

then a few local readjustments are sufficient to restore the AVL property. Figure 18

on page 135 shows how the unbalanced tree shown earlier would look after the AVL

property is restored.

12

10

119

5

8

61

13 15

14

Figure 18. AVL Tree

AVL trees are useful for collections containing a large number of small elements. An

AVL tree implementation is even suitable for adding and deleting, because the

performance overhead for the rebalancing that sometimes occurs when an element is

added or deleted is still less expensive than searching through the elements of a

sequence to find the position at which to add or delete an element.

If you use a set collection and do not choose an implementation variant, you are

automatically using an AVL tree. If you use a set and are not aware that the set is

implemented as an AVL tree, you may be surprised that a set requires an ordering

relation, when a set is an unordered collection, as shown in Figure 7 on page 81.

The reason a set requires an ordering relation is that an AVL tree requires an ordering

relation so that it knows where to add new elements or where to find elements being

accessed or deleted. As this example shows, required element and key-type functions

are determined by two factors:

¹ Some functions are required because of the properties of the collection.

¹ Some properties are required because of the implementation variant you choose.

B* Tree A B* tree is a search tree that may have more than two references per node.

Figure 19 on page 136 shows a B* tree with up to five children per node.

 Chapter 10. Tailoring a Collection Implementation 135

Provided Implementation Variants

Figure 19. A B* tree

A B* tree combines the advantages of binary search and sequential access upon the

same set of keys. B* trees are based on two simple ideas:

¹ The internal nodes are used only for storing the keys, with all real data stored at

the leaves. A B* tree takes into consideration the page or block size of the

operating system's virtual memory structure, and is suitable for applications

where paging or memory thrashing is a constraint.

¹ The leaves of a B* tree are chained together in logical sequence to support

sequential access.

A B* tree implementation variant is suitable when you have many large elements that

are accessed by key. Because keys and their data are separated, the keys in the tree

structure are used for a quick search and the pointers are used for quick access to the

data.

In contrast to a B* tree, keys and data in an AVL tree are both stored in the nodes.

This means that searching through elements could cause page faults if the elements

are large, because the various keys may be spread across several pages along with the

data they refer to.

In Figure 20 on page 137, the B* tree has an order of 5 (which means that each

internal node has a maximum of five references). The data is stored only in the

leaves. A leaf block is built to hold one element. A leaf block may be larger than

one page. The B* tree implementation uses the keys in the nodes for quick access to

a required page (leaf), or it uses the keys for a quick sequential access to all pages,

and hence to all elements.

136 VisualAge C++ Open Class Library User's Guide

Provided Implementation Variants

20

10 45

root pointer

2 65 8 10 14 15 20 45 49 53 6221 24 26 27

2 two 6 six 45 fourtyfive 62 sixtytwo

49 fourtynine

21 twentyone

26 twentysix

...
...

... ...

Figure 20. B* Tree Implementation Variant

 Hash Table

Hashing is another important and widely used technique to implement collections.

Conceptually, hashing involves calculating an index from the key or other parts of an

element, and then using that index to look for matches in a hash table. The function

that calculates the index is called a hash function.

A hash table implementation variant is suitable for nearly all applications with a

balanced mix of operations. Such an implementation is quick for retrieving elements.

It can also add and delete elements quickly, because, unlike an AVL tree, it does not

need to be rebalanced. The efficiency of a hash-table implementation is largely

dependent on how efficiently you implement the hash function.

You cannot use a hash-table implementation variant when you require your elements

to appear in main storage in sorted order (where elements earlier in the sorting order

have lower addresses than elements later in the sorting order). On the other hand,

you must use a hash table if you have a complex key (one composed, for example, of

several attributes of an element), and either you cannot find a reasonable way to

compare keys, or the comparison would be expensive.

For collections that do not provide access by key, but that support a hash-table

implementation variant, the complete element is used as the input to the hash

function.

 Chapter 10. Tailoring a Collection Implementation 137

Provided Implementation Variants

Hashing, as implemented in the collection classes, allows elements to be stored in a

potentially unlimited space, and therefore imposes no limit on the size of the

collection. Figure 21 on page 138 shows a hash table implementation variant.

1

2

3

4

5

6

.....

.....

.....

.....
abcd

xyz

7

.....
yyy

Figure 21. Hash Table Implementation Variant

The hash function that calculates the index 3 from abcd is implemented as follows:

1. Each character is transformed into an integer according to its position in the

alphabet.

2. The resulting integers are added together.

3. The result is divided by the hash table size. The remainder is the hash.

This hash function returns the following results for elements abcd, xyz and yyy:

¹ abcd: (1 + 2 + 3 + 4) % 7 = 3

¹ xyz: (24 + 25 + 26) % 7 = 5

¹ yyy: (25 + 25 + 25) % 7 = 5

The principal behind a hash table is that the possibly infinite set of elements in your

collection is partitioned into a finite number of hash values (1, 2, 3, ...). Your hash

function is called with a key and a modulo value, and you use the key and the

modulo value to arrive at an integer hash value. If for two different keys the hash

function returns the same hash value (as for xyz and yyy in the previous figure), a

hash collision occurs. In such cases, a hash implementation constructs a collision list

where all keys returning the same hash value are linked.

In the best case, for each different key, your hash function should return a different

hash value. At the very least, it is desirable for the collision lists to remain small so

that access time is fast. This means that hash values should be evenly distributed.

Your hash function should randomly hash the key so that the hash value is not

dependent on the key value in any trivial way. Your hash function should always

return the same hash value for a given key and modulo provided to it.

138 VisualAge C++ Open Class Library User's Guide

Polymorphic Use of Collections

11 Polymorphic Use of Collections

This chapter describes how you can use polymorphism in the Collection Classes.

Introduction to Polymorphism

Polymorphism allows you to take an abstract view of an object or function argument

and use any concrete objects or arguments that are derived from this abstract view.

 The collection properties defined in “Flat Collections” on page 80 define such

abstract views. They are represented in the form of the class hierarchy in Figure 11

on page 92.

Polymorphic use of collections differs from polymorphism of the element type.

Element polymorphism means that you can use the collections with any elements that

provide basic operations like assignment and equality; this kind of polymorphism is

implemented by the use of the C++ template concept. This chapter deals with the

polymorphic use of collections rather than elements. Polymorphic use of collections

means that a function can specify an abstract collection type for its argument, for

example IACollection, and then accept any concrete collections given as its actual

argument.

Each abstract class is defined by its functions and their behavior. The most abstract

view of a collection is a container without any ordering or any specific element or

key properties. Elements can be added to a collection, and a collection can be

iterated over. A polymorphic function on collections might be to print all elements;

such a function is given as an example on page 140.

Collections whose elements define equality or key equality provide, in addition to the

common collection functions, functions for retrieving element occurrences by a given

element or key value. Ordered collections provide the notion of a well-defined

ordering of the element occurrences, either by an element ordering relation or by

explicit positioning of elements within a sequence. They define operations for

positional element access. Sorted collections provide no further functions, but define

a more specific behavior, namely that the elements or their keys are sorted.

These properties are combined through multiple inheritance: the abstract collection

class IEqualitySortedCollection, for example, combines the abstract concepts of

element equality and of being sorted, which implies being ordered. If a polymorphic

function uses this class as its argument type, the arguments will be sorted, and the

function can use functions like contains() that are only defined for collections with

element equality.

 Copyright IBM Corp. 1993, 1995 139

Using Reference Classes

Using Reference Classes

For performance reasons explained in “The Overall Implementation Structure” on

page 88, concrete collection classes are not directly derived from abstract classes.

Instead, you must use an indirection that “couples” a concrete collection with an

abstract class. For each leaf in the collection class hierarchy, IASet, for example,

there is an indirection class template called IRSet. (See Figure 10 on page 90.)

It takes as template arguments the element type and, for key collections, the key type

and a concrete collection class that has been instantiated with this element and key

type. Instances of this indirection class refer to instances of the concrete collection

class. (The R in IRSet stands for reference.) The IR... classes are derived from the

corresponding abstract IA... classes and are therefore part of the Collection Class

hierarchy. Instances of this class can be used wherever an instance (pointer or

reference) of an abstract base class is required.

The following example defines a universal printer class that accepts an arbitrary

collection of jobs and prints their IDs. The elements are printed in the iteration order

that is defined for the given collection. The concrete key set running cannot be used

as an argument to the printer directly, because IKeySet is not derived from the

abstract collection classes. The reference class IRKeySet is used for this purpose. It

is instantiated with the element and key type, and with the concrete collection class

JobSet. An instance of this class refRunning is defined by providing running as a

constructor argument. refRunning can then be used as argument to the universal

printer.

class JobPrinter {
 public:

print (IACollection < Job* > const& jobs)
{ cout << "ID ..."

ICursor *cursor = jobs.newCursor ();
cout << "{ ";

 forCursor (*cursor)
cout << jobs.elementAt (*cursor)->id() << ' ';

cout << "}\n";
 delete cursor;
 }
 };
 // ...

typedef IKeySet < Job*, JobId > JobSet;
 JobSet running;
 // ...

IRKeySet < Job*, JobId, JobSet > refRunning (running);
 JobPrinter jobPrinter;
 jobPrinter.print (refRunning);

140 VisualAge C++ Open Class Library User's Guide

12 Support for Visual Builder for C++

The Collection Classes include special classes that support Visual Builder (Visual

Builder is described in Visual Builder User's Guide). For every concrete flat

collection class (for example ISequence), there is a corresponding Visual Builder

collection class starting with IV (for example IVSequence).

All collection methods that modify a collection send Visual Builder notifications to

observers. The class IPartCollectionNotification defines four notification IDs for

Collection Classes:

IPartCollectionNotification::addedId Sent if an element is added to the collection

IPartCollectionNotification::removedId Sent if an element is removed from the

collection

IPartCollectionNotification::replacedId Sent if an element is replaced in the

collection

IPartCollectionNotification::modifiedId Sent if a collection is changed in any way

other than those mentioned above.

For notifications addedId, removedId and replacedId, you can use

INotificationEvent::eventData() to access event data generated by collections. This

event data is an object that includes a cursor() method to access a collection cursor.

The cursor points to the element referred to by the modification method. For

example, if addedId is the notification, the cursor points to the added element. The

replaceId notification also gives you access to a copy of the element that was

replaced.

Collection notifications addedId, removedId and replacedId pass a pointer to a class

corresponding to the notification.

Notification Class

addedId IPartCollectionAddedEventData

removedId IPartCollectionRemovedEventData

replacedId IPartCollectionReplacedEventData

 Copyright IBM Corp. 1993, 1995 141

These classes provide the following methods:

For all notifications except RemovedId, the library sends notification after the

modification occurs. The library sends RemovedId notification before the collection is

changed because otherwise you would not be able to use the cursor to refer to the

element being removed.

Notifications are only sent if the collection is changed by the method. The following

methods do not create a notification:

¹ removeAll() for an empty collection

¹ add(), when add() does not actually add an element (for example because the

element already exists in a unique collection, or because the collection is full)

¹ remove() if the element is not in the collection

¹ locateOrAdd if the element is already in the collection

Table 4. Methods of IPartCollection...EventData

Class Methods

IPartCollectionAddedEventData const ICursor& cursor() const

IPartCollectionRemovedEventData const ICursor& cursor() const

IPartCollectionReplacedEventData const ICursor& cursor() const
Element& replacedElement() const

Header Files for Visual Builder Support

The classes IPartCollectionAddedEventData, IPartCollectionRemovedEventData and

IPartCollectionReplacedEventData are defined in ipartccl.h. The notificationIds

are defined in ipartccn.h.

Example for IVSequence<IString>

The following example demonstrates the use of collection event data for a sequence

of IStrings. IString is the main string handling class provided by IBM Open Class.

See Chapter 17, “String Classes” on page 197 for information on how to use this

class.

#include <ivseq.h>
#include <ipartccn.h>
#include <ipartccl.h>

IObserver &dispatchNotificationEvent(const INotificationEvent&
 anEvent) {

// Process addedId notification

if (anEvent.notificationId() ==
 IPartCollectionNotification::addedId) {

142 VisualAge C++ Open Class Library User's Guide

cout << "Add at position : "
 << (*(IVSequence<IString>*)&(anEvent.notifier()))
 .position(((IPartCollectionAddedEventData<IString>*)
 ((char*)anEvent.eventData()))->cursor())
 << endl;

cout << "New Data : "
 << (*(IVSequence<IString>*)&(anEvent.notifier()))
 .elementAt(((IPartCollectionAddedEventData<IString>*)
 ((char*)anEvent.eventData()))->cursor())
 << endl;

// Process replacedId notification

if (anEvent.notificationId() ==
 IPartCollectionNotification::replacedId) {

cout << "Replace at position : "
 << (*(IVSequence<IString>*)&(anEvent.notifier()))
 .position(((IPartCollectionReplacedEventData<IString>*)
 ((char*)anEvent.eventData()))->cursor())
 << endl;

cout << "New Data : "
 << (*(IVSequence<IString>*)&(anEvent.notifier()))
 .elementAt(((IPartCollectionReplacedEventData<IString>*)
 ((char*)anEvent.eventData()))->cursor())
 << endl;

cout << "Old Data : "
 << ((IPartCollectionReplacedEventData<IString>*)
 << ((char*)anEvent.eventData()))->replacedElement()

<< endl; }

 Chapter 12. Support for Visual Builder for C++ 143

144 VisualAge C++ Open Class Library User's Guide

Exception Handling

13 Exception Handling

This chapter describes the exception-handling facilities provided by member functions

of the Collection Class Library. This chapter includes the following topics:

¹ Introduction to exception handling

¹ Preconditions and defined behavior

¹ Levels of exception checking

¹ List of exceptions

¹ The hierarchy of exceptions

Introduction to Exception Handling

The C++ exception-handling facilities allow a program to recover from an exception.

An exception is a user, logic, or system error that is detected by a function that does

not itself deal with the error, but passes the error to a handling function. Exceptions

can result from two major sources:

¹ The violation of a precondition

¹ The occurrence of an internal system failure or system restriction

In this chapter, two kinds of functions are discussed. A called function is a

Collection Class function that may throw an exception. A calling function is a

function that calls a Collection Class function. The calling function may be a

Collection Class function or a function you have defined.

Exceptions Caused by Violated Preconditions

A precondition of a called function is a condition that the function requires to be true

when it is called. The calling function must assure that this condition holds. The

called function implementation may assume that the condition holds without further

checking it. If a precondition does not hold, the called function's behavior is

undefined.

If you want to make your programs more robust and to locate errors in the test phase,

the functions your program calls should check to ensure that their preconditions hold.

The Collection Class Library enables this checking through macro definitions.

Because this checking often requires significant overhead, it is turned off by default.

You need only use it while you are testing the system and verifying that

preconditions are always met.

 Copyright IBM Corp. 1993, 1995 145

Precondition and Defined Behavior

A call to a function that violates the function's preconditions has two possible results:

¹ If the called function checks its preconditions, the function will throw an

exception.

¹ If the function does not check its preconditions, the behavior of the function is

undefined.

Exceptions Caused by System Failures and Restrictions

System failures and restrictions are different from precondition violations. You

cannot usually anticipate them, and you have no opportunity to verify that such

situations, for example storage overflow, will not occur. These exceptions need to be

checked for, and an exception should be thrown if they occur.

Precondition and Defined Behavior

Exceptions are not generally used to change the flow of control of a program under

normal circumstances. An example of using exceptions under normal circumstances

is a function that iterates through a collection, and exits from the iteration by

checking for the exception that is thrown when an invalid cursor is used to access

elements. When the iteration is complete, the cursor will no longer be valid, and this

exception will be thrown. This is not a good programming practice. A function

should explicitly test for the cursor being valid. To make this possible, a function

must efficiently test this condition (isValid(), for the cursor example).

There are situations where the test for a condition can be done more efficiently in

combination with performing the actual function. In such cases, it is appropriate, for

performance reasons, to make the situation regular (that is, not exceptional) and return

the condition as a IBoolean result. Consider a function that first tests whether an

element exists with a given key, and then accesses it if it exits:

if (c.containsElementWithKey (key)) {
 // ...

myElement = c.elementWithKey (key); // inefficient
 // ...

} else {
 // ...
 }

This solution is inefficient because the element is located twice, once to determine if

it is in the collection and once to access it. Consider the following example:

 try {
 // ...

myElement = c.elementWithKey (key); // bad: exception expected
 // ...

} catch (INotContainsKeyException) {
 // ...
 }

146 VisualAge C++ Open Class Library User's Guide

List of Exceptions

This solution is undesirable because an exception is used to change the flow of

control of the program. The correct solution is to obtain a cursor together with the

containment test, and then to use the cursor for a fast element access:

if (c.locateElementWithKey (key, cursor)) {
 // ...

myElement = c.elementAt (cursor); // most efficient
 // ...

} else {
 //...
 }

Levels of Exception Checking

Some preconditions are more difficult to check than others. Consider the following

possible preconditions:

1. A cursor for a linked collection implementation still points to an element of a

given collection.

2. A collection is not empty.

In the production version of a program, it may be less efficient to check the first

precondition than the second.

The Collection Class Library provides three levels of precondition checking. They

are selected by the following macro variable definitions (use, for example, compile

flag -DINO_CHECKS):

INO_CHECKS Check for memory overflow. Other checks may be eliminated to

improve performance.

Default Perform all precondition checks, except the check that a cursor

actually points to an element of the collection.

IALL_CHECKS Perform all precondition checks, including the (costly) check that

a cursor actually points to an element of the collection. This

extra check can only fail for undefined cursors.

List of Exceptions

The Collection Class Library defines the following exceptions:

 IChildAlreadyExistsException

Occurs when you try to add a child to a tree using addAsChild() at a position that

already contains a child.

 Chapter 13. Exception Handling 147

List of Exceptions

 ICursorInvalidException

Two cursor properties may lead to the ICursorInvalidException:

¹ Every time a cursor is created, you must specify the collection that it belongs to.

If a function takes a cursor as an argument (such as add(), setToFirst(), and

locate()), the function can only be applied to the collection that the cursor

belongs to. If the function is applied to another collection, the

ICursorInvalidException results.

¹ If a function takes a cursor as an input argument (such as elementAt(),

removeAt(), and replaceAt()), the cursor must be valid. A cursor is valid if it

actually refers to some element contained in the collection. You can use the

isValid() function to determine if a cursor is valid.

 IEmptyException

Occurs when a function tries to access an element of an empty collection. Functions

that might cause this exception include firstElement() and removeFirstElement().

 IFullException

Occurs when a function tries to add an element to a bounded collection that is already

full. Functions that might cause this exception include add() and addAsFirst().

 IIdenticalCollectionException

Occurs when the function addAllFrom() is called with the source collection being the

same as the target collection.

 IInvalidReplacementException

Occurs when, during a replaceAt() function, the replacing element has different

positioning properties (see “Replacing Elements” on page 98) than the positioning

properties of the element to be replaced.

 IKeyAlreadyExistsException

Occurs when a function attempts to add an element to a map or sorted map that

already has a different element with the same key. Functions that might cause this

exception include add and addAllFrom().

 INotBoundedException

Occurs when the function maxNumberOfElements() is applied to a collection that is not

bounded.

 INotContainsKeyException

Occurs when the function elementWithKey() is applied to a collection that does not

contain an element with the specified key.

148 VisualAge C++ Open Class Library User's Guide

Exception Hierarchy

 IOutOfMemory

Occurs when a function cannot obtain the space that it requires. This exception is not

the result of a precondition violation. Functions that add an element to a collection,

including add() and addAsFirst(), can cause this exception.

 IPositionInvalidException

Occurs when a function specifies a position that is not valid in a collection. The

functions that might cause this exception include elementAtPosition(),

removeAtPosition(), and setToPosition().

 IRootAlreadyExistsException

Occurs when the function addAsRoot() is called for a tree that already has a root.

The Hierarchy of Exceptions

In the Collection Class Library, all exceptions are derived from the IException class

described in Chapter 18, “Exception and Trace Classes” on page 213. It provides

common functions to access information about an exception that has occurred.

The direct subclasses of IException used in the Collection Class Library are

IPreconditionViolation and IResourceExhausted. The following figure shows the

hierarchy of exceptions:

 Chapter 13. Exception Handling 149

Exception Hierarchy

IOutOfMemory

IPreconditionViolation

IResourceExhausted

IException

IChildAlreadyExistsException

ICursorInvalidException

IEmptyException

IFullException

IIdenticalCollectionException

IInvalidReplacementException

IKeyAlreadyExistsException

INotBoundedException

INotContainsKeyException

IPositionInvalidException

IRootAlreadyExistsException

Figure 22. Hierarchy of Exceptions

150 VisualAge C++ Open Class Library User's Guide

Collection Class Library Tutorials

14 Collection Class Library Tutorials

This chapter provides a set of tutorial lessons that you can use to learn common

Collection Class Library features. Each lesson builds on the lessons you learned and

the library features demonstrated in prior lessons. A section at the end of the chapter

describes other tutorials provided with the Collection Class Library that can help you

with specific Collection Class Library techniques. Use this chapter if you are

beginning to use the library and are unclear on some of the concepts described in

earlier chapters of this section.

The lessons in this chapter demonstrate the following capabilities of the Collection

Class Library:

¹ Defining a simple collection

¹ Adding, removing, and iterating over elements

¹ Changing the element type

¹ Changing the collection

¹ Changing the default implementation

Each lesson has the following format:

¹ What the lesson covers: What you will learn from the lesson.

¹ Requirements: What capabilities must be built into or added to the program.

¹ Setup: What files you will need from previous lessons.

¹ Implementation: Step-by-step instructions for implementing the program

requirements. The implementation section includes the required code as well as

detailed descriptions of each aspect of the implementation.

¹ Source files: Source file listings showing the contents of, or the order of

declaration of functions within, individual source files. Where a source file is not

changed from one lesson to the next, it is not listed a second time.

¹ Running the program: A description of what happens when you run the program,

observations on the program's behavior, and guidance on optional ways of

enhancing or changing the program.

¹ What you have learned: A summary of the Collection Class features that were

covered by the lesson.

There are five lessons in this chapter. The following provides an overview of the

characteristics of the program used in each lesson, and the Collection Class features

the lesson demonstrates:

 Copyright IBM Corp. 1993, 1995 151

Collection Class Library Tutorials

Lesson 1 A program that builds a collection of integer elements, and adds

three elements to the collection. Nothing is done with the

collection after these elements are added, and the program produces

no output. This lesson demonstrates how to define the element and

collection types with typedefs, how to instantiate a collection, how

to add elements to a collection, and how to determine what

Collection Class header file to include.

Lesson 2 An enhancement to Lesson 1 that implements a menu so that you

can add, list, or remove items, show stock information, or exit the

program. Not all these functions are fully implemented at this

point. The lesson demonstrates how to iterate over a collection and

how to remove elements from a collection.

Lesson 3 An enhancement to Lesson 2 that changes the element type from a

built-in type to a class type. The lesson demonstrates how to

construct a collection whose elements are of class type, how to

determine what element type functions are required, and how to

define those functions.

Lesson 4 In this lesson, you change Lesson 3 to use a different collection.

The lesson demonstrates how to choose the correct collection for a

given application, how to implement various element and key

functions, how to use a cursor to iterate through elements with a

given key, and how to count the number of elements with a given

key.

Lesson 5 In this lesson, you change the implementation variant of the

collection. This does not change the program's external behavior

but in real applications changing an implementation variant can

affect performance.

Preparing for the Lessons

To set up the lessons, create five directories beneath the same parent directory, and

name them lesson1 through lesson5. You will use these directories to store the files

you create for each lesson.

Compiling the

Lessons

To compile the lessons, use the following at the OS/2 command line:

icc -Iinclude_path1 ... -Iinclude_pathn -Fd -Ft -Tdp -Ti -B"/De " main.C
lib_path1\lib1 libpath2\lib2

where include_pathx is the path for included .h and .hpp files, and lib_pathx is

the path for the required libraries. The libraries are DDE4CC(I).LIB, and for the

IString class, DDE4MUI(I).LIB.

152 VisualAge C++ Open Class Library User's Guide

Lesson 1: Defining a Simple Collection

Note: The compiler creates a directory tempinc in the directory that is the current

directory when the program is compiled. This directory is used by the Collection

Class Library to place template files used to instantiate collections in your program.

You can delete the files in tempinc and the directory itself after compilation.

If the compiler produces errors during compilation, check to make sure that you have

specified the required library and that you have typed the source code in correctly.

Some common errors are misplacing semicolons and failing to close braces or

brackets.

Lesson 1: Defining a Simple Collection of Integers

In this lesson, you write a program that builds a very simple collection of integer

elements and adds some elements to the collection. This lesson covers the following

Collection Class topics:

¹ Using a typedef to define the element type

¹ Using a typedef to define the collection type

¹ Instantiating the collection

¹ Adding elements to the collection

¹ Specifying the Collection Class header file to include

 Requirements

The collection must consist of elements of an integer type. The integer type is to be

known as type Bicycle, so that later lessons can change the members of the type.

The program adds three integers to the collection. Their values are unimportant. The

collection is to be a bag.

Setup Change to the lesson1 directory, and use an editor to create and edit two files:

bike.h This file will contain declarations and typedefs for the element and

collection types.

main.C This file will contain the main() function.

 Implementation

The implementation should use typedefs to define the element and collection types,

so that if the element or collection type changes later, the changes will be

automatically reflected in any code that uses the typedef.

Defining the Element Type: Use a typedef to define a Bicycle as a synonym for an

int. By using a typedef, you make it easier to change the element type later,

without having to change anything outside the element's type (or class) definition:

// in bike.h
typedef int Bicycle;

 Chapter 14. Collection Class Library Tutorials 153

Lesson 1: Defining a Simple Collection

Notes:

1. In a realistic C++ program using Collection Classes, you do not need to use a

typedef to define the element type, because it is unlikely that you would switch

from a built-in C++ type to a class type.

2. Unless otherwise indicated, you should enter each new block or line of code

below any code you have already entered.

Defining the Collection Type: Use a typedef to define a collection type called

MyCollectionType. The collection type refers to a bag collection whose elements are

Bicycles. By using a typedef, you make it easier to change the collection type later,

without having to change other parts of your code:

typedef IBag <Bicycle> MyCollectionType;

In this typedef, IBag is the default implementation for a bag, Bicycle is a template

argument representing the element type, and MyCollectionType is the type name given

to the type being defined (a bag of Bicycle elements).

Instantiating a Collection: Now that you have defined a typedef for both the

element and the collection types, you can instantiate a collection with a type specifier

and a name:

 MyCollectionType MyCollection;

Place this definition at global scope so that all functions, not only the main() function

defined in the next step, have access to the collection and its members. Functions

other than main() are defined in subsequent lessons.

Adding Elements: You can use “Flat Collection Member Functions” in the Open

Class Library Reference to determine what functions you need to use to manipulate

elements of a collection. If you consult that chapter, you will find that the add()

function is the function needed for this lesson. The syntax for add() is stated as:

void add (Element const& element);

For a collection named MyCollection, you can add elements using the following

syntax:

 MyCollection.add(aBicycle);

Where aBicycle is a Bicycle (in this case an integer). To add three elements, place

code such as the following in main.C:

void main() {
 Bicycle a,b,c;
 a=458;
 b=12;
 c=365;

154 VisualAge C++ Open Class Library User's Guide

Lesson 1: Defining a Simple Collection

 MyCollection.add(a);
 MyCollection.add(b);
 MyCollection.add(c);
 }

Include Files: Above any typedefs or instantiations that use Collection Classes, you

must include the header file for any collection you are using. The chapter on bags in

the Open Class Library Reference tells you what the header file is for the default

implementation of a bag. You should add the following code to the start of bike.h,

and include bike.h in main.C:

// in bike.h
 #include <ibag.h>

// in main.C
 #include "bike.h"

Source Files for Lesson 1

The files should now contain code similar to the following:

 bike.h

 #include <ibag.h>
typedef int Bicycle;
typedef IBag <Bicycle> MyCollectionType;

 MyCollectionType MyCollection;

 main.C

 #include "bike.h"

void main() {
 Bicycle a,b,c;
 a=458;
 b=12;
 c=365;
 MyCollection.add(a);
 MyCollection.add(b);
 MyCollection.add(c);
 }

Running the

Program

Compile main.C and run the executable. The program does not produce any

output, so it appears to do nothing. In fact, it adds three elements to a collection of

integers. The collection is lost on program termination. The program is useless in

practical terms, but does demonstrate some basic Collection Class concepts. Later

lessons build on the code in this lesson, and provide greater functionality, including

output of elements.

“Bag” in the Open Class Library Reference defines a number of element type

functions as being required:

 ¹ Copy constructor

 ¹ Destructor

 Chapter 14. Collection Class Library Tutorials 155

Lesson 2: Adding, Listing, and Removing Elements

 ¹ Assignment

¹ Equality test (operator==)

¹ Ordering relation (operator<)

You did not have to define these functions in the above example, because for the

built-in type int, and by extension the user-defined type Bicycle, these functions are

already defined by the language.

What You

Have Learned

This lesson showed you how to define elements and collections using typedefs,

how to instantiate a collection and elements, and how to add elements to that

collection.

Lesson 2: Adding, Listing, and Removing Elements

The first lesson showed you how to create a simple collection and add three elements.

This lesson moves the code for adding elements to a separate function, and

implements functions for listing and removing elements as well. These functions are

called from a main program that dispatches the appropriate function based on the

user's choice of a menu option.

This lesson covers the following Collection Class topics:

¹ Iterating over a collection using iterators (allElementsDo())

¹ Removing elements from a collection

 Requirements

The code in the main() function must be replaced by a menu system that gives the

user the following options:

1. Add an item

2. List all items

3. Remove an item

4. Show stock information

 5. Exit program

Options 1 to 3 must be implemented through functions. Option 5 can be

implemented by calling exit() or by exiting the scope of the menu selection loop and

main(). You do not need to implement the function to show stock information in this

lesson. Instead, you can implement a function that prints an error message stating

that the function is not yet implemented. For all options except the exit option, after

the appropriate function returns, the menu should be redisplayed and the user should

be able to enter another selection.

156 VisualAge C++ Open Class Library User's Guide

Lesson 2: Adding, Listing, and Removing Elements

Setup Copy the file bike.h from the lesson1 directory to the lesson2 directory, and then

change your current directory to the lesson2 directory. You will also create two

other files. The three files for this tutorial are:

bike.h Contains the element and collection typedefs.

lesson.C Contains functions for adding, removing, listing, and showing stock

information on items.

main.C Contains the main menu for the program.

 Implementation

You need to replace the body of the main() function with the menu handling and

function dispatching code. You will make use of I/O Stream input and output to

implement the functions that add, list, or remove items. One advantage of using the

I/O Stream classes instead of functions like printf() and scanf() is that, when the

element type is changed, you can define input and output operators for the type, and

the I/O Stream input and output functions will continue to work without change.

Including the iostream.h Header File: You should include iostream.h at the start

of lesson.C so that you can use the cin, cout, and cerr streams that are predefined by

the iostream class. You should also include the header file bike.h so that you can

access the Bicycle class and associated functions.

 #include <iostream.h>
 #include "bike.h"

Adding Items: Before the definition of main(), define a function addItem() that

requests user input for the item, then adds the item to the collection. The item is

added using the add() function described in the first lesson. Here is one way to

implement such a function:

// in lesson.C
void addItem() {

 Bicycle tbike;
cout << "Enter item: ";
cin >> tbike;
while (cin.fail()) {

 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Input error, please re-enter: ";
cin >> tbike;

 }
 MyCollection.add(tbike);
 }

Note: You should also add a declaration for this and subsequent functions in main.C.

The function uses a temporary Bicycle object to contain the input until the element is

copied into the collection. The function displays a prompt, reads input, and tests for

 Chapter 14. Collection Class Library Tutorials 157

Lesson 2: Adding, Listing, and Removing Elements

valid input. The while (cin.fail()) block clears any input errors and asks for input

again. Once the element is successfully read from input, it is added to the collection.

Because tbike is actually an int in the current version, an operator>> is already

defined for it. Later, when you change the Bicycle type to a user-defined class, you

will have to add an operator>> for that class.

Listing Items: Before you can list all items, you must define a function that prints a

single item. This function can then be invoked by the allElementsDo() member

function of MyCollection. (allElementsDo() is described in “allElementsDo” in

the Open Class Library Reference.) Any function invoked by allElementsDo() must

have a return type of IBoolean, and must have two arguments: a const reference to

the argument and a pointer to void. The pointer to void is used to pass additional

arguments to the applied function, if required by the function. For the printing

function in this lesson you do not need to pass additional arguments, because the

function does not use them. In such cases you pass a void* second argument:

// in lesson.C
IBoolean printItem (Bicycle const& bike, void* /* Not used */) {

cout << bike << endl;
 return True;
 }

The printItem() function should always return True because it should display the

value of each element of the collection. If you wanted certain values of elements to

cause printing to halt, you would have the function return False for any such element.

A return value of False causes the allElementsDo() function to stop iterating over the

collection.

Just as there was no need to define an input operator for Bicycle, there is no need to

define an output operator either, as long as Bicycle represents an int.

Now define the function listItems() to call the printItem() function for each

element of the collection. Use the allElementsDo() function for the collection, and

use the printItem() function as argument. allElementsDo() then calls the function

for every element of the collection.

// in lesson.C
void listItems() {

MyCollection.allElementsDo(printItem);
 }

Removing Items: To remove an element from a collection, you need to use the

remove() member function. This function is described in “Flat Collection

Member Functions” in the Open Class Library Reference. remove() returns True if

the element was found in the collection and was removed, or it returns False if the

element was not found in the collection. Your removal function should print an error

158 VisualAge C++ Open Class Library User's Guide

Lesson 2: Adding, Listing, and Removing Elements

if the element is not successfully removed. In the version below, the condition that

determines whether removal was successful actually invokes the remove() function:

// in lesson.C
void removeItem() {

 Bicycle tbike;
cout << "Enter item to remove: ";
cin >> tbike;
while (cin.fail()) {

 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Input error, please re-enter: ";
cin >> tbike;

 }
 if (!MyCollection.remove(tbike))

cerr << "Item not found!\n";
 }

Showing Stock Information: For now, you can define this function to display an

error message without changing the collection:

// in lesson.C
void showStock() {

cerr << "Function not implemented yet!\n";
 }

Main Menu: Finally, change the code in main() to display the menu items, accept

input, and take appropriate action. Because this code will remain relatively

unchanged for subsequent lessons, place it in a separate file, main.C, and include

lesson.C before the code of main(). A possible version of main.C is shown below.

Source Files

for Lesson 2

You should have two source files defined at this point. Their names and sample

contents are:

 main.C

 #include <iostream.h>
#include <stdlib.h> // for use of exit() function
void addItem(), listItems(), showStock(), removeItem();

void main() {
enum Choices { Add, List, Stock, Remove, Exit };

 int menuChoice=0;
char* menu[5] = {"Add an item",

 "List items",
"Show stock information",
"Remove an item",

 "Exit" };
while (menuChoice!=5) {
cout << "\n\n\nSimple Stock Management System\n\n";
for (int i=0;i<5;i++)

cout << i+1 << ". " << menu[i] << '\n';
cout << "\nEnter a selection (1-5): ";
cin >> menuChoice;

 Chapter 14. Collection Class Library Tutorials 159

Lesson 2: Adding, Listing, and Removing Elements

while (cin.fail()) {
// get input again if nonnumeric was entered

 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Enter a selection between 1 and 5!\n";
cin >> menuChoice;

 }
switch (menuChoice) {

case 1: addItem(); break;
case 2: listItems(); break;
case 3: showStock(); break;
case 4: removeItem(); break;
case 5: exit(0);
default: cerr << "Enter a selection between 1 and 5!\n";

 }
 }
 }

 lesson.C

 // lesson.C
 #include <iostream.h>
 #include <ibag.h>
 #include "bike.h"

void addItem() {
 Bicycle tbike;

cout << "Enter item: ";
cin >> tbike;
while (cin.fail()) {

 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Input error, please re-enter: ";
cin >> tbike;

 }
 MyCollection.add(tbike);
 }

IBoolean printItem (Bicycle const& bike, void* /* Not used */) {
cout << bike << endl;

 return True;
 }

void listItems() {
MyCollection.allElementsDo(printItem);

 }

void removeItem() {
 Bicycle tbike;

cout << "Enter item to remove: ";
cin >> tbike;
while (cin.fail()) {

 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Input error, please re-enter: ";
cin >> tbike;

 }
 if (!MyCollection.remove(tbike))

cerr << "Item not found!\n";
 }

void showStock() {
cerr << "Function not implemented yet!\n";

 }

160 VisualAge C++ Open Class Library User's Guide

Lesson 3: Changing the Element Type

Running the

Program

Compile main.C and lesson.C, link them, and run the program. You can enter

elements into the collection, list the elements, remove them, or exit from the program.

If you select the option to display stock information, an error message is displayed

and no action is taken.

Elements appear to be ordered: If you enter more than one integer into the

collection, and then list the collection's elements, you may find that the collection has

been sorted from the smallest to the largest element. Do not rely on this ordering

relation, because a Bag is an unordered, unsorted collection, and changes to your code

or to the Collection Class Library could change the order in which elements are

accessed.

Multiple equal elements are supported: If you add the number 7 to the collection

three times and list the items, the number 7 appears three times. If you then remove

the number 7 once, the number 7 still appears twice. A bag supports multiple equal

elements.

What You

Have Learned

This lesson showed you how to use the allElementsDo() function to iterate over

elements of a collection, and how to provide a function to allElementsDo() that is

called for each iterated element. The lesson also demonstrated how to use the

remove() function to remove elements from a collection.

Lesson 3: Changing the Element Type

Now that you have a working program that allows you to add, list, or remove

elements from a collection, you are ready to change the element type to something

more complex than an integer.

This lesson covers the following Collection Class topics:

¹ Defining an element type as a class

¹ Determining what element type functions are required

¹ Defining those element type functions

 Requirements

The element type must be changed from the built-in integer type to a class type with

the following data members:

¹ A string representing the manufacturer or make of the bicycle

¹ A string representing the model of the bicycle

¹ An integer representing the type of bicycle: racing, touring, or mountain bike

¹ An integer representing the price of the bicycle

 Chapter 14. Collection Class Library Tutorials 161

Lesson 3: Changing the Element Type

Setup Copy the files bike.h, lesson.C, and main.C from the lesson2 directory to the

lesson3 directory, and then change your current directory to the lesson3 directory.

Use an editor to modify these files, and to create a new file bike.C, which will

contain function definitions for functions declared in bike.h.

 Implementation

First move the typedef definition for the collection and the #include statement for

ibag.h from bike.h to lesson.C, where they are actually made use of.

You can use the IString class to handle the strings for make and model. This class

includes operators for element equality, ordering relation, and addition

(concatenation), all of which will be used in this or later lessons.

Defining the Element Type: In keeping with good object-oriented programming

practice, you should separate the member function definitions from the class

definition, by placing the class definition in bike.h and the definitions of member

functions in bike.C. You should compile each .C file separately, and link them

together.

Class Data Members: The following code defines the data members of Bicycle.

You should replace the typedef for the element with the declaration for class

Bicycle. Two header files are also included because they are required by members of

the class. Place the following code in bike.h.

#include <istring.hpp> // access to IString class
#include <iostream.h> // access to iostream class

class Bicycle {
 public:
 IString Make;
 IString Model;
 int Type;
 int Price;

// ... Member functions to be declared later and defined in bike.C
 };

The following code defines an enumerator (used to determine the type of bicycle) and

an array of IString objects (used to display the types of bicycle). Place it in bike.C:

enum bikeTypes { Racing, Touring, MountainBike };
IString btype[3]={ "Racing", "Touring", "Mountain Bike"};

Selecting What Element Type Functions to Implement: When you implement the

element type as a user-defined type (a class), you must define certain element

functions, and in some cases key-type functions, for that element. These functions

are used by Collection Class functions to locate, add, copy, remove, sort, or order

elements within their collection, and to determine whether two elements of a

162 VisualAge C++ Open Class Library User's Guide

Lesson 3: Changing the Element Type

collection are equal. For example, you may need to define element equality through

an operator==, so that Collection Class functions can determine whether an element

you try to add to the collection is identical to an element already present in the

collection. Provided you use the correct return type and calling arguments, there is

no right or wrong way to code many of these functions. An equality function for

elements consisting of two int data members, for example, could return True

(meaning that two elements are equal) if the difference between the two data

members is the same for both elements. In this case, the objects (3,8) and (4,9)

would be equal.

To determine what element and key-type functions you need to implement for a given

collection, you should consult the appropriate collection's chapter in the Open Class

Library Reference. For this lesson, the collection is a bag. When you are first

developing a program, you should use the default implementation of the collection,

which is always the first implementation variant listed under the chapter's “Template

Arguments and Required Functions” section. For each implementation variant, a list

of required functions is provided, and you must either implement these functions for

your element class, or determine that they are automatically generated by the

compiler. In the case of the default implementation of a Bag, the following required

functions are shown, under the heading “Element Type”:

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

For this lesson, you also need to implement input and output operators and a default

constructor (used by the input operator and other functions).

Default Constructor: The default constructor should initialize all data members to

blank strings or zero integers:

// in bike.h, within class declaration
Bicycle() : Make(""), Model(""), Type(0), Price(0) {}

Assignment Operator and Destructor: There is no need to define these explicitly.

The compiler generates a default assignment operator and destructor that are suitable

for the program.

Copy Constructor: This function is used by the Collection Classes and by the input

operator. Declare and define it as follows:

// in bike.h:
Bicycle(IString mk, IString md, int tp, int pr) :

Make(mk), Model(md), Type(tp), Price(pr) {}

 Chapter 14. Collection Class Library Tutorials 163

Lesson 3: Changing the Element Type

Equality Test: The equality test (operator==) should return True if two bicycles have

the same make and model, and False if not:

// in bike.h:
IBoolean operator== (Bicycle const& b) const;

// in bike.C:
IBoolean Bicycle::operator== (Bicycle const& b) const

{ return ((Model==b.Model) && (Make==b.Make)); }

Ordering Relation: The ordering relation (operator<) should indicate whether the

first bicycle would appear before or after the second bicycle in an alphabetically

sorted list:

// in bike.h:
IBoolean operator< (Bicycle const& b) const;

// in bike.C:
IBoolean Bicycle::operator< (Bicycle const& b) const

{ return ((Make<b.Make) || (Make==b.Make && Model<b.Model)); }

You can use the < and == operators for IString objects because they are defined for

the IString class to indicate alphanumeric sorting order.

Input Operator: This operator is required by the addItem() and removeItem()

functions defined previously. Both this and the output operator are declared outside

the class definition, at the bottom of bike.h, and they are defined in bike.C. The

input operator stores the alphanumeric data members of Bicycle in char arrays to

avoid the overhead of constructing temporary IString objects.

// in bike.h:
istream& operator>> (istream& is, Bicycle& bike);

// in bike.C:
istream& operator>> (istream& is, Bicycle& bike) {

char make[40], model[40];
 char typeChoice;
 float price;
 int type=-1;

cin.ignore(1,'\n'); // ignore linefeed from previous input
cout << "\nManufacturer: ";
cin.getline(make, 40, '\n');
cout << "Model: ";
cin.getline(model, 40, '\n');
while (type == -1) {

cout << "Racing, Touring, or Mountain Bike (R/T/M): ";
while (cin.fail()) {

 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Racing, Touring, or Mountain Bike (R/T/M): ";
cin >> typeChoice;

 }
switch (typeChoice) {

 case 'r':
case 'R': { type=Racing; break; }

 case 't':
case 'T': { type=Touring; break; }

164 VisualAge C++ Open Class Library User's Guide

Lesson 3: Changing the Element Type

 case 'm':
case 'M': { type=MountainBike; break; }
default: { cerr << "Incorrect type, please re-enter\n"; }

 }
 }

cout << "Price ($$.$$): ";
cin >> price;
while (cin.fail()) {

 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Enter a numeric value: ";
cin >> price;

 }
 price*=100;
 bike=Bicycle(make,model,type,price);
 return is;
 }

Output Operator: The output operator is required by the listItems() function, and

may later be required by other functions. It should display the make, model, type,

and price of a bicycle:

// in bike.h:
ostream& operator<< (ostream& os, Bicycle bike);

// in bike.C:
ostream& operator<< (ostream& os, Bicycle bike) {

return os << bike.Make
<< "\t" << bike.Model
<< "\t" << btype[bike.Type]
<< "\t" << float(bike.Price)/100;

 }

Source Files

for Lesson 3

The program should now be placed in the following files. Some function bodies

have been replaced with ellipses for brevity. main.C remains unchanged and is not

shown.

 lesson.C

 // lesson.C
 #include <iostream.h>
 #include <ibag.h>
 #include "bike.h"

typedef IBag<Bicycle> MyCollectionType;
 MyCollectionType MyCollection;

void addItem() { /* ... */ }
IBoolean printItem (Bicycle const& bike, void* /* Not used */)

{ /* ... */ }
void listItems() { /* ... */ }
void removeItem() { /* ... */ }
void showStock() { /* ... */ }

 bike.h

#include <istring.hpp> // access to IString class
#include <iostream.h> // access to iostream class

class Bicycle {
 public:
 IString Make;
 IString Model;

 Chapter 14. Collection Class Library Tutorials 165

Lesson 3: Changing the Element Type

 int Type;
 int Price;

Bicycle() : Make(""), Model(""), Type(0), Price(0) {}
Bicycle(IString mk, IString md, int tp, int pr) :
Make(mk), Model(md), Type(tp), Price(pr) {}
IBoolean operator== (Bicycle const& b) const;
IBoolean operator< (Bicycle const& b) const;

 };
istream& operator>> (istream& is, Bicycle& bike);
ostream& operator<< (ostream& os, Bicycle bike);

 bike.C

 #include <istring.hpp>
 #include "bike.h"

enum bikeTypes { Racing, Touring, MountainBike };
IString btype[3]={ "Racing", "Touring", "Mountain Bike"};

IBoolean Bicycle::operator== (Bicycle const& b) const
{ return ((Model==b.Model) && (Make==b.Make)); }

IBoolean Bicycle::operator< (Bicycle const& b) const
{ return ((Make<b.Make) || (Make==b.Make && Model<b.Model)); }

istream& operator>> (istream& is, Bicycle& bike) {
char make[40], model[40];

 char typeChoice;
 float price;
 int type=-1;

cin.ignore(1,'\n'); // ignore linefeed from previous input
cout << "\nManufacturer: ";
cin.getline(make, 40, '\n');
cout << "Model: ";
cin.getline(model, 40, '\n');
while (type == -1) {

cout << "Racing, Touring, or Mountain Bike (R/T/M): ";
cin >> typeChoice;
while (cin.fail()) {

 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Racing, Touring, or Mountain Bike (R/T/M): ";
cin >> typeChoice;

 }
switch (typeChoice) {

 case 'r':
case 'R': { type=Racing; break; }

 case 't':
case 'T': { type=Touring; break; }

 case 'm':
case 'M': { type=MountainBike; break; }
default: { cerr << "Incorrect type, please re-enter\n"; }

 }
 }

cout << "Price ($$.$$): ";
cin >> price;
while (cin.fail()) {

 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Enter a numeric value: ";
cin >> price;

 }
 price*=100;
 bike=Bicycle(make,model,type,price);
 return is;
 }

166 VisualAge C++ Open Class Library User's Guide

Lesson 4: Changing the Collection

ostream& operator<< (ostream& os, Bicycle bike) {
return os << bike.Make

<< "\t" << bike.Model
<< "\t" << btype[bike.Type]
<< "\t" << float(bike.Price)/100;

 }

Running the

Program

Compile and link bike.C, main.C and lesson.C, and then run the program.

If you add two bicycles with the same make and model, but different types or prices,

the second bicycle's entry will be identical to the first when the bicycles are listed.

The reason is that element equality is defined only in terms of the make and model.

When you add what the collection considers to be an equal element, the existing

element is duplicated by the add() function.

When you remove an item, the input operator asks you to enter all fields for the item

to remove. Again, because element equality is defined only for the make and model

fields, the information you provide for bicycle type and price is not used in

determining which element to remove. If you define a bicycle:

Smithson 37Q Racing $270.00

You can remove that bicycle's entry by removing:

Smithson 37Q Mountain Bike $399.99

These limitations will be corrected in the next lesson.

What You

Have Learned

In this lesson, you moved from using built-in types as elements of a collection to

using user-defined or class types. When you create a collection using class-type

elements, you must define certain element functions. This lesson showed you how to

determine what element functions are required, and how to implement them.

Lesson 4: Changing the Collection

When you design an actual application using the Collection Class Library, you should

choose the collection best suited to your program at the design stage. Nevertheless,

requirements may change, and if you have followed the techniques used in this lesson

such as specifying the collection type with a typedef, you can change the collection

type without having to rewrite the entire application. Only minor changes are

required to existing code, and a few simple element or key-type functions may need

to be added or changed.

This section illustrates the following Collection Class concepts:

¹ Selecting the correct collection type

¹ Implementing a key

¹ Defining key access

 Chapter 14. Collection Class Library Tutorials 167

Lesson 4: Changing the Collection

¹ Defining key equality

¹ Defining a key hash

¹ Using a cursor to iterate through elements with a given key

¹ Counting the number of elements of a given key

 Requirements

The program should be changed so that two bicycles of the same model and make

can have different type and price information. When users asks to delete a bicycle,

they should not have to enter the bicycle and price information; instead, a list of all

bicycles of the specified make and model should be displayed, and the user should be

able to select which bicycle to remove from the collection. The showStock() function

should also be implemented, so that it shows the number of a given make and model

of bicycle currently in the collection.

Setup Copy the files bike.h, bike.C, lesson.C, and main.C from the lesson3 directory to

the lesson4 directory, and then change your current directory to the lesson4

directory. Use an editor to modify the files as described below.

 Implementation

The collection must have the following characteristics:

Key access, so that an element can be accessed using only its make and model

information (for the listing and removing functions)

No element order, because order is not specified as a requirement

Multiple elements with the same key, so that several bicycles of the same make

and model can be present in the collection

Element equality, so that elements with the same make and model can have

different price and type information

 You can use Figure 7 on page 81 to determine what collection best meets the

requirements listed above. Begin by applying one requirement to the figure to narrow

down the number of possible collections. Apply a second requirement to the

remainder, and continue until you have found all valid collections. In this example,

there is one valid collection, selected as follows:

¹ Elements have a key (the make and model). This means that any of the

following collections may be a candidate:

 – Map

 – Relation

 – Sorted map

 – Sorted relation

 – Key set

 – Key bag

168 VisualAge C++ Open Class Library User's Guide

Lesson 4: Changing the Collection

– Key sorted set

– Key sorted bag

¹ The order of elements is not important. This means that all sorted collections

can be removed from the list above, leaving:

 – Map

 – Relation

 – Key set

 – Key bag

¹ Multiple elements may have the same key. This leaves relation and key bag.

¹ Element equality is required, so that individual elements with the same key can

be distinguished. This leaves relation.

A relation differs from a bag in that it is instantiated using a key type as well as the

element type, and requires the following additional functions:

Element type: Key access

Key type: Equality test and hash function.

These functions are defined below.

Changing the Collection Type Definition: Before you redefine the functions in

lesson.C, you need to change the include file and typedef for the collection type so

that they use relation instead of bag:

 // lesson.C
#include <irel.h> // was ibag.h

 //...
typedef IRelation<Bicycle,IString> MyCollectionType;
// was typedef IBag<Bicycle> MyCollectionType;

Notice that IRelation takes two template arguments, an element type and a key type.

All collections that have a key must be defined with a template argument for key type

as well as one for element type.

Ordering Relation: A relation does not require an operator for ordering relation

(operator<). You defined this operator when the collection was implemented as a

bag. You should comment it out or remove it for this implementation. This function

is declared in bike.h and defined in bike.C.

Implementing a Key: The key consists of the make and model of the bicycle. You

can use an IString to implement the key. Because the return value of the key()

function must be a const reference, and because the key() function cannot change

the element, the key must be determined before the key() function is called. The

logical place to do this is in the element constructor (in bike.h), because the overhead

 Chapter 14. Collection Class Library Tutorials 169

Lesson 4: Changing the Collection

of generating the key only occurs once per element. You can add a key data member

to the collection, and have it initialized when the copy constructor is called. In the

example below, the key is named MMKey (which stands for Make/Model Key):

// in bike.h:
class Bicycle {

IString MMKey; // add a private data member for the key
 public:

// public data members and member functions
Bicycle(IString mk, IString md, int tp, int pr);

 // ...
 };

// in bike.C:
Bicycle::Bicycle(IString mk, IString md, int tp, int pr) :

Make(mk), Model(md), Type(tp), Price(pr),
 MMKey(mk+md) {}

Defining Key Access: The key access function must be defined outside of the

element class. It has one argument, whose type is the element type. The key access

function must call a member function that returns the key, in this case a function

named getKey(). (The actual name does not matter.) The member function accesses

the private data member MMKey.

// in bike.h:
class Bicycle {

 IString MMKey;
public: // ... data members and member functions

IString const& getKey() const;
 };

inline IString const& key (Bicycle const& bike)
{ return bike.getKey(); }

// in bike.C:
IString const& Bicycle::getKey() const { return MMKey; }

The key access function must be declared with the name key(), with a const

reference to the key as its return value, and a const reference to the element as its

argument.

Equality Test: Equality for elements should be defined such that the key (that is, the

make and model), the type, and the price are the same for two bicycles. The

operator== function in bike.C can be redefined as follows:

IBoolean Bicycle::operator== (Bicycle const&b) const {
return (MMKey==b.MMKey && Type==b.Type && Price==b.Price);

 }

Key Hash Function: The hash function provides a shortcut for Collection Class

search functions to find matches to a key. The search functions first call the hash

function on a key for which they need to locate an element. They use the hash value

returned to look for matches to that hash in a hash table. They then use the full key

to determine which of the hash function's matches have the correct key. The hash

key-type function is not a member function of the element's class. It is called by the

170 VisualAge C++ Open Class Library User's Guide

Lesson 4: Changing the Collection

searching function, with a key argument (the key on which to derive the hash) and an

unsigned long (the maximum hash value). The return value is the hash, and it cannot

exceed the maximum hash value. The hash function should be defined in lesson.C

and must have the following return type and parameters:

unsigned long hash (IString const& keyName, unsigned long hashInput);

You can define the hash using the hashing function provided in istdops.h for char*

values:

unsigned long hash (IString const &aKey, unsigned long hashInput) {
return hash((const char*)aKey, hashInput);

 }

Using Cursors to Remove Items: A Collection Class cursor (not related to the

cursor used to move about a cursor screen) is a reference to an element in a

collection. For an overview of cursors, see “Cursors” on page 98.

The removeItem() function must be redefined so that it requests the make and model

of bicycle to remove, lists all matching bicycles, and lets the user choose which

match to remove. Once matching bicycles have been displayed, a cursor can be used

to locate the bicycle the user wishes to delete. The cursor is defined as follows,

immediately after the collection MyCollection is declared, in lesson.C:

MyCollectionType::Cursor thisOne (MyCollection);

After the user enters a make and model to search for, the removeItem() function

should iterate through all elements that match the key, by using

locateElementWithKey() to find the first matching element, and

locateNextElementWithKey() to find all subsequent matching elements. Both these

functions require a cursor as their second argument, and the cursor points to the

located element when the functions return. The first part of removeItem() can be

redefined as follows:

void removeItem() {
 Bicycle tbike;

int choice, cursct=1;
cout << "\nRemove an item";
cin >> tbike;
if (MyCollection.numberOfElementsWithKey(tbike.getKey()) > 0) {

 MyCollection.locateElementWithKey(tbike.getKey(), thisOne);
cout << cursct << ". " << MyCollection.elementAt(thisOne) << endl;
for (cursct=2;

 MyCollection.locateNextElementWithKey(
 tbike.getKey(), thisOne);
 cursct++)

{ cout << cursct << ". "
<< MyCollection.elementAt(thisOne) << endl; }

//... Remainder to be defined later
 }

In the above fragment, the user is asked for a bicycle make and model to remove. If

any elements match the make and model (this is determined by testing the

 Chapter 14. Collection Class Library Tutorials 171

Lesson 4: Changing the Collection

numberOfElementsWithKey() function for a nonzero return), all such elements are

located by key. The locateElementWithKey() function sets its cursor to point to the

first matching element, and the locateNextElementWithKey() function advances the

cursor from the current match to the next match in the collection. The elements are

accessed for output using the elementAt() function, which returns a reference to the

element pointed to by the cursor argument.

Once the matching elements have been displayed with a number beside each one, the

program should ask the user to enter a number matching the number of the element to

remove. The matching elements can then be iterated over again until the number of

elements iterated over matches the user's selection, and the element pointed to by the

cursor is then deleted. The following code excerpt is the second part of the

removeItem() function:

// Insert this at "...Remainder to be defined later" in removeItem().
cout << "\nEnter item to remove, or 0 to return: ";
cin >> choice;
if (choice<=0 || choice > cursct) return;

 MyCollection.locateElementWithKey(tbike.getKey(),thisOne);
// locate the first matching element again

for (cursct=2;
 cursct<=choice &&

MyCollection.locateNextElementWithKey // check for valid
(tbike.getKey(), thisOne); // next match

 cursct++)
; // null loop - header contains the code to be executed

 MyCollection.removeAt(thisOne);
 }
 else

cerr << "No bicycles of this make and model were found.\n";

// The closing brace below was already part of removeItem().
// Do not duplicate it.

 }

Note: The locateNextElementWithKey() function invalidates the cursor if it cannot

find a next element with the key provided. An invalidated cursor does not point to

any element of the collection. Some flat collection member functions that use cursors

require that the cursor be valid (locateNextElementWithKey() is one such function).

Before you use a cursor with such a function, you need to validate the cursor by

using a function that takes a cursor as argument but does not require a valid cursor on

entry. locateElementWithKey() is one such function.

In both excerpts of removeItem() above, the elements with matching keys are iterated

over by code in the header of the loop. In the second case, the loop has no body.

You can use this coding style because all the locate... functions have a return type

of IBoolean, which can be used in condition tests such as those in loop control

expressions.

Showing Stock Information: showStock() must be rewritten so that, for a given

make and model, it displays the number of matching elements in the collection. The

numberOfElementsWithKey() function can be used:

172 VisualAge C++ Open Class Library User's Guide

Lesson 4: Changing the Collection

void showStock() {
 Bicycle tbike;
 int count;

cout << "Stock information for a model";
cin >> tbike;

 count=MyCollection.numberOfElementsWithKey(tbike.getKey());
 if (count!=1)

cout << "Currently there are " << count << " bicycles ";
 else

cout << "Currently there is 1 bicycle ";
cout << "of this make and model in stock." << endl;

 }

Changing the Input Operator and addItem(): As the program now stands, the input

operator requests input for all data members of Bicycle, including type and price

information. This means that, when you select an item to remove or to show stock

information on, you must specify type and price information even though this

information is ignored. Therefore you need to move the request for type and price

information out of the operator>> definition in bike.C and into addItem(), so that the

user only needs to enter type and price information when an item is being added to

the collection. You also need to add the enumeration bikeTypes to lesson.C so that

addItem() has access to them.

See the “Source Files” section below for the changes required to addItem() and

operator>>.

Source Files

for Lesson 4

The main program in main.C has not been changed. The following excerpts show

the layout of code between lesson.C and bike.h. Function bodies that remain

unchanged from the preceding lesson have been replaced by ellipses.

 bike.h

#include <istring.hpp> // access to IString class
#include <iostream.h> // access to iostream class

class Bicycle {
 IString MMKey;
 public:
 IString Make;
 IString Model;
 int Type;
 int Price;
 Bicycle();

Bicycle(IString mk, IString md, int tp, int pr);
IBoolean operator== (Bicycle const& b) const;

// IBoolean operator< (Bicycle const& b) const;
IString const& getKey() const;

 };

inline IString const& key (Bicycle const& bike)
{ return bike.getKey(); }

istream& operator>> (istream& is, Bicycle& bike);
ostream& operator<< (ostream& os, Bicycle bike);

 Chapter 14. Collection Class Library Tutorials 173

Lesson 4: Changing the Collection

 bike.C

 #include <istring.hpp>
 #include "bike.h"

enum bikeTypes { Racing, Touring, MountainBike };
IString btype[3]={ "Racing", "Touring", "Mountain Bike"};

Bicycle::Bicycle() : Make(""), Model(""), Type(0), Price(0) {}
Bicycle::Bicycle(IString mk, IString md, int tp, int pr) {

 Make=mk;
 Model=md;
 Type=tp;
 Price=pr;
 MMKey=Make+Model;
 }

// Comment out the ordering relation operator
// IBoolean Bicycle::operator< (Bicycle const& b) const
// { return ((Make<b.Make) || (Make==b.Make && Model<b.Model)); }
IBoolean Bicycle::operator== (Bicycle const&b) const {
return (MMKey==b.MMKey && Type==b.Type && Price==b.Price);

 }
IString const& Bicycle::getKey() const { return MMKey; }

istream& operator>> (istream& is, Bicycle& bike) {
char make[40], model[40];

 char typeChoice;
 float price=0;
 int type=-1;

cin.ignore(1,'\n'); // ignore linefeed from previous input
cout << "\nManufacturer: ";
cin.getline(make, 40, '\n');
cout << "Model: ";
cin.getline(model, 40, '\n');

 bike=Bicycle(make,model,type,price);
 return is;
 }

ostream& operator<< (ostream& os, Bicycle bike) {/* ... */} // unchanged

 lesson.C

 // lesson.C
 #include <iostream.h>

#include <irel.h> // was ibag.h
 #include "bike.h"

enum bikeTypes { Racing, Touring, MountainBike };
typedef IRelation<Bicycle,IString> MyCollectionType;

 MyCollectionType MyCollection;
MyCollectionType::Cursor thisOne (MyCollection);

IBoolean printItem (Bicycle const& bike, void* /* Not used */)
{ /* ... */ }

void addItem() {
 Bicycle tbike;
 char typeChoice;
 float price;
 int type=-1;

cout << "Enter item: ";
cin >> tbike;
while (type == -1) {

cout << "Racing, Touring, or Mountain Bike (R/T/M):";
cin >> typeChoice;

174 VisualAge C++ Open Class Library User's Guide

Lesson 4: Changing the Collection

while (cin.fail()) {
 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Racing, Touring, or Mountain Bike (R/T/M): ";
cin >> typeChoice;

 }
switch (typeChoice) {

 case 'r':
case 'R': { type=Racing; break; }

 case 't':
case 'T': { type=Touring; break; }

 case 'm':
case 'M': { type=MountainBike; break; }
default: { cerr << "Incorrect type, please re-enter\n"; }

 }
 }

cout << "Price ($$.$$): ";
cin >> price;

 price*=100;
 tbike.Type=type;
 tbike.Price=price;
 MyCollection.add(tbike);
 }

void listItems() {/* ... */ }
void removeItem() {

 Bicycle tbike;
int choice, cursct=1;
cout << "\nRemove an item";
cin >> tbike;
if (MyCollection.numberOfElementsWithKey(tbike.getKey()) > 0) {

 MyCollection.locateElementWithKey(tbike.getKey(), thisOne);
cout << cursct << ". " << MyCollection.elementAt(thisOne) << '\n';
for (cursct=2;

 MyCollection.locateNextElementWithKey(
 tbike.getKey(), thisOne);
 cursct++)

{ cout << cursct << ". "
<< MyCollection.elementAt(thisOne) << '\n'; }

cout << "\nEnter item to remove, or 0 to return: ";
cin >> choice;
if (choice<=0 || choice > cursct) return;

 MyCollection.locateElementWithKey(tbike.getKey(),thisOne);
// locate the first matching element again

for (cursct=2;
 cursct<=choice &&

MyCollection.locateNextElementWithKey // check for valid
(tbike.getKey(), thisOne); // next match

 cursct++)
; // null loop - header contains the code to be executed

 MyCollection.removeAt(thisOne);
 }
 else

cerr << "No bicycles of this make and model were found.\n";
 }

void showStock() {
 Bicycle tbike;
 int count;

cout << "Stock information for a model";
cin >> tbike;

 Chapter 14. Collection Class Library Tutorials 175

Lesson 5: Changing the Implementation Variant

 count=MyCollection.numberOfElementsWithKey(tbike.getKey());
 if (count!=1)

cout << "Currently there are " << count << " bicycles ";
 else

cout << "Currently there is 1 bicycle ";
cout << " of this make and model in stock." << endl;

 }

unsigned long hash (IString const &aKey, unsigned long hashInput) {
return hash((const char*)aKey, hashInput);

 }

Running the

Program

You can enter multiple bicycles of the same make and model, with different price

or type information, and all such models will appear when you select the “List items”

option. When you ask for stock information, the program displays the number of

elements in the collection that match the make and model information you specify.

When you remove an item, the program asks you for the make and model, displays a

list of matching items, and lets you specify which item to remove. The program

removes that item.

What You

Have Learned

The Collection Class Library offers a wide range of collections with different

characteristics. In this lesson, you learned how to select an appropriate collection

based on the characteristics of the data being placed in the collection and on the

intended uses of the data. Many Collection Classes are accessed or sorted using a

key, and you learned how to define key access, equality, and hash functions, and how

to iterate through a key collection using a key cursor.

Lesson 5: Changing the Implementation Variant

You should pursue changing the default implementation to an implementation variant

only after the program is functionally complete and has been fully debugged. The

purpose of changing to a nondefault implementation variant is to improve

performance. This lesson shows you how to change the code defined in “Lesson 3:

Changing the Element Type” on page 161 so that it is functionally equivalent, but

uses IBagOnSortedDilutedSequence rather than IBag. The lesson assumes that you

have done some analysis of your code, and have determined that this implementation

variant may provide better performance. In the case of a full-fledged application,

once you change the implementation variant, you should compile the program and

time it against the original implementation to determine whether there is a worthwhile

gain in performance.

This section illustrates the following Collection Class concepts:

¹ Changing the implementation variant header file

¹ Changing the implementation variant template and template arguments

¹ Determining what functions are required by the implementation variant

176 VisualAge C++ Open Class Library User's Guide

Lesson 5: Changing the Implementation Variant

 Requirements

The only implementation variant for a relation is the variant that allows you to use a

generic operations class.

If the collection were still a bag, a number of implementation variants would be

available. In the third lesson, you used the default implementation variant for a bag.

Other implementation variants are:

¹ Bag on B* key sorted set

¹ Bag on sorted linked sequence

¹ Bag on sorted tabular sequence

¹ Bag on sorted diluted sequence

¹ Bag on hash key set

For this lesson, you will use the code from the third lesson as a starting point, and

change the default Bag implementation.

Setup Copy the files bike.h, bike.C, lesson.C, and main.C from the lesson3 directory (not

the lesson4 directory) to the lesson5 directory, and then change your current

directory to the lesson5 directory. Use an editor to modify the files as described

below.

 Implementation

To change the default implementation of a collection to another implementation

variant, you need to change the Collection Class file that you include, the collection

typedef, and potentially the element and key functions.

Implementation Variant Header Files: To determine the correct header file to

include, consult the “Class Implementation Variants” section of the chapter on Bag in

the Open Class Library Reference. The header file to include for

IBagOnSortedDilutedSequence is shown as ibagsds.h. You therefore change the

header file to include as follows:

// in lesson.C
 // old:

/* #include <ibag.h> */
 // new:
 #include <ibagsds.h>

Templates for Implementation Variants: To determine the correct template to

instantiate for the collection typedef, see the implementation variant in the

appropriate collection chapter. In this case, you would look for “Bag on Sorted

Diluted Sequence” in “Bag” in the Open Class Library Reference. The collection

is shown there as:

 IBagOnSortedDilutedSequence <Element>
IGBagOnSortedDilutedSequence <Element, ECOps>

 Chapter 14. Collection Class Library Tutorials 177

Lesson 5: Changing the Implementation Variant

Because you are not defining a generic operations class, you need to use the first

implementation variant. You therefore change the typedef for the collection as

follows:

// old: typedef IBag <Bicycle> MyCollectionType;
 // new:

typedef IBagOnSortedDilutedSequence <Bicycle> MyCollectionType;

Element Type Functions: To determine the required element type functions, see the

“Element Type” section for the implementation variant. In the case of

IBagOnSortedDilutedSequence, the only element type function listed that was not

listed for a Bag is the default constructor, which is already defined in Bicycle for

other reasons. If other functions are required for a given implementation variant you

choose to use in an application, use the information on implementing a hash function

in Lesson 4 for hints on where to place and how to code such functions.

No further changes are required. For this lesson, the only implementation variant that

would require additional element type functions is IBagOnHashKeySet, and the required

additional function is a hash function, which is already described in “Lesson 4:

Changing the Collection” on page 167.

Running the

Program

The program should have the same behavior, for a given set of inputs, as the

program from “Lesson 3: Changing the Element Type” on page 161. In a complex

application, a change in performance might occur, but in all cases the behavior of a

correctly coded program should be identical for different implementation variants of

the same collection class.

What You

Have Learned

Once a C++ program using the Collection Classes is functionally complete and

error-free, you can focus on performance. The key to good performance of Collection

Classes programs is to select the appropriate implementation variant of a given

collection. Although this lesson did not explain which implementation variant to

choose (since this is largely dependent on the class type being used in the collection

and on other factors beyond the scope of the lessons), it showed you how to change

the implementation variant once the appropriate variant has been selected. See

“Features of Provided Implementation Variants” on page 130 for guidance on what

implementation variants to select for a given application.

178 VisualAge C++ Open Class Library User's Guide

Other Tutorials

Errors When Compiling or Running the Lessons

If you code the programs in this chapter exactly as shown, they should compile

successfully, and should run without any errors except those related to incorrect user

input. Check your code for typographical mistakes or incorrectly placed code if you

get compiler errors.

If you implement element, key, input, or output functions in different ways than those

indicated, and your program does not compile successfully, or compiles but ends with

an exception message when run, you can use Chapter 15, “Solving Problems in the

Collection Class Library” on page 181 to determine the cause. You can also use

Chapter 15 to find errors related to using a different collection or implementation

variant from those specified in the lessons.

 Other Tutorials

The Collection Class Library tutorials provided with VisualAge C++ can help you to

learn the concepts of the Collection Classes They are presented in the same order as

the Collection Class Library topics in this book. You should be familiar with the

information in the first three chapters of Part 3 before beginning the tutorials.

Using the Default Classes

When you are learning to use a particular collection, you should first use the default

class of that collection, so that you can gain a fundamental understanding of the

collection before you approach the implementation variants of the collection.

You need to understand the topics covered in the following sections to successfully

complete the tutorials:

Tutorial 1 Use of default implementations (“Instantiation and Object Definition” on

page 95)

Tutorial 2 Adding, removing and replacing elements in a collection (“Adding,

Removing, and Replacing Elements” on page 96)

Tutorial 3 Use of a cursor, locating and accessing elements, and the use of iterators

(“Cursors” on page 98, “Using Cursors for Locating and Accessing

Elements” on page 100, “Iterating over Collections” on page 101)

Tutorial 4 Use of exceptions (Chapter 13, “Exception Handling” on page 145)

After completing the above tutorials, you should be acquainted with the basic features

of the Collection Class Library. For a more thorough understanding of the library,

use the tutorials described below.

 Chapter 14. Collection Class Library Tutorials 179

Other Tutorials

 Advanced Use

If you want to understand more advanced uses of the classes, use tutorials 5 and 6.

You need to understand the topics covered in the following sections to successfully

complete the tutorials:

Tutorial 5 Exchanging implementation variants (Chapter 10, “Tailoring a Collection

Implementation” on page 125)

Tutorial 6 Using abstract base classes to write polymorphic functions (Chapter 11,

“Polymorphic Use of Collections” on page 139)

Source Files for the Tutorials

Each tutorial's files are stored in a separate directory. The tutorials are contained in

subdirectories with the name ...\tutorial\iclcc\tutor? where ? corresponds to the

number of the tutorial (1-6). Every directory contains the following files:

tutor?.rea Read this to understand the purpose of the tutorial.

tutor?.txt Instructions to follow.

tutor?.mak Prepared makefile to compile the example.

solution Directory containing a possible solution.

You will find prepared .c and .h files, where certain parts are missing. The objective

of the tutorials is to apply the information you have learned about the Collection

Class Library by adding the missing parts for each file. Complete the prepared files

following the instructions in instruct.txt. You can compare your solutions to the

solutions directory.

180 VisualAge C++ Open Class Library User's Guide

Problem Determination

15 Solving Problems in the

Collection Class Library

This chapter helps you solve problems that you may encounter when you use the

Collection Class Library. The following table provides a short summary of each

problem, and directs you to a section containing hints for a solution.

Problem Area Problem Effect Page

Cursor Usage Unexpected results when using cursors 182

Element Functions and

Key-Type Functions

Error messages indicating a problem in

istdops.h

182

Key Access Function - How to

Return the Key (1)

Error messages indicating a problem in

istdops.h: a local variable or compiler

temporary is being used in a return

expression

184

Key Access Function - How to

Return the Key (2)

Unexpected results when adding an

element to a unique key collection

185

Definition of Key-Type

Functions

Link step returns error message EDC3013 185

Exception Tracing Unexpected exception tracing output on

standard error

186

Declaration of Template

Arguments and Element

Functions (1)

Compiler messages (when templates are

being processed) indicating that an element

type or one of its required element

functions is not declared

186

Declaration of Template

Arguments and Element

Functions (2)

Compilation errors from symbols being

defined multiple times

186

Declaration of Template

Arguments and Element

Functions (3)

Link errors from symbols being defined

multiple times

187

Default Constructor Compiler error messages indicating a

problem with constructors

187

Considerations when Linking

with Templates

Unresolved external references during

linking

188

 Copyright IBM Corp. 1993, 1995 181

Element and Key-Type Functions

 Cursor Usage

Effect You get unexpected results when using cursors. For example, the elementAt()

function fails for the given cursor or returns an unexpected element.

Reason You have used an undefined cursor. Cursors become undefined when an element is

added to or removed from the collection.

Solution Cursors that become undefined must be rebuilt with an appropriate operation (for

example, locate()) before they are used again. Rebuilding is especially important for

removing all elements with a given property from a collection. Elements cannot be

removed by coding a cursor iteration. Use the removeAll() function that takes a

predicate function as its argument.

For more information about cursors, see “Cursors” on page 98 and “Removing

Elements” on page 97.

Element Functions and Key-Type Functions

Effect When compiled, your program causes a compiler error indicating a problem in

istdops.h. The following are examples of such errors:

Message if key is missing

j:\...\ibmclass\istdops.h(166:1) : (E) EDC3013:
"key" is undefined.

j:\...\ibmclass\istdops.h(160:1) : informational EDC3207:
The previous message applies to the definition of template
"IStdKeyOps<Parcel,ToyString>::key(const Parcel&) const".

Message if hash is missing

j:\...\ibmclass\istdops.h(152:1) : (E) EDC3070:
Call does not match any argument list for "::hash".

j:\...\ibmclass\istdops.h(146:1) : informational EDC3207:
The previous message applies to the definition of template
"IStdHshOps<ToyString>::hash(const ToyString&,unsigned long) const".

Message if == is missing

j:\...\ibmclass\istdops.h(81:1) : (E) EDC3054:
The "==" operator is not allowed between "const ToyString" and

 "const ToyString".
j:\...\ibmclass\istdops.h(80:1) : informational EDC3207:
The previous message applies to the definition of template
"equal(const ToyString&,const ToyString&)".

182 VisualAge C++ Open Class Library User's Guide

Element and Key-Type Functions

Message if < is missing

j:\...\ibmclass\istdops.h(105:1) : (E) EDC3054:
The "<" operator is not allowed between "const ToyString"
and "const ToString".

j:\...\ibmclass\istdops.h(103:1) : informational EDC3206:
The previous 2 messages apply to the definition of template
"compare(const ToyString&,const ToyString&)".

Reason Compiler error messages indicating a problem in istdops.h are related to the element

and key-type functions that you must define for your elements. These functions

depend on the collection and implementation variant you are using. The compilation

errors listed above occur when the key() function, the hash() function, operator==, or

operator< are required for your elements, but are defined with the wrong interface or

not defined at all. Whether arguments are defined as const is significant. Compiler

messages do not always point directly to the incorrect function. For example, a

compare function with non-const arguments results in the compilation error:

The "<" operator is not allowed between "const ..".

Solution Verify which element and key-type functions are required for the implementation

variant of the collection you are using. You can find this information for each

collection in the section pertaining to the collection under the heading “Template

Arguments and Required Functions.”

For more information about element and key-type functions, see Chapter 9, “Element

Functions and Key-Type Functions” on page 107.

Note that the same problem may be produced if function declarations and definitions

are not properly separated between .h files and .cpp files. This situation is described

in detail in “Declaration of Template Arguments and Element Functions (1)” on

page 186.

 Chapter 15. Solving Problems in the Collection Class Library 183

How to Return the Key

Key Access Function - How to Return the Key (1)

Effect You get a compiler warning similar to:

Message if key is passed by value

j:\...\ibmclass\istdops.h(166:1) : warning EDC3285:
The address of a local variable or compiler temporary is being used
in a return expression.

j:\...\ibmclass\istdops.h(160:1) : informational EDC3207:
The previous message applies to the definition of template
"IStdKeyOps<Word,int>::key(const Word&) const".

Reason Compiler error messages indicating a problem in istdops.h are related to the element

and key-type functions that you must define for your elements. These functions

depend on the collection and implementation variant you are using. Your

global-name-space function key() returns the key by value instead of by reference. A

temporary variable is created for the key within the operator-class function key. The

operator class function key returns the key by reference. Returning a reference to a

temporary variable causes unpredictable results.

The key function must return a reference and must also take a reference argument. If

the key function calls other functions to access the key, it must call those functions

with a reference to the object as an argument, and those functions must return a

reference to the key.

Solution Verify that the global name-space function key correctly returns a key const&

instead of key.

For more information on element and key-type functions, see Chapter 9, “Element

Functions and Key-Type Functions” on page 107.

184 VisualAge C++ Open Class Library User's Guide

Definition of Key-Type Functions

Key Access Function - How to Return the Key (2)

Effect You are adding an element into a unique key collection, such as a key set or a map,

and you are sure that the collection does not yet contain an element with the same

key. Nevertheless, you get unexpected results: IKeyAlreadyExistsException, or the

element is not added and the cursor is positioned to a different element.

Reason This problem has the same cause as the problem described in “Key Access Function

- How to Return the Key (1)” on page 184. However, you did not get the warning

message described above, because you compiled with a lower warning level.

Solution This problem has the same solution as that described in “Key Access Function -

How to Return the Key (1)” on page 184.

Definition of Key-Type Functions

Effect You are using a collection class with a key, and you get an error message during the

link step indicating a problem in istdops.h. The following are examples of such

errors:

Message if key() function is undefined

istdops.h(176): (E) EDC3013: "key" function is undefined.

Reason You are using a collection class that requires the element class to provide a key and

you chose to use the method of using a global key() function. You are using

collection class methods in a .cpp file but the .h file with the same name as the .cpp

file does not contain a declaration (prototype) of the global key function.

While compiling the .cpp file, which uses methods of the collection class, the C++
compiler has created or modified a temporary .cpp file in the tempinc directory.

During the link step, this .cpp file is compiled to resolve references to template code.

The error message you encounter refers to this compilation. The .cpp file in the

tempinc directory contains include directives for the collection class template code. It

also contains include directives for a .h file of the same name as the .cpp file that

uses the collection class methods. The template code in istdops.h requires that the

global key() function be known at compilation time. The only file that is included at

this time is the .h file with the same name as your .cpp file. The problem is that the

.cpp file is not included at this time, so a definition or declaration of the global key()

function in this file is not recognized by the compiler.

 Chapter 15. Solving Problems in the Collection Class Library 185

Template Arguments and Element Functions

Solution You must declare the global key() function in the .h file with the same name as the

.cpp file that uses the collection class methods. The definition of the global key()

function should be in the .cpp file. If you are not sure which .h file is meant by the

message, look in the .cpp file found in the tempinc directory.

 Exception Tracing

Effect You get unexpected exception tracing output on standard error, even though the

related exception causing the output is caught.

Reason For each exception raised, the trace function write() of class IException::TraceFn

is called and writes information about the raised exception to standard error. This

trace function write() is called whether the related exception is caught or not.

Solution To suppress the trace output, provide your own IException::TraceFn::write()

tracing function by subclassing IException::TraceFn and register the subclass with

setTraceFunction().

For more information about exception tracing, see the Open Class Library Reference

Volumes 2 and 3.

Declaration of Template Arguments and Element Functions (1)

Effect You get compiler messages when processing templates indicating that an element

type or one of its required element functions is not declared.

Reason The element type or element function is defined locally to the .cpp file that contains

the template instantiation with the element type as its argument. The prelink phase is

executed only by using the header files. Therefore, your declaration local to a .cpp

file is not recognized and causes these compilation errors.

Solution Move the corresponding declarations to a separate header file and include the header

file from the .cpp file.

Declaration of Template Arguments and Element Functions (2)

Effect You get compilation errors from symbols being defined multiple times.

Reason The template instantiation needs to include the type declarations it received as

arguments. Your header files containing type declarations used in template classes

may automatically be included several times.

186 VisualAge C++ Open Class Library User's Guide

Default Constructor

Solution Protect your header files against multiple inclusion by using the following

preprocessor macros at the beginning and end of your header files:

 #ifndef _MYHEADER_H_
#define _MYHEADER_H_ 1

...
 #endif

Where _MYHEADER_H_ is a string, unique to each header file, representing the header

file's name.

Declaration of Template Arguments and Element Functions (3)

Effect You get link errors from symbols being defined multiple times.

Reason The template instantiation needs to include the type declarations it received as

arguments. Your header files containing type declarations used in template classes

might automatically be included several times.

Solution Verify that you did not define functions in the header files that declare types used in

templates. If you did, you must move them from the header file into a separate .cpp

file or make them inline.

 Default Constructor

Effect You get a compiler error similar to the following:

Message for missing default constructor

itbseq.h(25:1) : (E) EDC3222:
"IGTabularSequence<ToyString,IStdOps<ToyString> >::Node" needs a
constructor because class member "ivElement" needs a constructor

 initializer.
 Names namesOfExtinct(animals.numberOfDifferentKeys());

ANIMALS.C(55:57) : informational EDC3207:
The previous message applies to the definition of template

 "ITabularSequence<ToyString>".

Reason Compiler error messages indicating a problem with constructors for a collection are

typically related to the constructors defined for your element. Here the default

constructor for the element is missing.

Solution Define the default constructor for the element class.

For more information about element and key-type functions, see Chapter 9, “Element

Functions and Key-Type Functions” on page 107. The element and key-type

 Chapter 15. Solving Problems in the Collection Class Library 187

Linking with Templates

functions required for each collection are listed for each collection type in sections

entitled “Template Arguments and Required Functions.”

Considerations when Linking with Templates

Effect You get unresolved external references during linking that refer to symbols you

cannot explain.

Reason A possible reason for unresolved external references during linking is that template

code cannot be correctly resolved.

Solution 1. Use ICC for linking. ICC knows it has to process templates, LINK386 does not.

2. Use the -Tdp option for linking. This tells ICC it is processing C++ code that

might have templates, so ICC may have to process these templates.

188 VisualAge C++ Open Class Library User's Guide

Part 4. Data Type and Exception Class Library

This part tells you how to use the data type and exception classes. You can use these

classes to create and manipulate strings, date and time information, handle exceptions,

or define your own classes.

Note: For information on the INotificationEvent, INotifier, IObserver, IObserverList,

and IStandardNotifier classes, see Building VisualAge�C++ Parts for Fun and Profit.

Chapter 16. Data Types and Exceptions . 191

Organization of Classes . 191

IBase Class . 194

IVBase Class . 194

String and Buffer Classes . 195

DBCS and National Language Support . 195

Chapter 17. String Classes . 197

What You Can Do with Strings . 199

IStringTest Class . 211

Chapter 18. Exception and Trace Classes 213

Introduction to the Exception Classes . 213

Catching Exceptions Thrown by Class Library Functions 215

Throwing Your Own Exceptions Using the Exception Classes 217

Macros Used with the Exception Classes . 218

Using the ITrace Class . 221

Chapter 19. Date and Time Classes . 225

IDate Class . 225

ITime Class . 227

Simple Combined Date and Time Example . 229

 Copyright IBM Corp. 1993, 1995 189

190 VisualAge C++ Open Class Library User's Guide

Class Organization

16 Data Types and Exceptions

The Data Types and Exceptions Class Library was developed by IBM, originally as

part of the User Interface Class Library on C Set ++ for OS/2. Because these classes

did not have the graphical-user-interface orientation of other classes in the User

Interface Class Library, the classes were separated from the User Interface Class

Library into a library of their own. On some earlier implementations, this class

library was known as the “Application Support Class Library.”

Organization of Classes

Figure 23 on page 192 shows the organization of the Data Type and Exception

classes that are derived from IBase and those that are derived from IException. Five

other classes do not inherit from any classes and are used to support the derived

classes. See Table 5 on page 194 for information on the names of these classes and

the classes they support. The purposes of the principal classes are described below.

Classes are listed alphabetically.

IBase The base class of most of the other classes in the Data Types,

Exception, and User Interface classes of IBM Open Class Library.

This class provides an output operator and conversion functions

for the library, and typedef synonyms used by other library

classes to make programming easier. You do not need to create

objects of the IBase class; it is described for completeness only.

IBuffer Objects of the buffer classes contain the actual character contents

of objects of the string classes. All manipulation of string

characters is done in the buffer object referenced by the string

object. IBuffer is the buffer class for single-byte character set

objects.

IDate This class provides support for date information. You can

construct IDate objects in a number of ways, and then use IDate

methods to determine the day of the week, month or year,

compare two dates, test a date for certain characteristics, and

obtain the names of days or months that are dependent on the

national-language locale setting in effect at run time.

IDBCSBuffer This class is the buffer class for double-byte character sets.

Double-byte character sets are used for handling languages such as

Japanese, Chinese, and Korean, which contain more symbols than

can be represented by the 256 characters of the single-byte

character set.

 Copyright IBM Corp. 1993, 1995 191

Class Organization

IDate

IReference

ITime

IRectangle

INotification
Event

IBase

IPointArray I0String

IString

IString
Handle

IHandle

IPoint

IRange ISize

IPair

IVBase

IBuffer

IException

IDevice
Error

IInvalid
Parameter

IOutOf
Memory

IInvalid
Request

IOutOfSystem
Resource

IResource
Exhausted

IOutOfWindow
Resource

IAssertion
Failure

IAccess
Error

IDBCSBuffer

IRefCounted

IErrorInfo

ICLib
ErrorInfo

IObserver

IStringParser

IGUI
ErrorInfo

IObserver::
Cursor

IStringParser::
Skip

ISystem
ErrorInfo

IObserver
List

ITrace

IXLib
ErrorInfo

INotifier

IStringTest

IStringTest
MemberFn

IStandard
Notifier

Figure 23. Organization of Data Types and Exceptions Class Library. Some class names have been split into two lines to fit in

their boxes.

IErrorInfo The IErrorInfo class is an abstract base class that defines the

interface for its derived classes. These classes retrieve error

information and text that is then put into an exception object.

192 VisualAge C++ Open Class Library User's Guide

Class Organization

IException The IException class is the base class from which all exception

objects thrown in the library are derived.

IObserver This class, along with the IObserverList, INotifier,

IStandardNotifier, and IObserver::Cursor classes, lets you

register observers with class objects so that you can be notified

when a change to such an object takes place. For further

information on using these classes, see Building VisualAge�C++
Parts for Fun and Profit.

IString This class gives you a greater flexibility in handling strings than

traditional C-style character arrays. The IString class supports

both single- and double-byte character sets. With IString objects,

you can code string-handling operations much more quickly. For

example, you can concatenate two strings simply by using the +

operator, or compare them using the == operator.

IStringTest This class is provided so that you can define your own version of

the matching function used by IString search and compare

methods.

ITime You can use this class to create time-of-day objects and to

compare them, add them together, extract specific information

from them, or write them to an output stream.

ITrace Objects of the ITrace class provide module tracing. Whenever an

exception is thrown by the library, trace records are output with

information about the exception. You can use environment

variables to redirect the trace output to a file.

IVBase This class is a virtual base class used to derive other classes such

as the buffer classes.

I0String This class is identical to the IString class, except in its method of

indexing strings. In the IString class, the first character of a

string is at position 1, whereas the same string when stored in an

I0String object has its first character at position 0. I0String is

provided for programmers who are used to the C string-handling

approach of treating strings as starting at position 0. IString and

I0String objects are easily interchanged, and they support the

same set of methods and operators.

One of the most important classes from a programmer's perspective is the IString

class. This class can make your programming much more productive if you do any

amount of string handling. The IString class provides a simpler, safer, and more

flexible way of handling strings than traditional C-style character arrays and the

functions of the string.h library. The IString class has associated classes that give

 Chapter 16. Data Types and Exceptions 193

IVBase Class

you even greater flexibility in how you index strings and in how you test for pattern

matches in the searching and replacing functions the class provides.

Table 5. Support Classes for Data Type and Exception Classes

Class Name Supports These Classes

IStringEnum IString

I0String

IBuffer

IDBCSBuffer

IMessageText IBase

IException::TraceFn IException

IExceptionLocation IException

 IBase Class

The IBase class provides:

¹ An output operator for the library

¹ Conversion functions for the library

¹ Handling of the message text file

¹ Types for the library

 ¹ Synonyms

You do not need to create objects of the IBase class. This class is introduced at the

root of the class hierarchy for the following reasons:

¹ To define the local type Boolean and the enumeration values true and false.

This definition enables these identifiers to be referenced without their scope

qualifier IBase:: within declarations and member function definitions of classes

derived from IBase.

¹ To provide basic functions applicable to many of the classes in IBM Open Class

Library. These functions are asString(), asDebugInfo(), and

operator<<(ostream&). Note that asString() and asDebugInfo() do not work

correctly if they are invoked through a pointer or reference to an IBase object,

because the functions are not virtual. IVBase redeclares these as virtual

functions. This means that, if you invoke these functions against an IVBase* or

IVBase& object, the implementation for the actual class of the pointed-to or

referenced object is invoked.

 IVBase Class

The IVBase class:

¹ Ensures generic behavior for library classes that have virtual functions

194 VisualAge C++ Open Class Library User's Guide

DBCS and National Language Support

¹ Allows derived classes to access the type and value names of the IBase class

All functions in the IVBase class should be overridden in derived classes because the

IVBase class does not have access to any useful information about objects of its

derived classes.

String and Buffer Classes

You can store and manage strings using the string and buffer classes. There are two

type of string classes, two types of buffer classes, and two support classes. The two

string classes, IString and I0String, are the main classes. The buffer and support

classes are used to implement the string classes.

The buffer classes, IBuffer and IDBCSBuffer, contain the actual contents of the

string objects. The IDBCSBuffer class supports characters of the double-byte

character set (DBCS). If you are using the string classes, DBCS support is automatic

and transparent.

IBuffer and IDBCSBuffer are purely internal classes used in the implementations of

IString and I0String. They are only used in protected sections of the IString
class. They are described in this guide because you may want to understand them if

you are deriving classes from IString.

The support classes, IStringEnum and IStringTest, provide data types and testing

functions that are used in the string and buffer classes.

DBCS and National Language Support

The library provides double-byte character set (DBCS) support and national language

support (NLS). You can use one source file for your application code and provide

DBCS and NLS support by using separate resource files for the languages you

support. The benefits of this organization include the following:

¹ The application is easy to maintain, because a single version of the application is

used. This reduces the cost of maintaining your code.

¹ The application is easy to upgrade because only the source code is upgraded and

then linked to the separate language files for different languages. This reduces

the time and cost of upgrading your code because different language versions can

be generated at the same time.

Because message strings are defined in resource files, they can be translated easily to

your local language without changes to the source code.

You should note the following when creating a DBCS-enabled application:

 Chapter 16. Data Types and Exceptions 195

DBCS and National Language Support

¹ String manipulation is DBCS-enabled. The string classes support mixed strings

that contain both SBCS and DBCS characters. Use the string testing functions to

determine if a character is single byte or double byte.

¹ The IDBCSBuffer class ensures that the search functions do not match the second

or any subsequent bytes of a DBCS character and that the bytes of a DBCS

character will not be split.

196 VisualAge C++ Open Class Library User's Guide

String Classes

17 String Classes

The string classes define a data type for strings and provide member functions that let

you perform a variety of data manipulation and management activities. They provide

capabilities far beyond those available with standard C strings and the string.h

library functions.

The string classes have the following capabilities:

¹ String buffers are handled automatically.

¹ Strings can contain both SBCS and DBCS characters.

¹ Strings can be indexed by character or by word.

¹ Strings can contain null characters. (There are no restrictions on the contents of

a string object.)

Member functions of the string classes allow you to:

¹ Use strings in input and output

¹ Access information about strings

 ¹ Compare strings

¹ Test the characteristics of strings

¹ Search for characters or words within a string

¹ Manipulate and edit strings

¹ Convert strings to and from numeric types

¹ Format strings by adding or removing white space

Introduction to the String Classes

There are two string classes: IString and I0String. They are identical except for

the method each uses to index its characters. The characters of an IString object are

indexed beginning at 1. I0String characters are indexed beginning at 0. See

“Indexing of Strings” on page 198 for more information on the indexing of the string

classes. The string class you should use depends on which indexing scheme you

prefer or find easier to implement.

Objects of IString and objects of I0String can be freely intermixed in a program.

Objects of one class can be assigned objects of the other. Arguments that require an

object of one will accept objects of the other. You will only notice a difference

between an IString and an I0String when you are using functions that use or

return a character index value.

In this chapter, only the IString class is presented. However, for every function of

the IString class, there is a corresponding and identically named function of the

 Copyright IBM Corp. 1993, 1995 197

Indexing of Strings

I0String class. The I0String version of each function accepts the same arguments

and has the same return type as the IString version, except that all parameters of

type IString become I0String. Any other differences between the IString and

I0String versions of the function are noted in the function descriptions in the Open

Class Library Reference.

 String Buffers

When you create an object of a string class, the actual characters that make up the

string are not stored in the string object. Instead, the characters are stored in an

object of a buffer class.

The use of a buffer object is transparent to you when using the string classes. A

correctly sized buffer is automatically created when you create a string object. The

buffer is destroyed when a string object is destroyed. When you manipulate or edit a

string, you are actually manipulating and editing the buffer object that contains the

characters of the string.

Double-Byte Character Set Support

Objects of the IString class and the I0String class can contain a mixture of

single-byte characters and double-byte characters. All member functions allow for the

mixture. The searching functions will not match a single-byte character with the

second or subsequent byte of a double-byte character. Functions that return

substrings will never separate the bytes of a double-byte character.

Although the double-byte characters are supported, you must be careful not to alter

the contents of a string in a way that would corrupt the data. For example, the

statement:

 IString[n]='x';

would be an error if the nth byte of the IString was part of a double-byte character.

Indexing of Strings

Objects of the string classes are arrays of characters. There are two types of indexes

used with the arrays. The first is a character index: each character is numbered from

left to right starting at the number 1 in the IString class and the number 0 in the

I0String class. Therefore in the IString “The dog is brown,” the letter “i” has an

index value of 9. In the I0String “The dog is brown,” the letter “i” has an index

value of 8.

The second type of index is the word index. In the word index, each

white-space-delimited word is numbered from left to right starting at the number 1.

The word index is the same for IString objects and I0String objects. Therefore in

198 VisualAge C++ Open Class Library User's Guide

Creating and Copying Strings

the IString “The dog is brown,” the word “is” has an index value of 3. In the

I0String “The dog is brown,” the word “is” also has an index value of 3.

The only difference between objects of the IString class and objects of the

I0String class is the starting value for the character index.

What You Can Do with Strings

This section describes the wide range of string handling capabilities provided by the

IString class. If you have a particular task you want to learn about from the list

below, you can look that task up now and find references to appropriate IString
functions. If you want an overview of all the capabilities of the IString class, read

the entire section. The tasks are:

¹ Creating and copying strings

¹ Doing string input and output

 ¹ Concatenating strings

¹ Finding words or substrings within strings

¹ Replacing, inserting, and deleting substrings

¹ Determining string lengths and word counts

 ¹ Extending strings

¹ Converting between strings and numeric data

¹ Converting between strings and different base notations

¹ Testing the characteristics of strings

 ¹ Formatting strings

Many of the IString operators and functions are overloaded to support both

IStrings and arrays of characters as return types and arguments. For example, the

comparison operators (==, >, <, >=, <=, !=) all support either two IString operands or

one IString and one array of characters operand. The array of characters operand

can be on either side of the comparison operator. See the descriptions of individual

member functions in the Open Class Library Reference to determine what

combinations of IString and array of characters are supported for a given function

or operator.

Creating and Copying Strings

You can create IStrings using constructors, and you can copy IStrings using copy

constructors, assignment operators, and substring functions.

IString

Constructors

You can use IString constructors that construct null strings, that accept a numeric

argument and convert it into a string of numeric characters, or that translate one or

more characters into an IString. You can also create a single string out of up to

three separate buffers, whose contents are concatenated into the created IString

 Chapter 17. String Classes 199

Creating and Copying Strings

object. The following example shows some of the above ways of creating IString
objects:

 #include <istring.hpp>
 #include <iostream.h>

void main() {
IString Number1(123); // --> Number1 ="123"
IString Number2(123.12); // --> Number2 ="123.12"
IString Character('a'); // --> Character ="a"
IString String1("a"); // --> String1 ="a"
IString String2("and"); // --> String2 ="and"
IString String3("a\0d"); // --> String3 ="a"

 }

Note that the last string (String3) is initialized with only the first byte of quoted text.

The null character in the char* constructor argument is interpreted by the compiler

as a terminating null. However, the IString class does support null bytes within

strings. To construct String3 as the example intended, you could write:

 //...
 IString String3("and");
 String3[2]='\0';

If this string is later copied to another string, the null character and following

characters are also copied:

 IString String4=String3;
String4[2]='N'; // --> String4 ="aNd"

Copying

IStrings

The IString assignment operator and copy constructor both copy one string to

another string. One of the strings can be an array of characters, or both may be

IString objects. The IString assignment operator and copy constructor offer the

following advantages over the strcpy and strdup functions provided by the C

string.h library:

¹ When an IString object is copied, a new copy of the string is not made. Instead,

the two strings point to the same buffer location. The object is only copied if

one of the strings is changed. This means that, for strings that are copied but

where neither the source string nor the copy is subsequently changed,

performance is improved by the amount of time it would have taken to make the

new copy.

¹ The notation is simple and intuitive. To copy String1 into String2, you simply

code String2=String1. With strings defined using the traditional char* method,

such an assignment merely copies a pointer to the original string. With IString
objects, the assignment copies each byte of the string into the new string.

¹ You do not have to determine the length of the source string and allocate

sufficient storage to store it in the target string before the assignment. IString

takes care of allocating the storage for you, whether the target string is being

constructed within the assignment or has already been constructed. This reduces

200 VisualAge C++ Open Class Library User's Guide

Creating and Copying Strings

the risk of memory violations. In the following example, String2 is constructed

and initialized, and then copied to (its original contents are overwritten), while

String3 is copy-constructed to contain a copy of String1. Notice that String2's

length is extended by the assignment operation.

IString String1="A longer string than String2";
IString String2="A short string";
IString String3=String1; // initialized to String1
String2=String1; // extended to fit String1

¹ The string being copied can contain null characters anywhere within it, and the

entire string will be copied.

¹ If you accidentally create an array of characters without the terminating null, the

strcpy function may continue copying past the storage allocated for the string.

This can cause storage violations, or, at the least, it can corrupt the data in the

target string. The length of IString objects is not determined by a terminating

null, so storage violations and corrupt target strings are less likely.

Creating

Substrings of

Strings

You can use the subString function to return a new IString object containing a

portion of another IString. This function lets you create an IString containing the

leftmost characters, rightmost characters, or characters in the string's middle. The

following example shows calls to subString that create substrings with leftmost,

rightmost, or middle characters:

// Using the subString method of IString

 #include <iostream.h>
 #include <istring.hpp>

void main() {
IString All("This is the entire string.");

// Left -> subString(1, length)
 IString Left=All.subString(1,5);

// Middle -> (startpos, length)
 IString Middle=All.subString(6,14);

// Right -> (string length - (substring length - 1))
 IString Right=All.subString(All.length()-6);

cout << "<" << All << ">\n"
<< "<" << Left << ">\n"
<< "<" << Middle << ">\n"
<< "<" << Right << ">" << endl;

 }

This program produces the following output:

<This is the entire string.>
<This >
<is the entire >
<string.>

 Chapter 17. String Classes 201

Concatenating Strings

Doing String Input and Output

The IString class overloads the input and output operators of the I/O Stream Class

Library so that you can extract IString objects from streams and insert IString
objects into them. The input operator reads characters from the input stream until a

white-space character or EOF is encountered. The IString class also defines a

member function to read a single line from an input stream. The following example

shows uses of the input and output operators for IString and the lineFrom function:

//Using the IString I/O operators and the lineFrom function

 #include <istring.hpp>
 #include <iostream.h>

void main() {
IString Str1, Str2, Str3;
Str1="Enter some text:";

 char test[80];

// Write prompt
cout << Str1;
// Get input
cin >> Str2;
// This only reads in one word of text, so we should
// check to see if this was the only word on the line:
if (cin.peek()!='\n') {

// there's more text on this line so ignore it
 cin.ignore(1000,'\n');
 }

// Change prompt
Str1.insert("more ",Str1.indexOf(" text:"));
// Write prompt again
cout << Str1;
// Get line of input

 Str3=IString::lineFrom(cin,'\n');
// Write output
cout << "First word of first input: " << Str2 << '\n'

<< "Full text of second input: " << Str3 << endl;
 }

This example produces the output shown below in regular type, given the input

shown in bold:

Enter some text:Here is my first string
Enter some more text:Here is my second string
First word of first input: Here
Full text of second input: Here is my second string

Note that, although null characters are allowed within an IString object, a null

character in an input string is treated as the end of the input, and a null character in

an IString being written to an output stream ends the output of that IString.

 Concatenating Strings

The IString class defines an addition operator (+) to allow you to concatenate two

words together. An addition assignment operator (+=) lets you assign the result of the

concatenation to the left operand. The copy() member function lets you create an

202 VisualAge C++ Open Class Library User's Guide

Finding Words or Substrings

IString consisting of multiple copies of itself or of another string. The following

example shows ways of concatenating text onto the start or end of an IString:

// Concatenating strings

 #include <iostream.h>
 #include <istring.hpp>

void main() {
IString Str1="Let ";
IString Str2="us ";
IString Str3="concatenate ";
IString Str4="repeatedly ";

IString Str5=Str1+Str2; // Add Str1 and Str2 and store in Str5;
Str5+=Str3; // Add Str3 to Str5
Str4.copy(3); // Copy Str4 several times onto itself
Str5+=Str4; // Add Str4 to Str5
cout << Str5 << endl; // Write String 5

 }

This program produces the following output:

Let us concatenate repeatedly repeatedly repeatedly

Finding Words or Substrings within Strings

A wide range of functions are available to let you find words, substrings, patterns, or

individual characters within a string. You can even do wildcard searches: for

example, you can search through a string to find a substring that begins with the

letters "Ar" followed by one or more characters, followed by the letters "rk".

The following example shows a number of the searching functions available for

IString objects. Comments describe the type of search operation being carried out.

// Searching for substrings

 #include <iostream.h>
 #include <istring.hpp>

void main() {
IString Str1="This string contains some sample text in English.";
IString Str2=Str1.subString(27); // positions 27 and following:

// "sample text in English."
cout << "The string under consideration is:\n\n"

<< Str1 << "\n\n";

// 1. Count the number of occurrences of a substring within the string

cout << "The substring \"in\" occurs "
 << Str1.occurrencesOf("in")

<< " times in the string.\n";

// 2. Find the first occurrence of a substring:
// (Note that the substring can be a char, char*, or IString value)

cout << "The letter 'x' first occurs at position "
<< Str1.indexOf('x') << ".\n";

// 3. Find the first occurrence of any letter of those specified:

cout << "One of the letters q, r, or s first appears at position "
<< Str1.indexOfAnyOf("qrs") << ".\n";

 Chapter 17. String Classes 203

Replacing, Inserting, and Deleting

// 4. Find the first occurrence of any letter other than those specified:

cout << "The first letter that is not in \"Think\" "
<< "appears at position "
<< Str1.indexOfAnyBut("Think") << ".\n";

// 5. Find the index of a word

cout << "The third word starts at position "
<< Str1.indexOfWord(3) << ".\n";

// 6. Find a match to a phrase, and return the position of the
// first matching word

cout << "The phrase \"" << Str2 << "\" starts at word number "
<< Str1.wordIndexOfPhrase(Str2) << " of the string.\n";

// 7. Do a wildcard search to see if the string starts with "Th",
// contains "co", and ends with "sh."

cout << "Does the string match the wildcard search string "
 << "\"Th*co*sh.\"?\n";

if (Str1.isLike("Th*co*sh.")) cout << "Yes.";
else cout << "No.";

cout << endl;
 }

This program produces the following output:

The string under consideration is:

This string contains some sample text in English.

The substring "in" occurs 3 times in the string.
The letter 'x' first occurs at position 36.
One of the letters q, r, or s first appears at position 4.
The first letter that is not in "Think" appears at position 4.
The third word starts at position 13.
The phrase "sample text in English." starts at word number 5 of the string.
Does the string match the wildcard search string "Th*co*sh."?
Yes.

Replacing, Inserting, and Deleting Substrings

The ability to manipulate the contents of an IString is one of the greatest advantages

of the IString class over the traditional method of using string.h functions to

manipulate arrays of characters. Consider, for example, a function that perform the

following changes on a string. Issues that you need to address when using arrays of

characters, but that are handled for you by the IString class, are shown in

parentheses:

1. Replace all occurrences of Blue with Yellow (string must be expanded by two

characters for each replacement, and text after the replacement must be shifted

out).

2. Replace all occurrences of Orange with Pink (string must be shortened by two

characters for each replacement).

204 VisualAge C++ Open Class Library User's Guide

String Lengths and Word Counts

3. Delete the sixth word of the string. (How are words delimited? By spaces?

Carriage returns? Tab characters? What about multiple adjacent whitespace

characters?)

4. Insert the word Dark as the fourth word or at the end of the string if the string

has fewer than three words. (String must be extended. How are words

delimited? Do you add a space before or after the word?).

You can easily handle the above requirements using IString member functions. The

sample function fixString() below implements the requirements. Numbered

comments correspond to the numbers of the requirements:

// Inserting, deleting and replacing substrings

 #include <iostream.h>
 #include <istring.hpp>

 void fixString(IString&);

void main() {
IString Str1="Light Blue and Green are nice colors. ";
Str1+="But so are Red and Orange.";
cout << Str1 << endl;

 fixString(Str1);
cout << Str1 << endl;

 }

void fixString(IString &myString) {
myString.change("Blue", "Yellow"); // 1. Change Blue to Yellow
myString.change("Orange", "Pink"); // 2. Change Orange to Pink
myString.removeWords(6,1); // 3. Remove words, starting at word 6,

// for a total of 1 word.
 int Word4=myString.indexOfWord(4);

if (Word4>0) // 4. Insert "Dark" as fourth word
myString.insert("Dark ",Word4-1); // or at end of string if string

else // has fewer than 4 words. The
myString+=" Dark"; // insertion occurs 1 byte before

} // word 4 (otherwise it inserts
// in the middle of word 4).

This program produces the following output:

Light Blue and Green are nice colors. But so are Red and Orange.
Light Yellow and Dark Green are colors. But so are Red and Pink.

Determining String Lengths and Word Counts

You can determine not only the length of a string, but the number of words within

the string, or the length of a particular word in the string. The length of a string is

not affected by any null characters you insert in the middle of the string. (The

strlen function of string.h treats any null character in an array of characters as a

terminating null.)

The following descriptions assume that ThisString contains the text “This string has

five words.”

 Chapter 17. String Classes 205

Numeric Conversions

The length and size functions both return the length of an IString. For example,

ThisString.size() returns the value 26, as does ThisString.length().

To determine the number of words in a string, use the numWords member function.

For example, ThisString.numWords() returns the value 5.

To determine the length of a particular word, use the lengthOfWord member function.

For example, ThisString.lengthOfWord(3) returns the value 3.

 Extending Strings

With arrays of characters, unless you allocate more storage than originally required

for a string, you can only extend a string by allocating a new chunk of storage,

moving the existing string into the new area, and extending it there.

IString objects are automatically extended for you whenever an IString operator or

function requires the extension. This lets you spend more time coding useful

function, and less time trying to track down the source of memory violations or data

corruption. You can even use the subscript operator to assign a value to a position

beyond the end of the string. The following example, by indexing past the end of

ShortString, causes the string to be padded with blanks up to position 119, and the

letter “a” is added at position 120:

IString ShortString="A short string";
 ShortString[120]='a';

The + and += operators, the assignment operator, and all member functions that

change the contents of a string automatically allocate additional storage for the string

if that storage is required. This can drastically reduce the amount of string-handling

code you need to write.

Converting between Strings and Numeric Data

The IString class provides a number of as... functions that convert from IString
objects to numeric types. You can also convert from numeric types to IString
objects by using the versions of the IString constructor that take numeric values as

arguments. The following example shows various IString functions that convert

between strings and numbers:

// Conversion between IString and numeric values

 #include <iostream.h>
 #include <istring.hpp>

void main() {
IString NumStr=1.4512356919E1; // Initialized with a float value
int Integer=NumStr.asInt(); // Convert to integer value
float Float=NumStr.asDouble(); // C++ conversion rules allow asDouble's

// result to be converted to float
double Double=NumStr.asDouble(); // Convert to double value
NumStr=688; // Assign another integer value

206 VisualAge C++ Open Class Library User's Guide

Base Conversions

cout.precision(20); // Set precision of cout stream
cout << "Integer: " << Integer << "\nFloat: " << Float

<< "\nDouble: " << Double << "\nString: " << NumStr << endl;
 }

This program produces the following output:

Integer: 14
Float: 14.512356758117676
Double: 14.512356919
String: 688

You can also change the base notation of IString objects containing integer

numbers, by using the d2... functions, which convert from decimal to binary,

hexadecimal, or character representations. Conversion functions are described in the

next section.

Converting between Strings and Different Base Notations

You can use the format conversion functions to change the way the data in a string is

represented. These functions are overloaded so that each function has two versions.

The nonstatic version replaces the value of the string with the converted value. The

static version preserves the original string and returns a new string object containing

the converted value. For example:

aString.c2b(); // Changes value of aString
IString binaryDigits = c2b(aString); // Preserves value of aString

The conversion functions check the format of the source string to make sure it is

compatible with the source format implied by the function name. For example, if you

use the b2d function to convert a string from binary to decimal, the function first

checks that the string contains only the digits ‘0’ and ‘1’. If it contains any

characters other than those allowed by the source type, the format conversion

functions always return 0.

The following example shows the use of the conversion functions. If you examine

both the example and the output provided below, you can see how to use the

functions.

// IString conversion functions

 #include <istring.hpp>
 #include <iostream.h>

enum Bases {Bin, Dec, Hex, Char};
IString Base[4]={"binary", "decimal", "hex", "character"};

 IString NumStr;

void Show(int From, int To, IString& Result) {
cout << NumStr << " in " << Base[From] << " is "

<< Result << " in " << Base[To] << '.' << endl;
 }

 Chapter 17. String Classes 207

Testing String Characteristics

void main() {
 IString NewStr;
 NumStr="122";
 NewStr=IString::d2b(NumStr); Show(Dec,Bin,NewStr);
 NewStr=IString::d2x(NumStr); Show(Dec,Hex,NewStr);
 NewStr=IString::d2c(NumStr); Show(Dec,Char,NewStr);
 NumStr="Hat";
 NewStr=IString::c2b(NumStr); Show(Char,Bin,NewStr);
 NewStr=IString::c2d(NumStr); Show(Char,Dec,NewStr);
 NewStr=IString::c2x(NumStr); Show(Char,Hex,NewStr);
 NumStr="5F";
 NewStr=IString::x2b(NumStr); Show(Hex,Bin,NewStr);
 NewStr=IString::x2d(NumStr); Show(Hex,Dec,NewStr);
 NewStr=IString::x2c(NumStr); Show(Hex,Char,NewStr);
 NumStr="0110100001101001";
 NewStr=IString::b2d(NumStr); Show(Bin,Dec,NewStr);
 NewStr=IString::b2x(NumStr); Show(Bin,Hex,NewStr);
 NewStr=IString::b2c(NumStr); Show(Bin,Char,NewStr);
 }

The output from this program resembles the following. Depending on the code page

and character set (ASCII or EBCDIC) of the system you are running the program on,

the values may vary.

122 in decimal is 01111010 in binary.
122 in decimal is 7A in hex.
122 in decimal is z in character.
Hat in character is 010010000110000101110100 in binary.
Hat in character is 4743540 in decimal.
Hat in character is 486174 in hex.
5F in hex is 01011111 in binary.
5F in hex is 95 in decimal.
5F in hex is _ in character.
0110100001101001 in binary is 26729 in decimal.
0110100001101001 in binary is 6869 in hex.
0110100001101001 in binary is hi in character.

Testing the Characteristics of Strings

The IString class lets you test your strings to determine characteristics such as the

following:

¹ Whether they represent valid hexadecimal, decimal, or binary values

¹ Whether they contain only letters, letters and numbers, uppercase letters,

lowercase letters, or punctuation characters

¹ Whether they contain all SBCS or DBCS characters

This list covers only a few of the testing functions provided by IString.

The testing functions return a value of type Boolean or IBoolean, indicating either

True or False for the tested characteristic. For example, the function

isBinaryDigits() returns False for the IString value “1101121101.”

The testing functions all have names beginning with is..., because they ask a

question, such as “is the IString made up only of binary digits?” For a complete list

of the testing functions, see the Open Class Library Reference. The following

example shows how you can use a subset of these functions:

208 VisualAge C++ Open Class Library User's Guide

Testing String Characteristics

// Evaluating strings using the IString is... methods

 #include <istring.hpp>
 #include <iostream.h>

void evaluate(IString& StringToTest) {
 if (StringToTest.isPrintable())

cout << "Evaluating the string " << StringToTest << ":" << endl;
 else

cout << "Evaluating an unprintable string:" << endl;
 if (StringToTest.isDigits())

cout << " Contains only digits 0-9." << endl;
 if (StringToTest.isAlphabetic())

cout << " Contains only alphabetic characters." << endl;
 if (StringToTest.isAlphanumeric())

cout << " Contains only alphabetic and numeric characters." << endl;
 if (StringToTest.isBinaryDigits())

cout << " Contains only zeros and ones." << endl;
 if (StringToTest.isHexDigits())

cout << " Contains only hex digits 0-9, a-f, A-F." << endl;
 if (StringToTest.isControl())

cout << " Contains only ASCII values 00-1F, 7F." << endl;
 if (StringToTest.isLowerCase())

cout << " Contains only lowercase letters a-z." << endl;
 if (StringToTest.isUpperCase())

cout << " Contains only uppercase letters a-z." << endl;
 if (StringToTest.isSBCS())

cout << " Contains only SBCS characters." << endl;
 }

void main() {
 IString Str[6];

Str[0]="12345"; // numeric, hexadecimal
Str[1]="abcde"; // alphabetic, hexadecimal
Str[2]="10101"; // numeric, binary
Str[3]="abCde"; // alphabetic, hexadecimal
Str[4]="xyz12"; // alphanumeric, lowercase
Str[5]="\x04\x06\x11\x12"; // control, unprintable

for (int i=1;i<6;i++) evaluate(Str[i]);
 }

The output from this program resembles the following. Depending on the code page

and character set (ASCII or EBCDIC) of the system you are running the program on,

the results may vary.

Evaluating the string abcde:
Contains only alphabetic characters.
Contains only alphabetic and numeric characters.
Contains only hex digits 0-9, a-f, A-F.
Contains only lowercase letters a-z.
Contains only SBCS characters.

Evaluating the string 10101:
Contains only digits 0-9.
Contains only alphabetic and numeric characters.
Contains only zeros and ones.
Contains only hex digits 0-9, a-f, A-F.
Contains only SBCS characters.

Evaluating the string abCde:
Contains only alphabetic characters.
Contains only alphabetic and numeric characters.
Contains only hex digits 0-9, a-f, A-F.
Contains only SBCS characters.

 Chapter 17. String Classes 209

Formatting Strings

Evaluating the string xyz12:
Contains only alphabetic and numeric characters.
Contains only SBCS characters.

Evaluating an unprintable string:
Contains only ASCII values 00-1F, 7F.
Contains only SBCS characters.

 Formatting Strings

You can insert padding (white space) into strings so that each string in a group of

strings has the same length. The center, leftJustify, and rightJustify functions all

do this; their names indicate where they place the existing string relative to the added

white space. You provide the final desired length of the string, and the function adds

the correct amount of white space (or removes characters if the string is longer than

the final length you specify). For example:

// Padding IStrings

 #include <istring.hpp>
 #include <iostream.h>

void main() {
IString s1="Short", s2="Not so short",

s3="Too long to fit in the desired field length";
 s1.rightJustify(20);
 s2.center(20);
 s3.leftJustify(20);

cout << s1 << '\n' << s2 << '\n' << s3 << endl;
 }

This program produces the following output:

 Short
Not so short

Too long to fit in t

If a string is too wide, you can strip leading or trailing blanks using the strip...

functions:

// Using the strip... functions of IString

 #include <istring.hpp>
 #include <iostream.h>

void main() {
IString s1, s2, s3, Long=" Lots of space here ";
s1 = s2 = s3 = Long;

 s1.stripLeading();
 s2.stripTrailing();
 s3.strip();

cout << ">" << Long << "<\n"
<< ">" << s1 << "<\n"
<< ">" << s2 << "<\n"
<< ">" << s3 << "<" << endl;

 }

This program produces the following output:

> Lots of space here <
>Lots of space here <
> Lots of space here<
>Lots of space here<

210 VisualAge C++ Open Class Library User's Guide

IStringTest Class

You can also change the case of an IString to all uppercase or all lowercase:

// Changing the case of IStrings

 #include <iostream.h>
 #include <istring.hpp>

void main() {
IString Upper="MANY of THESE are UPPERCASE CHARACTERS";
IString Lower="Many of these ARE lowercase characters";

 Upper.change("MANY","NONE").lowerCase();
 Lower.change("Many","None").upperCase();

cout << Upper << '\n' << Lower << endl;
 }

This program produces the following output:

none of these are uppercase characters
NONE OF THESE ARE LOWERCASE CHARACTERS

Other IString Capabilities

This section has described only a portion of the functionality of the IString class.

Many functions described here are overloaded to provide a wider range of

functionality, and many of the functions of the IString class were not described

here. See the Open Class Library Reference for complete descriptions of all the

public IString functions.

 IStringTest Class

The IStringTest class lets you define the matching function used in the searching

and testing functions of the string and buffer classes. When a search string is passed

to a searching or testing function, the search string and the string object are compared

on a character-by-character basis. The characters are considered to match if they are

identical. The IStringTest class allows you to define when characters are

considered to match.

For example, you can implement a string test that locates a given occurrence of a

particular character in a string:

// Using the IStringTest class

 #include <istring.hpp>
 #include <iostream.h>

class Nth : public IStringTest {
char key; // Specifies the character to look for
unsigned count; // Specifies which occurrence to find

 public:
 //

// Construct an Nth object as follows:
// 1. Create an IStringTest instance whose function type is user,
// with a null character to start;
// 2. Initialize the count to n
// 3. Initialize the key to c

 //
Nth(char c, unsigned n)
: IStringTest(user,0), count(n), key(c) { }

 Chapter 17. String Classes 211

IStringTest Class

 //
// test function: accepts an int (the character to look for)
// checks if the character matches the key
// if so, decrements count
// eventually, count will equal zero if enough matches are found,
// so "return !count" will return true (-1)
// otherwise, "return !count" will return a value other than -1

virtual Boolean test (int c) const
 {

if (c == key) // if it matches,
((Nth*)this)->count--; // decrement count
return !count; // return complement of count

// will be true (-1) if count==0
 }
 };

void main() {
IString text="this is a test string";
cout << "The fourth appearance of the letter t in the string:\n"

<< text << '\n' << "is at position "
<< text.indexOf(Nth('t',4)) << endl;

 }

This program produces the following output:

The fourth appearance of the letter t in the string:
this is a test string
is at position 17

A derived template class, IStringTestMemberFn, is provided to support the use of the

IStringTest class with any function that accepts its objects as an argument.

A constructor for IStringTest accepts a pointer to a C function. The C function must

accept an integer as an argument and return a Boolean. Such functions can be used

anywhere an IStringTest can be used. Note that this is the type of the standard C

library functions that check the type of C characters, for example, isalpha() and

isupper().

212 VisualAge C++ Open Class Library User's Guide

Exception Classes

18 Exception and Trace Classes

This chapter outlines some of the ways that you can use the exception and trace

classes. The exception classes are a set of classes that allow you to catch exceptions

based on their type. The trace class ITrace allows you to conveniently put trace

statements in your programs.

Introduction to the Exception Classes

There are three primary ways to use the exception classes:

1. Certain functions in IBM class libraries throw exceptions that are objects of the

exception classes. If you are familiar with the characteristics of the exception

classes, you can take advantage of the exception classes to make your code that

uses the IBM class libraries more robust.

2. You can both throw and catch objects of the exception classes in your own code.

The exception classes provide a convenient way to package information about an

exception.

3. You can derive your own classes from the exception classes.

Characteristics of the Exception Classes

The exception classes have the following characteristics:

¹ A stack of exception message text strings. These strings allow you to describe

the exception in detail.

¹ An error ID that lets you uniquely identify what error caused the exception.

¹ A severity code that lets you determine whether the exception can be recovered

from or not.

¹ Information about where the exception was thrown.

The exception classes' member functions allow you to:

¹ Add information about where the exception was thrown

¹ Add text to the description of the exception

¹ Get the error ID of the exception

¹ Determine if the exception is recoverable

¹ Log the exception data

¹ Set the error ID of the exception

¹ Set the severity of the exception

¹ Set a trace function

 Copyright IBM Corp. 1993, 1995 213

Exception Classes

Derivation of the Exception Classes

The exception classes consist of a base class IException and a set of derived classes:

 ¹ IAccessError
 ¹ IAssertionFailure
 ¹ IDeviceError
 ¹ IInvalidParameter
 ¹ IInvalidRequest
 ¹ IResourceExhausted

In addition, IResourceExhausted has the following derived classes:

 ¹ IOutOfMemory
 ¹ IOutOfSystemResource
 ¹ IOutOfWindowResource

Because all these classes are derived from the IException class, a single catch

statement can catch all of the exceptions that are objects of the exception classes.

The following catch statement, for example, will catch any exception that is an object

of one of the exception classes:

 catch(IException &ie){
 // ...

// code for all exception class exceptions
 }

On the other hand, if you wanted to deal with each kind of exception separately, you

could have catch statements that looked like this:

 catch(IAccessError &ia){
 // ...

// code for IAccessError exceptions
 }
 catch(IAssertionFailure &if){
 // ...

// code for IAssertionFailure exceptions
 }
 // ...

Situations in Which the Exception Classes Are Used

The following table lists the exception classes and the situations in which they are

typically thrown:

214 VisualAge C++ Open Class Library User's Guide

Catching Exceptions Thrown by Class Library Functions

Exception Class Thrown When ...

IAccessError A logical error occurs, such as "resource not found"

IAssertionFailure The expression in an IASSERT macro evaluates to false

IDeviceError A hardware-related error occurs

IInvalidParameter An invalid parameter is passed

IInvalidRequest An object is in the wrong state for a function

IResourceExhausted A resource is exhausted or currently unavailable

IOutOfMemory Memory is exhausted

Catching Exceptions Thrown by Class Library Functions

Under certain circumstances, member functions of IBM Open Class will throw

exceptions that are objects of the exception classes. You can take advantage of this

fact to make your code that uses these classes more robust.

An Example of the new Operator Throwing an Exception

For example, suppose that you use the new operator to create a huge array of integer

pointers. If there is not enough memory available to satisfy a particular request for

memory, the new operator throws an IOutOfMemory exception.

In the following piece of code, a single invocation of the new operator exhausts all of

the memory that is available for allocation. In this code, the catch statement specifies

the base class IException rather than IOutOfMemory. If you know that a member

function may throw an exception class object, but you do not know its exact type,

you can specify a catch statement like this one to catch all of the possible exception

class exceptions.

// The new operator throwing an exception

 #include <iostream.h>
 #include <iexcept.hpp>
 #include <istring.hpp>

#define TOOBIG 1000000000

void main() {
 int i;
 try {

int* istr = new int[TOOBIG];
 }
 catch(IException &ie)
 {

cout << "Type of exception is: " << ie.name() << endl;
cout << "Location of exception is: "

<< ie.locationAtIndex(0)->fileName() << endl;

 Chapter 18. Exception and Trace Classes 215

Catching Exceptions Thrown by Class Library Functions

 if (ie.isRecoverable())
cout << "Exception is recoverable" << endl;

 else
cout << "Exception is unrecoverable" << endl;

 }
 }

Assuming that the constant TOOBIG is large enough to exhaust all of the memory

available for allocation, this code produces the following output:

Type of exception is: IOutOfMemory
Location of exception is: ibase.C
Exception is unrecoverable

An Example of the Subscript Operator Throwing an Exception

The subscript operator of the IString class can throw exceptions that are objects of

the exception classes. If you use the subscript operator on an IString object that is

declared const, the operator will throw an InvalidRequest exception if the index is

out of the bounds of the IString object.

In the following piece of code, an IString object is declared const, and then the

subscript operator is used with an index beyond the size of the object.

// Example that causes a subscript out of bounds exception

 #include <iostream.h>
 #include <iexcept.hpp>
 #include <istring.hpp>

void main() {
 try {

const IString ConstStr = "OFF";
cout << ConstStr[4] << endl;

 }
 catch(IException &ie)
 {

cout << "Type of exception is: " << ie.name() << endl;
cout << "Location of exception is: "

<< ie.locationAtIndex(0)->fileName() << endl;
 if (ie.isRecoverable())

cout << "Exception is recoverable" << endl;
 else

cout << "Exception is unrecoverable" << endl;
 }
 }

Because the index is beyond the size of the IString object, the subscript operator

throws an exception. When this code is run, the following output is produced:

Type of exception is: IInvalidRequest
Location of exception is: istring5.C
Exception is recoverable

Member functions in the Collections and User Interface class libraries also throw

exceptions that are objects of the exception classes. If you call such functions within

try blocks followed by a catch statement for IException exceptions, you can:

216 VisualAge C++ Open Class Library User's Guide

Throwing Your Own Exceptions

¹ Make your code more robust by detecting and dealing with exceptions that occur

in class library calls.

¹ Determine why exceptions are occurring by examining the information that is

passed back in the exception class object.

Throwing Your Own Exceptions Using the Exception Classes

In addition to catching exception class exceptions that are thrown by class library

functions, you can also throw them in your own code. Throwing exception class

exceptions in your own code has the following advantages:

¹ The exception classes provide a convenient package for exception information.

¹ If you use one of the predefined exception classes or derive one of your own

from IException, you can use the same catch statement to catch exceptions that

are generated by both class library functions and your own functions.

Consider the following simple example. The getFirstChar function calls the

IASSERTSTATE macro with a get call as an argument. If the get call fails, it returns

zero and the IASSERTSTATE macro throws an IInvalidRequest exception.

// Using the IASSERTSTATE macro

 #include <iostream.h>
 #include <fstream.h>
 #include <iexcept.hpp>

void openFile(fstream& fs, char *filename){
 fs.open(filename, ios::in);
 }

char getFirstChar(fstream& fs) {
 char c;
 IASSERTSTATE(fs.get(c));
 return c;
 }

void main() {
 char c;

char * filename = "source.dat";
 fstream fs;
 openFile(fs, filename);
 try {

c = getFirstChar(fs);
cout << "Here is first character: " << c << endl;

 }
 catch(IException &ie)
 {

cout << "Type of exception is: " << ie.name() << endl;
cout << "Location of exception is: "

<< ie.locationAtIndex(0)->fileName() << endl;
 if (ie.isRecoverable())

cout << "Exception is recoverable" << endl;
 else

cout << "Exception is unrecoverable" << endl;
 }
 }

 Chapter 18. Exception and Trace Classes 217

Exception Classes Macros

Suppose that this example is run, and the source.dat file is not available. The call to

open in the OpenFile function will fail. When getFirstChar is called within the try

block, an exception will be thrown by the IASSERTSTATE macro. This exception will

be caught by the catch statement in main, and the output will look something like

this:

Type of exception is: IInvalidRequest
Location of exception is: iopen.C
Exception is recoverable

Macros Used with the Exception Classes

The exception classes support a set of macros that allow you to manage the exception

classes conveniently. You can use these macros to throw exceptions and to declare

and define subclasses of IException or one of its subclasses.

ITHROW

Accepts as input an object of any IException subclass. It expands to

add the location information to the instance, logs all instance data, and

then throws the exception.

IRETHROW

Accepts as input a predefined instance of any subclass of IException
that has been previously thrown and caught. Like the ITHROW macro, it

also captures the location information, and logs all instance data before

rethrowing the exception.

IASSERTSTATE

This macro accepts an expression to be tested as input. The expression is

asserted to be true, meaning that you anticipate that it is true and are

stating so to the compiler. If it evaluates to false, it invokes the

IExcept__assertState function, which creates an IInvalidRequest
exception. Location information is added to the exception, which is then

logged and thrown.

IASSERTPARM

This macro accepts an expression to be tested as input. The expression is

asserted to be true. If it evaluates to false, it invokes the

IExcept__assertParameter function, which creates an

IInvalidParameter exception. Location information is added to the

exception, which is then logged and thrown.

IEXCLASSDECLARE

Creates a declaration for a subclass of IException or one of its

subclasses.

IEXCLASSIMPLEMENT

Creates a definition for a subclass of IException or one of its subclasses.

218 VisualAge C++ Open Class Library User's Guide

Exception Classes Macros

IEXCEPTION_LOCATION

Expands to create an instance of the IExceptionLocation class.

INO_EXCEPTIONS_SUPPORT

Provided in support of compilers that lack exception handling

implementation. If it is defined, the ITHROW macro ends the program

after capturing the location information and logging it, instead of

throwing an exception. This macro may not work correctly on all

compilers.

ITHROWGUIERROR

This macro takes as its only argument the name of the GUI function that

returned an error code. It calls the IGUIError::throwGUIError function,

which creates an IGUIError instance and uses it to create an

IAccessError instance, adds location information, logs out the exception

data, and throws the exception. The exception severity is set to

recoverable. Only used this macro if the error information that is

retrievable by the IGUIErrorInfo class is available.

ITHROWGUIERROR2

This macro takes three arguments:

¹ The name of the GUI function that returned an error code

¹ One of the values of the IErrorInfo::ExceptionType enumeration,

which indicates the type of exception to be created

¹ One of the values of the IException::Severity enumeration, which

indicates the severity of the exception

Only use this macro if the error information that is retrievable by the

IGUIErrorInfo class is available.

ITHROWSYSTEMERROR

This macro takes four arguments:

¹ The error ID returned from the system function

¹ The name of the system function that returned an error code

¹ One of the values of the IErrorInfo::ExceptionType enumeration,

which indicates the type of exception to be created

¹ One of the values of the IException::Severity enumeration, which

indicates the severity of the exception

Why Use the Macros?

You can manage exceptions that are objects of the exception classes directly. You

can call member functions directly to create objects, and query and set their values.

You can also explicitly derive your own classes from the existing exception classes.

Often, however, it is more convenient to use the macros provided by the exception

classes.

 Chapter 18. Exception and Trace Classes 219

Exception Classes Macros

Consider the example that used the IASSERTSTATE macro:

// Using the IASSERTSTATE macro

 #include <iostream.h>
 #include <fstream.h>
 #include <iexcept.hpp>

void openFile(fstream& fs, char *filename){
 fs.open(filename, ios::in);
 }

char getFirstChar(fstream& fs) {
 char c;
 IASSERTSTATE(fs.get(c));
 return c;
 }

void main() {
 char c;

char * filename = "source.dat";
 fstream fs;
 openFile(fs, filename);
 try {

c = getFirstChar(fs);
cout << "Here is first character: " << c << endl;

 }
 catch(IException &ie)
 {

cout << "Type of exception is: " << ie.name() << endl;
cout << "Location of exception is: "

<< ie.locationAtIndex(0)->fileName() << endl;
 if (ie.isRecoverable())

cout << "Exception is recoverable" << endl;
 else

cout << "Exception is unrecoverable" << endl;
 }
 }

This code could be rewritten to invoke the exception class member functions directly:

// Invoking the IException member functions directly

 #include <iostream.h>
 #include <fstream.h>
 #include <iexcept.hpp>

void openFile(fstream& fs, char *filename){
 fs.open(filename, ios::in);
 }

char getFirstChar(fstream& fs) {
 char c;

if (!fs.get(c)) {
IInvalidRequest ir(" ", 0, IException::recoverable);

 IExceptionLocation il("imac.C","getFirstChar",5);
 ir.addLocation(il);
 throw(ir);
 }
 return c;
 }

void main() {
 char c;

char * filename = "source.dat";
 fstream fs;

220 VisualAge C++ Open Class Library User's Guide

Using the ITrace Class

 try {
c = getFirstChar(fs);
cout << "Here is first character: " << c << endl;

 }
 catch(IException &ie)
 {

cout << "Type of exception is: " << ie.name() << endl;
cout << "Location of exception is: "

<< ie.locationAtIndex(0)->fileName() << endl;
 if (ie.isRecoverable())

cout << "Exception is recoverable" << endl;
 else

cout << "Exception is unrecoverable" << endl;
 }
 }

Notice how the single IASSERTSTATE in the getFirstChar function is replaced with a

test of the return value of get, the definition of an IInvalidRequest object, the

definition of an IExceptionLocation object, and an explicit throw statement. You can

see that the version of the program that uses the IASSERTSTATE macro is simpler and

easier to code.

Using the ITrace Class

The ITrace class provides a set of facilities that allow you to put trace statements in

your code conveniently. The most convenient way to use ITrace is through the

macros that it supports.

Using the Trace Macros to Control Trace Output

The ITrace class is convenient to use because it allows you to turn trace statements

on and off easily. By defining certain macros and by using the macros in the ITrace
class to create trace output, you can selectively turn tracing on and off. There are

three special trace macros:

 ¹ IC_TRACE_RUNTIME

 ¹ IC_TRACE_DEVELOP

 ¹ IC_TRACE_ALL

By defining or not defining these macros, you can specify whether or not the trace

macros are expanded, and thus whether or not your program produces trace output.

If IC_TRACE_RUNTIME is defined, the following macros are expanded:

IMODTRACE_RUNTIME

This macro takes one argument that is the name of the current module. It

creates an ITrace object using the module name as the name of the trace

and the current line number as the line number.

 Chapter 18. Exception and Trace Classes 221

Using the ITrace Class

IFUNCTRACE_RUNTIME

This macro takes no arguments. It creates an ITrace object using the

function name as the name of the trace and the current line number as the

line number.

ITRACE_RUNTIME

This macro takes a single argument. This argument is written to the trace

location.

If IC_TRACE_DEVELOP is defined, all of the macros that are expanded when

IC_TRACE_RUNTIME is defined, are also expanded. In addition, the following macros

are expanded:

IMODTRACE_DEVELOP

This macro takes one argument. Typically you use the argument to name

the current module. This macro creates an ITrace object using the

module name as the name of the trace and the current line number as the

line number.

IFUNCTRACE_DEVELOP

This macro takes no arguments. It creates an ITrace object using the

function name as the name of the trace and the current line number as the

line number.

ITRACE_DEVELOP

This macro takes a single argument. This argument is written to the trace

location.

If IC_TRACE_ALL is defined, all of the trace macros are expanded.

An Example of Using ITrace

The following piece of code shows one way that you could use the trace macros to

produce trace output for your programs. In this code, the macros IFUNCTRACE_DEVELOP

and ITRACE_DEVELOP are used to create trace statements that indicate that the flow of

control has passed through the functions openFile and getFirstChar.

// Producing trace output with the ITrace class

 #define IC_TRACE_DEVELOP

 #include <iostream.h>
 #include <fstream.h>
 #include <iexcept.hpp>
 #include <itrace.hpp>

void openFile(fstream& fs, char *filename){
 IFUNCTRACE_DEVELOP();
 fs.open(filename, ios::in);

ITRACE_DEVELOP("after open statement");
 }

222 VisualAge C++ Open Class Library User's Guide

Using the ITrace Class

char getFirstChar(fstream& fs) {
 char c;
 IFUNCTRACE_DEVELOP();
 fs.get(c);

ITRACE_DEVELOP("after get statement");
 return c;
 }

void main() {
 char c;

char * filename = "source.dat";
 fstream fs;
 //

// static functions to enable tracing and direct
// tracing output to standard output

 //
 ITrace::enableTrace();
 ITrace::writeToStandardOutput();
 openFile(fs, filename);

c = getFirstChar(fs);
cout << "Here is first character: " << c << endl;

 }

Notice that, in this code, the static functions enableTrace and writeToStandardOutput

are used to enable tracing and to direct the trace output to standard output.

Because the macro IC_TRACE_DEVELOP is defined, the trace macros produce trace

output. In addition, the trace output has been explicitly directed to standard output,

so the output of the code looks like this:

+openFile(fstream&,char*)
>after open statement

-openFile(fstream&,char*)
+getFirstChar(fstream&)
>after get statement

-getFirstChar(fstream&)
Here is first character: t

Suppose that you wanted to turn off the trace output in this program. One way to do

it is to modify the code so that the macro IC_TRACE_DEVELOP is not defined. If you do

this, the trace macros are not expanded, and no trace output is produced. The output

of this code with IC_TRACE_DEVELOP not defined looks like this:

Here is first character: t

 Chapter 18. Exception and Trace Classes 223

Using the ITrace Class

224 VisualAge C++ Open Class Library User's Guide

Creating an IDate Object

19 Date and Time Classes

The IDate and ITime classes provide you with data types to store and manipulate

date and time information. With these classes, you can create date and time objects,

and use member functions to do the following:

¹ Write date and time objects to an output stream

¹ Access detailed information about dates or times

¹ Compare dates or times

¹ Test the characteristics of date or time objects

¹ Add or subtract days from a date, or hours, minutes, or seconds from a time

¹ Convert between date formats or between time formats.

The IDate and ITime classes are independent. When an ITime object's time passes

23:59:59 (24-hour format) or 11:59:59 p.m. (12-hour format), it has no effect on the

value of any IDate object. If you want to have interdependent date and time objects

you must create your own class, containing IDate and ITime data members, and

define constructors, operators, and member functions that take into account the

dependency of the IDate and ITime data members. See “Simple Combined Date

and Time Example” on page 229 for an example of how to do this.

 IDate Class

The IDate class uses Gregorian calendar dates. The Gregorian calendar is in general

use and consists of the 12, months January to December.

IDate also supports the Julian date format, which contains the year in positions 1 and

2, and the day of the year in postions 3 through 5. If the day of the year is less than

three digits, zeros are added on the left to increase the size to three digits. For

example, February 14, 1965 is 65045 as a Julian date. (February 14 is the 45th day

of the year.)

The IDate class returns the names of the days and months in the language defined by

the current locale. For information on defining the locale, see the standard C library

function setlocale().

Creating an IDate Object

You can create an IDate object using different IDate constructors. For example:

IDate OneDay(IDate::June,30,1994); // Month, day, year
IDate AnotherDay(23,IDate::April,1961); // Day, month, year
IDate SomeDay(940616); // Julian date format
IDate Yesterday(1994,177); // Year, day of year

 Copyright IBM Corp. 1993, 1995 225

Testing and Comparing IDate Objects

The constructors accepting a month use the IDate enumeration Month, whose

members are named January through December (the months of the year in English).

Changing an IDate Object

You can add days to, or subtract days from, an IDate object. You can also subtract

one date from another, in which case the result is the number of days between the

two dates. For example:

IDate Day1, Day2;
 int NumDays;
 Day1=IDate::today();

Day2=Day1+1; // Day2 is one day after Day1
Day2+=2; // Day2 is now three days after Day1

 NumDays=Day2-Day1; // NumDays=3

Note that you cannot add two IDate objects together, because such an addition does

not make sense. However, you can add two ITime objects together.

Information Functions for IDate Objects

The IDate class defines information functions that you can use to obtain specifics

about an IDate object. For example, you can find out what day of the week, month,

or year an IDate object's date falls on, or what the name of the day or month is for

the current locale. You can also find out what today's date is. The following

example shows some of the IDate information functions:

// Information functions for IDate class

 #include <iostream.h>
 #include <istring.h>
 #include <idate.h>

void main () {
 IDate Day1(27,IDate::May,1964);

cout << Day1.dayName() << " "
<< Day1.monthName() << " "
<< Day1.dayOfMonth() << " out of "
<< IDate::daysInMonth(Day1.monthOfYear(), Day1.year()) << " days in month, "
<< IDate::daysInYear(Day1.year()) << " days in year "
<< Day1.year() <<'.' << endl;

 }

This program produces the following output:

Wednesday May 27 out of 31 days in month, 366 days in year 1964.

Testing and Comparing IDate Objects

You can compare two IDate objects to determine whether they are equal, or whether

one is later than the other. The following operators are defined: ==, !=, <, <=, >, >=.

For example, the expression if ((Day1>Day2) && (Day1!=Day3) evaluates to true if

Day1 is January 1 1994, Day2 is June 3 1968, and Day3 is July 12 1941.

You can also check whether a particular year is a leap year, or whether a particular

combination of day, month, and year is valid. The isLeapYear() function returns

226 VisualAge C++ Open Class Library User's Guide

Changing an ITime Object

True if its integer argument is a leap year. The isValid() function accepts

combinations of day, month, and year (or day of year and year), and returns True if

the provided date is valid. For example, it returns True for the first date below, and

False for the second date:

if (IDate::isValid(IDate::June, 30, 1990)) // ...
if (IDate::isValid(1965,366) // ... False (No day number 366 in 1965)

 ITime Class

The ITime class refers to time in the 24-hour format by specifying time units (hours,

minutes, seconds) past midnight. If you want to display ITime objects in the 12-hour

format, you must convert them to IStrings using the asString function with a char*

argument of "%r". (This argument is a format string. All format specifiers of the

strftime() function of the standard C library are supported by the IString
conversion function.)

Note: Objects of the ITime class are precise only up to the nearest second, and

cannot be used for more precise timings.

Creating an ITime Object

You can create an ITime object and initialize it to a number of seconds past or before

midnight, or to a number of hours, minutes, and optionally seconds past midnight:

 ITime Time1(33556), // 09:19:16
// 33556 = 9 hours (32400 seconds), 19 minutes (1140 seconds),
// 16 seconds (adds up to 33556)

 Time2(-33556), // 14:40:44
// (9 hours, 19 minutes and 16 seconds BEFORE midnight)
Time3(12,00), // 12:00:00 (noon)

 Time4(3,3,3); // 03:03:03

The constructors translate incorrect times into valid ITime objects using modulo

arithmetic. For the seconds past midnight format, any number whose absolute value

is greater than or equal to 86400 is divided by 86400, and the remainder is used to

calculate the time. For the hours, minutes, and optional seconds format, excess

minutes and seconds are added to the hours and minutes values, respectively, and if

the hour exceeds 23 it is divided by 24 and the remainder is taken. For example:

ITime Time1(133556), // 13:05:56 (13356-86400=47156 seconds after midnight)
Time2(-133556), // 10:54:04 (13356-86400=47156 seconds BEFORE midnight)
Time3(10,119,60), // 12:00:00 (noon) (10 hours plus 119 minutes plus 60 seconds)
Time4(33,33); // 09:33:00 (33 hours - 24 hours = 9 hours)

Changing an ITime Object

You can add or subtract two times. Four operators are provided: +, +=, -, and -=.

The following example shows the use of these operators:

ITime Start(12:00), Duration(2:00),
 Done=Start+Duration; // Done=14:00

Start=Done-Duration; // Start=12:00 still
 Start+=Duration; // Start=14:00

Start-=Duration; // Start=12:00 again

 Chapter 19. Date and Time Classes 227

ITime Output Formats

Information Functions for ITime Objects

Three of the information functions return an ITime's hour, minute, or second settings;

the other information function returns the current time as determined by the system

clock. For example:

 ITime Time1(ITime::now());
cout << Time1.hours() << " o'clock occurred "

<< Time1.minutes() << " minutes and "
<< Time1.seconds() << " seconds ago." << endl;

This displays a result such as the following:

12 o'clock occurred 16 minutes and 23 seconds ago.

Comparing ITime Objects

Functions are defined to let you compare ITime objects for equality, inequality, or

relative position in time. The following operators are defined: ==, !=, <, <=, >, >=.

In the following example, a message is displayed if enough time elapses between the

first and second calls to the now() member function:

 #include <itime.hpp>
 #include <iostream.h>
 ITime First(ITime::now());

void main() {
 ITime Second=ITime::now();

if (First<Second) // Some time has passed
cout << "You must be debugging me!" << endl;

 }

This message usually does not print when the program is run outside of a debugging

session. However, if you debug the program and step through each line slowly, the

message may be displayed, because the first ITime object is initialized during

program initialization (before main is called) while the second ITime object is

initialized within main.

Writing an ITime Object to an Output Stream

ITime defines an output operator that writes an ITime object to an output stream in

the format hh:mm:ss. If you want to write the object out in a different format, you

should convert the object to an IString using the asString member function. This

member function accepts a char* argument containing a format specifier. The format

specifier is the same one as used by the C library function strftime. The following

program displays some valid specifiers and the output they produce:

// Examples of ITime output

 #include <istring.hpp>
 #include <itime.hpp>
 #include <iostream.h>

#include <iomanip.h> // needed for setw(), to set output stream width

void main() {
 char* FormatStrings[]={

"%H : %M and %S seconds", // %H, %M, %S - 2 digits for hrs/mins/secs
"%r", // %r - standard 12-hour clock with am/pm

228 VisualAge C++ Open Class Library User's Guide

Combined Date and Time Class

"%T", // %T - standard 24 hour clock
"%T %Z", // %Z - local time zone code
"%1M past %1I %p" // %1... - One digit for hour/minute
}; // %p - am/pm

cout.setf(ios::left,ios::adjustfield); // Left-justify output

cout << setw(30) << "Format String" // Title text
<< setw(40) << "Formatted ITime object" << endl;

for (int i=0;i<5;i++) { // Show each time
 IString Formatted=ITime::now().asString(FormatStrings[i]);

cout << setw(30) << FormatStrings[i]
<< setw(40) << Formatted << endl;

 }
 }

The program produces output that looks like the following:

Format String Formatted ITime object
%H : %M and %S seconds 16 : 13 and 04 seconds
%r 04:13:04 PM
%T 16:13:04
%T %Z 16:13:04 EST
%1M past %1I %p 13 past 4 PM

Simple Combined Date and Time Example

The following example shows a class MyDateTime that links its date and time data

members together within its addition operator definition. The class has three data

members, one from each of IDate and ITime, and one for the number of days to be

added when the addition operator is used. The class defines two addition operators:

one that accepts another MyDateTime object, and uses the number of days and the time

as the basis for the addition; and one that accepts only an ITime object, and adds that

to the MyDateTime object's time. Both addition operators check for wraparound in the

ITime member, and increment the IDate member if wraparound has occurred.

// Simple combined date-time class
 #include <idate.hpp>
 #include <itime.hpp>
 #include <iostream.h>

class MyDateTime {
 public:

IDate date; // date subobject
ITime time; // time subobject
int addDays; // number of days to add for addition operator

// Copy constructor
MyDateTime(IDate adate, ITime atime, int add = 0):

addDays(add), date(adate), time(atime) {}

// Default constructor
 MyDateTime() {}

// Addition operator for other MyDateTime objects
MyDateTime operator + (const MyDateTime &aDateTime) const {

 MyDateTime temp;

// Add any addDays value to date if necessary
temp.date = this->date + aDateTime.addDays;

 Chapter 19. Date and Time Classes 229

Combined Date and Time Class

// Add times together
temp.time = this->time + aDateTime.time;

// If resulting time is greater than original time,
// clock wrapped around, so increment date
if (temp.time < this->time) temp.date += 1;

 return temp;
 }

// Addition operator for ITime objects
MyDateTime operator + (const ITime &time) const {

 MyDateTime temp;
temp.date = this->date;

// Add time to time member of MyDateTime temporary
temp.time = this->time + time;

// If resulting time is greater than original time,
// clock wrapped around, so increment date
if (temp.time < this->time) temp.date += 1;

 return temp;
 }
 };

ostream& operator << (ostream& os, MyDateTime& dt) {
cout << dt.date << " at " << dt.time;

 return os;
 }

void main() {
MyDateTime TodayNow(IDate::today(), ITime::now()),

 Add, Temp;
Add.addDays = 17;
Add.time = ITime(12,24);
Temp = TodayNow + Add;
cout << "Right now it is " << TodayNow << ".\n"

<< "In 17 days, 12 hours, and 24 minutes, it will be "
<< Temp << "." << endl;

Temp = TodayNow + ITime(21,16);
cout << "In 21 hours and 16 minutes, it will be " << Temp << "." << endl;

 }

This program produces output that resembles the following:

Right now it is 06/22/94 at 13:25:31.
In 17 days, 12 hours, and 24 minutes, it will be 07/10/94 at 01:49:31.
In 21 hours and 16 minutes, it will be 06/23/94 at 10:41:31.

230 VisualAge C++ Open Class Library User's Guide

Database Access

Part 5. The Database Access Class Library

Chapter 20. Using the Database Access Class Library 233

Using Visual Builder Programs . 233

Using C++ Programs . 238

Using SOM Programs . 244

Chapter 21. Constructing Applications Using Data Access Builder and the

Visual Builder . 255

Sample Applications Description . 255

Creating the Sample Database and the Table 256

Running the Samples . 256

Generating the Database Parts . 257

Compiling the Database Parts . 258

Building the CarBrws Application . 258

Building the CarEdit Application . 258

Chapter 22. Constructing an Application Using Data Access Builder and

C++ . 259

Running the C++ Stock Sample from a Project 259

Chapter 23. Constructing an Application Using Data Access Builder and

SOM . 261

Running the SOM Stock Sample from a Project 261

 Copyright IBM Corp. 1993, 1995 231

Database Access

232 VisualAge C++ Open Class Library User's Guide

Using Visual Builder Programs

20 Using the Database Access

Class Library

This section describes how to use the generated classes and the library classes to

access data in DB2/2 tables.

When you used the Data Access Builder tool, you had a choice to generate either

Parts or IDL, or both.

Now you use the generated code and classes to access data in the DB2/2 database.

This can be done using any of the following:

¹ Visual Builder program with the generated part files,

¹ C++ program with the generated part files, or

¹ SOM program with the generated IDL files.

The steps to access the database table are the same regardless of which type of

program you are writing.

The steps are:

1. Compile the generated files

2. Access the data in the DB2/2 table

a. Connect to the database

b. Accessing database tables

c. Commit or rollback your transactions

d. Disconnect from the database.

Using Visual Builder Programs

Compiling a Database Part

You can build a database part using either of the following:

¹ From a project

If you start the DAX tool from a project, the makefile is not generated. Use the

project Build action to build the part.

¹ From an OS/2 window

If you start the DAX tool from a project, the makefile is generated for you.

Issue an nmake from the command line to start the make.

The generated makefile or a project build contain steps to:

 Copyright IBM Corp. 1993, 1995 233

Using Visual Builder Programs

1. Invoke icc to compile the filenamey.cpp source file

2. Invoke sqlprep to pre-compile the filenamev.sqc file. The application is

pre-compiled with binding enabled (/P) to generate a package file which is stored

in the same database where the table (that the class maps to) came from. For

more information on sqlprep and package considerations, see the Database 2 for

OS/2 Application Programming Guide. This produces a filenamev.c file and a

filenamev.bnd file.

3. Invoke icc to compile the filenamev.c file into a filenamev.obj module.

4. Invoke icc to link the .obj files produced in step 1 and 3 to create a filenamev.dll

file. The filenamev.def file is used in building the .dll.

5. Invoke implib to create a filenamev.lib file.

Building a Part from a Project

1. Open the VisualAge C++ 3.0 Tools folder.

2. Copy the DAXSAMP Database DLL project from the Database folder in the

Samples folder of VisualAge C++. The project should be copied with a new

project name.

3. Open the new project.

4. Choose Settings from the View menu and fill in the appropriate target and

location (directories) information for the new project.

5. The SQLPrep, compile, link and import library actions are set appropriately to

create the DLL. You need to set the LIB and INCLUDE environment variable to

reference this new project target for any projects that use the DLL. You also

need to copy the DLL produced by this project to a directory on your LIBPATH.

If you generate more than one class for the DLL, you need to create a .def file.

Use the ones generated as an example.

6. Start Data access from the project pull-down menu and generate your mapping.

7. Exit Visual Builder

8. Choose Build from the Project pull-down menu.

Building a Part from an OS/2 Window

To compile a database part once it has been generated:

1. Exit Data Access Builder and open an OS/2 command window

2. Ensure that your paths are set up properly in your config.sys file.

3. Make your current directory the directory where your generated files reside.

4. From the OS/2 command line, type:

nmake -f filenamev.mak

where filename is the name that you assigned to the class.

Using Database Parts in Visual Builder

Once you have compiled the part, you are ready to load the part file into the Visual

Builder. The part file name for the Data Access Builder is VBDAX.VBB and is in the

DDE4VB directory. For a generated part, import the Visual Builder part information

234 VisualAge C++ Open Class Library User's Guide

Using Visual Builder Programs

file (filenameV.VBE) separately. For more information, see Chapter 21,

“Constructing Applications Using Data Access Builder and the Visual Builder” on

page 255.

To access a database table in a Visual Builder application, add the IDatastore part

from VBDAX. You link command buttons with the connect, transact, disconnect and

all the data access operations of the generated classes. For those operations that

require parameters, use entry fields.

Accessing the DB/2 Table

There are two ways you might want to connect to a database. The first method

would be for applications where it is not necessary for the user to know or modify

the database name, while the second is used when more flexibility is required for

accessing databases, changing user logons, etc.

In simple case, you would use the non-visual IDatastore part with settings appropriate

for your application.

The second method provides more flexibility - use the IDSConnectCanvas (or a

similar part of your own design), and allow the user to fill in the database name,

userid and password. The IDatastore interface is also exposed on IDSConnectCanvas,

so this part can be used in your application just as you use IDatastore. The settings

of IDSConnectCanvas can be used to set the defaults for the connection.

IDatastore and IDSConnectCanvas expose attributes, actions and events you can use

to control the connection. These interfaces are enabled with the notification

framework, so they can be used with applications developed using the Visual Builder.

Visual Builder attribute to attribute connections can be used to change the attributes

of the connection.

Attributes datastoreName Name of the datastore for this connection. You may initialize this in

the settings of the part.

userName Name of the user attaching to the datastore. You may initialize this in

the settings of the part.

authentication Password of the user attaching to the datastore. You may initialize

this in the settings of the part.

isConnected Returns a Boolean value depending on the connect state. You can also

use an attribute to attribute connections which allow, for example,

enabling a Disconnect button once a connection is established.

 Chapter 20. Using the Database Access Class Library 235

Using Visual Builder Programs

shareModeExclusive Only one process at a time may access a database with

shareModeExclusive enabled. You may initialize this in the settings of

the part.

Actions connect Connect to the database using the current IDatastore settings. A

disconnect is performed if a current connection exists (with a commit or

rollback depending on your system defaults). You can only be connected

to one database at a time. If the userName specified in that attribute is

not currently logged on, a logon is performed. If the logon fails, an

exception is thrown.

disconnect Disconnect any current connection to the database. If the user was

logged on during the connect action, that user is then logged off.

commit Commits the current transaction.

rollback Rollback (cancel) the current transaction.

Events Connected Signaled when a connection is established. You could use this event to

show a second application window.

Disconnected Signaled when a connection is terminated. You could use this event to

hide a second application window.

Transacted Signaled when a transaction (commit or rollback) is completed. You

could use this event to refresh the information in an application window.

Each of the attributes will also signal events when they are modified.

Accessing Data in the DB/2 Table

You use the parts generated by Data Access to access the data in your database.

First, use the database connection part to connect to the database (see “Accessing the

DB/2 Table” on page 235).

Then, use the parts that are generated by the Data Access Builder to access the

information in the tables.

For example, classes Car and CarManager would be generated from a table called

Car.

You would use the Car class to manipulate individual rows in the Car table. After

importing the generated file, carv.vbe,

 into the Visual Builder, you would find the following actions, attributes and

methods:

236 VisualAge C++ Open Class Library User's Guide

Using Visual Builder Programs

Attributes Columns Each mapped column from the table would be an attribute of the

generated class. A method is provided to get and set the value of each

attribute, as well as checking or setting the attributes as Null (if allowed

for that column). Attributes are enabled for notification, and will also

return IString() representations. Thus attributes can be directly connected

to other Visual Builder parts. Each part will then reflect changes to the

other.

isReadOnly Boolean representing whether the object is read only.

isDefaultReadOnly Boolean representing whether the table is read only as defined in

the database.

Actions retrieve You can retrieve a row from the table by first setting the data identifier

(key) attributes of the object, then calling the retrieve method. All of the

attributes of this object will then be set to the current values found for the

row with that key in the table. An exception will be thrown if the row

does not exist, or if more than one row with that data identifier is found.

add Set the object attributes with the desired values. Then call this method.

A row will be added to the table with the columns reflecting the attribute

values. An exception will be thrown if the database detects that a row

already exists with a key value matching that set in the attributes

representing the data identifier. An exception will be thrown if the table

is read only.

update Retrieve a row into the object using the retrieve() method. You can then

update the values, and update that row in the database with this method.

Any object with a key (or a column value) matching the attribute values

of the data identifier will be updated, so you should ensure that the data

identifier is unique. An exception will be thrown if the table is read

only.

del Any object with a key (or a column value) matching the attribute values

of the data identifier will be deleted. An exception will be thrown if the

table is read only.

asString Will return an IString that contains the concatenated IString

representations of the attributes making up the data identifier.

setReadOnly Can be used to set an object as read only. Exceptions will be thrown

on any attempt to update the object.

 Chapter 20. Using the Database Access Class Library 237

Using C++ Programs

Events Each of the attributes of the class will signal events when they are modified.

You would use the CarManager class to retrieve multiple rows in the Car table.

After importing the generated file, carv.vbe, into the Visual Builder, you would find

the following actions, attributes and methods:

 ¹ Attributes:

Items Items is a sequence of pointers to the parts retrieved in a refresh or

select action. You can connect this directly to the Items attributes of

other Visual Builder parts, such as list boxes or containers.

 ¹ Actions:

refresh Retrieves all items in the table and stores them in the Items

sequence.

select Retrieves all items in the table matching the specified clause and

stores them in the Items sequence.

¹ Events: Items signals an event whenever it is modified (for example, through a

refresh or select action).

Using C++ Programs

Depending on whether you created source code for a part or for IDL, now you need

to compile the source code.

Compiling a Database Part

You can build a database part using either of the following:

¹ From a project

If you start the DAX tool from a project, the makefile is not generated. Use the

project Build action to build the part.

¹ From an OS/2 window

If you start the DAX tool from a project, the makefile is generated for you.

Issue an nmake from the command line to start the make.

The generated makefile or a project build contain steps to:

1. Invoke icc to compile the filenamey.cpp source file

2. Invoke sqlprep to pre-compile the filenamev.sqc file. The application is

pre-compiled with binding enabled (/P) to generate a package file which is stored

in the same database where the table (that the class maps to) came from. For

more information on sqlprep and package considerations, see the Database 2 for

OS/2 Application Programming Guide. This produces a filenamev.c file and a

filenamev.bnd file.

238 VisualAge C++ Open Class Library User's Guide

Using C++ Programs

3. Invoke icc to compile the filenamev.c file into a filenamev.obj module.

4. Invoke icc to link the .obj files produced in step 1 and 3 to create a filenamev.dll

file. The filenamev.def file is used in building the .dll.

5. Invoke implib to create a filenamev.lib file.

Building a

Part from a

Project

1. Open the VisualAge C++ 3.0 Tools folder.

2. Copy the DAXSAMP Database DLL project from the Database folder in the

Samples folder of VisualAge C++. The project should be copied with a new

project name.

3. Open the new project.

4. Choose Settings from the View menu and fill in the appropriate target and

location (directories) information for the new project.

5. The SQLPrep, compile, link and import library actions are set appropriately to

create the DLL. You need to set the LIB and INCLUDE environment variable to

reference this new project target for any projects that use the DLL. You also

need to copy the DLL produced by this project to a directory on your LIBPATH.

If you generate more than one class for the DLL, you need to create a .def file.

Use the ones generated as an example.

6. Start Data access from the project pull-down menu and generate your mapping.

7. Exit Visual Builder

8. Choose Build from the Project pull-down menu.

Building a

Part from an

OS/2 Window

To compile a database part once it has been generated:

1. Exit Data Access Builder and open an OS/2 command window

2. Ensure that your paths are set up properly in your config.sys file.

3. Make your current directory the directory where your generated files reside.

4. From the OS/2 command line, type:

nmake -f filenamev.mak

where filename is the name that you assigned to the class.

The makefile contains steps to:

1. Invoke icc to compile the filenamey.cpp source file

2. Invoke sqlprep to pre-compile the filenamev.sqc file. The application is

pre-compiled with binding enabled (/P) to generate a package file which is stored

in the same database where the table (that the class maps to) came from. For

more information on sqlprep and package considerations, see the Database 2 for

OS/2 Application Programming Guide. This produces a filenamev.c file.

3. Invoke icc to compile the filenamev.c file into a filenamev.obj module.

4. Invoke icc to link the .obj files produced in step 1 and 3 to create a filenamev.dll

file. The filenamev.def file is used in building the .dll.

5. Invoke implib to create a filenamev.lib file.

 Chapter 20. Using the Database Access Class Library 239

Using C++ Programs

Accessing the Data in the DB2/2 Table

Once you have compiled the part, you are ready to connect to the database. You can

only be connected to one database at a time.

To access the database, do the following:

1. Connect to the database

2. Access the database tables

3. Commit or rollback

4. Disconnect from the database

Connect to

the Database

To connect to the database:

1. Include the idsmcon.hpp header file.

2. Create object from IDatastore.

3. Establish a connection to the database using the IDatastore object.

Here is an example:

 #include "idsmcon.hpp"

// create an object of IDatastore
 IDatastore dsm("DSNAME","USERID","PASSWORD");

// establish the connection to the datastore
 dsm.connect();

Accessing

Database

Tables

Once the connection to the database has been established, the data in the tables

can be accessed.

You access data in a table using the table-class mappings you created with the Data

Access Builder tool. The mapping indicates the table columns that are used when the

database is accessed.

After you created the table-class mappings, you generated the source files. When you

generated the source files, two classes were generated for accessing data in the table.

The first class accesses a single row of data. This class is derived from the

IPersistentObject class. With this class, you can add, delete, retrieve or update a

single row using a data identifier. In this case, the data identifier must be set before

invoking the method.

The other class accesses multiple rows of data. This class is identified by a suffix of

“Manager” to the class name. For example, if Car is the first class, CarManager is

the other class. This class is derived from the IPOManager class. With this class,

240 VisualAge C++ Open Class Library User's Guide

Using C++ Programs

you can retrieve multiple rows using the refresh or select methods. The refresh

method provides a snapshot of a complete table. The select method provides a

snapshot of a selected set of a table.

Note: When updating rows in a table, to avoid unexpected values written to other

columns of the row, it is recommended to retrieve the row before updating it.

Mappings to different columns in the same table require different methods. For

example, if you have a table containing inventory information, you can create one

mapping for all inventory information, called Inventory, and a second mapping for

only the price list information, called PriceList. In this case, four classes are

generated, two for each mapping:

 1. Inventory

 2. InventoryManager

 3. PriceList

 4. PriceListManager

A header file is generated for each mapping. You must include them in your

program. Since only the first seven characters are used for the name, in this example,

the header names are:

 ¹ inventov.hpp

 ¹ priceliv.hpp

You can change the filename on the Names page of the class notebook.

With these include files you create objects from the classes and access the data in the

database.

For example:

//
// include the generated header

 #include "inventov.hpp"
 #include "priceliv.hpp"

//
// create objects from the class

 Inventory invObject;
 InvenotryManager invMgrObject;
 PriceList prcLstObject;
 PriceListManager prcLstMgrObject;

//
// to add a row where PRODNUMBER is the primary key of the table

 invObject.setProdNumber(1234);
 invObject.setDescription("IBM PS1");
 invObject.setOnHandQuantity(30);

 Chapter 20. Using the Database Access Class Library 241

Using C++ Programs

 invObject.setAverageCost(1000.00);
 invObject.setListingPrice(2999.99);
 invObject.add();

// To update a row, specify the key and the new value. This
// example changes the listing price only.

 prcLstObject.setProdNumber(1234);
 prcLstObject.retrieve();
 prcLstObject.setProdNumber(1234);
 prcLstObject.setListingPrice(1999.99);
 prcLstObject.udpate();

// to delete a row
 invObject.setProdNumber(1234);
 invObject.del();

Commit Work

or Roll Back

Use the IDatastore object to do commit or rollback the work you have done.

Here is an example to commit the transaction:

// to commit ...
 dsm.commit();

Here is an example to roll back the transaction:

// to rollback ...
 dsm.rollback();

Disconnecting from the Database

You must disconnect from one database before you can connect to another.

Disconnect using the disconnect method of the IDatastore object. Here is an

example:

// disconnect the connection
 dsm.disconnect();

Read Only Support Considerations

Read only support has the following member functions:

 1. isReadOnly,

 2. isDefaultReadOnly,

 3. setReadOnly.

Read only status can be checked by calling isDefaultReadOnly. If the part is

generated from a read only view, the function returns true. In this case, the update,

delete, and add functions always return an exception.

If the part is not generated from a read only view, the function returns false. You

can update, delete, or add the table (or view) using the class. However, you can

make it a read only one by calling the setReadOnly function with true value. You

check if the part set to read only using the isReadOnly function.

242 VisualAge C++ Open Class Library User's Guide

Using C++ Programs

If the isDefaultReadOnly function results true, you will have an exception when

calling the setReadOnly function with false.

Here is the sample code for the read only support:

// create car object
Car CarObject;

// Check the defaultReadOnly status before delete a row.
if (CarObject.isdefaultReadOnly() == false) {

// Delete a row with the key value, license = 'ABC-456'
 carObject.setLicense("ABC-456");
 carObject.del();
}

// set the currentReadOnly to true
CarObject.setReadOnly(true);

Null Value Support Consideration

There are 3 member functions for each attribute to support null value. If the attribute

name is model. The member functions are isModelNullable, isModelNull, and

setModelToNull.

To check if model is a nullable attribute, you use isModelNullable. If the result is

true (nullable), you can use setModelToNull to make Model null. If the result is

false, it is an exception to do so. You can also use isModelNull to check if model

contains null.

Please note that once you use set an attribute to null, the value kept in the model is

ignored for the data access operations. For example, the add operation will put

NULL to the model column when it adds a row to the table.

Here is the sample code for the null value support:

// create car object
Car CarObject;
boolean result;

// Check if the model column is a nullable one
if (CarObject.isModelNullable() == true) {

//model is nullable, we can set it to null
 carObject.setModelToNull(true);
}

// Check if model is set to null
result = CarObject.isModelNull();

Exception

Handling

All exception classes in the database access classes are derived from IException.

Here is an example of catching an exception in connecting to a datastore:

 Chapter 20. Using the Database Access Class Library 243

Using SOM Programs

 try {
 dsm.connect();
} catch (IDatastoreLogonFailed &exc) {
cout << "ErrorId: " << exc.errorId() << endl;
for (unsigned long i = 0; i < exc.textCount(); i++)
cout << "Error Text: " << exc.text(i) << endl;

} catch(...) {
cout << "Unknown exception occurs for dsm.connect() " << endl;

 }

The classes in the generated files throws exception IDSAccessError only. The errorId

indicates the type of the exception. If the error is an SQL error, use the getSqlca()

function to access the SQLCA information. If the error is not an SQL error, the

value returned by the getSqlca() function is not defined. Here is an example:

 try {

} catch (IDSAccessError &exc) {
cout << "ErrorId: " << exc.errorId() << endl;
for (unsigned long i = 0; i < exc.textCount(); i++)
cout << "Error Text: " << exc.text(i) << endl;

if (exc.errorId() == DAX_ADD_SQLERR) {
cout << "SQLCODE: " << exc.getSqlca().sqlcode << endl;
cout << "SQLSTATE: " << exc.getSqlca().sqlstate << endl;

 }
} catch(...) {
cout << "Unknown exception occurs for table1.add() " << endl;

 }

Using SOM Programs

There are a number of IDL files kept in the IBMCLASS directory. They are the

IDLs for the SOM classes. To use the SOM classes in C++, you have to generate the

C++ usage binding files (.xh files). The IDLs generated by the Data Access Builder

tool depend on these .xh files.

To generate the files, issue the following command in the IBMCLASS directory:

sc -sxh *.idl

To use the SOM classes in C programs, you have to generate C usage binding files

(.h files) and issue the following command:

sc -sh *.idl

In additon, you need to generate the C usage binding files for the generated IDL. For

example, if the generated IDL is cari.idl, you have to issue:

sc -sh cari.idl

A cari.h file is generated. This header file will be included in you C program.

244 VisualAge C++ Open Class Library User's Guide

Using SOM Programs

Compiling the IDL

You can build the IDL using either of the following:

¹ From a project

If you start the DAX tool from a project, the makefile is not generated. Use the

project Build action to build the part.

¹ From an OS/2 window

If you start the DAX tool from a project, the makefile is generated for you.

Issue an nmake from the command line to start the make.

The generated makefile or a project build contain steps to:

1. Invoke icc to compile the filenamey.cpp source file

2. Invoke sqlprep to pre-compile the filenamev.sqc file. The application is

pre-compiled with binding enabled (/P) to generate a package file which is stored

in the same database where the table (that the class maps to) came from. For

more information on sqlprep and package considerations, see the Database 2 for

OS/2 Application Programming Guide. This produces a filenamev.c file and a

filenamev.bnd file.

3. Invoke icc to compile the filenamev.c file into a filenamev.obj module.

4. Invoke icc to link the .obj files produced in step 1 and 3 to create a filenamev.dll

file. The filenamev.def file is used in building the .dll.

5. Invoke implib to create a filenamev.lib file.

Building the IDL from a Project

1. Open the VisualAge C++ 3.0 Tools folder.

2. Copy the DAXSAMP Database DLL project from the Database folder in the

Samples folder of VisualAge C++. The project should be copied with a new

project name.

3. Open the new project.

4. Choose Settings from the View menu and fill in the appropriate target and

location (directories) information for the new project.

5. The SQLPrep, compile, link and import library actions are set appropriately to

create the DLL. You need to set the LIB and INCLUDE environment variable to

reference this new project target for any projects that use the DLL. You also

need to copy the DLL produced by this project to a directory on your LIBPATH.

If you generate more than one class for the DLL, you need to create a .def file.

Use the ones generated as an example.

6. Start Data access from the project pull-down menu and generate your mapping.

7. Exit Visual Builder

8. Choose Build from the Project pull-down menu.

 Chapter 20. Using the Database Access Class Library 245

Using SOM Programs

Building a IDL from an OS/2 Window

To compile the IDL once it has been generated:

1. Exit Data Access Builder and open an OS/2 command window

2. Ensure that your paths are set up properly in your config.sys file.

3. Make your current directory the directory where your generated files reside.

4. From the OS/2 command line, type:

nmake -f filenamei.mak

where filename is the name that you assigned to the class.

The makefile contains steps to:

1. Invoke the SOM compiler (sc) to generate the usage binding file, filename.xh,

and the implementation binding file, filename.xih, for this som class.

2. Invoke icc to compile the filenamex.cpp source file. Compiling the filenamei.cpp

file requires the filename.xh and filename.xih binding files generated by the SOM

compiler in step 1.

3. Invoke sqlprep to pre-compile the filenamei.sqc file. The application is

pre-compiled with binding enabled (/P) to generate a package file which is stored

in the same database where the table (that the class maps to) came from. For

more information on sqlprep and package considerations, see the Database 2 for

OS/2 Application Programming Guide. This produces a filenamei.c file.

The filename.obj and Sfilename.obj are created. You can link them in with your

application.

Accessing the Data in the DB2/2 Table

Once you have compiled the source code, you are ready to connect to the database.

You can only be connected to one database at a time.

To access the database, do the following:

1. Connect to the database

2. Access the database tables

3. Commit or rollback

4. Disconnect from the database

Connect to

the Database

To establish a connection, you must have the sdsmcon.xh header file.

To connect to a database:

1. Create Datastore class object from DatastoreFactory meta-class.

2. Create object from the Datastore class object.

3. Invoke the connect method to establish a connection

246 VisualAge C++ Open Class Library User's Guide

Using SOM Programs

Here is the C++ code sample:

Environment *ev = somGetGlobalEnvironment();

// Create class object
DatastoreFactory *pidFactDS = DatastoreNewClass (0,0);

// create objects from the class objects
Datastore *dsm = pidFactDS->create_object(ev);

// establish a connection
dsm->connect(ev,"DSNAME","USERID", "PASSWORD");

// or ... establish a connection as follows:
dsm->_set_datastore_name(ev,"DSNAME");
dsm->_set_user_name(ev,"USERID");
dsm->set_authentication(ev,"PASSWORD");
dsm->connect_defaults(ev);

Here is the C code sample:

#include <sdsmcon.h>

Environment *ev = somGetGlobalEnvironment();
Datastore *dsm;
dsm = DatastoreNew();

Datastore_connect(dsm, ev, "DSNAME", "USERID","PASSWORD");

/* or establish a connection as follows: */
Datastore__set_datastore_name(dsm,ev,"DSNAME");
Datastore__set_user_name(dsm,ev,"USERID");
Datastore__set_authentication(dsm,ev,"PASSWORD");
Datastore_connect_defaults(dsm,ev);

Accessing

Database

Tables

After a connection is established, you can use the generated SOM classes for

accessing data in a table. There are two classes in the generated SOM IDL. One is

for accessing single row and the other is for multiple rows.

The first SOM class is derived from the PersistentObject SOM class. With this class,

you can add, delete, retrieve, or update a row using key.

The other SOM class allows you to retrieve multiple rows. It is a derived class of

POFactory. This SOM class is identified by a suffix of "Factory" to the name of the

first SOM Class. For example, if Car is the name of the first SOM class, CarFactory

is the name of the other class.

You use the SOM get and set methods to retrieve and update attributes.

The following is the C++ sample code for the data access operations.

 Chapter 20. Using the Database Access Class Library 247

Using SOM Programs

// create objects from the generated SOM Classes
Car *CarPtr = new Car;
CarFactory *CarFactoryPtr = new CarFactory;

// Delete a row with the key value, license = 'ABC-456'
carPtr->_set_license(ev,"ABC-456");
carPtr->del(ev);

// retrieve a row with the key value, license = '123-ZYX'
// and get the values
carPtr->_set_license(ev,"123-ZYX");
carPtr->retrieve(ev);
char CurrentModel[20] = carPtr->_get_model(ev);
char CurrentMake[20] = carPtr->_get_make(ev);

// add a row with new key value, 'MNO-456'
carPtr->_set_license(ev, "MNO-456");
carPtr->_set_model(ev, "CRX");
carPtr->_set_make(ev, "Honda");
carPtr->add(ev);

// update a row with key value, 'MNO-456'
carPtr->_set_license(ev, "MNO-456");
carPtr->_set_model(ev, "RV8");
carPtr->_set_make(ev, "MG");
carPtr->update(ev);

// retrieve a selected set of rows from the car table
_IDL_SEQUENCE_PersistentObject carList;

carList = carFactoryPtr->select(ev, "make = 'Honda'");

// use sequenceLength to get the number of selected rows
int selectedRowNumber = sequenceLength(carList);

//use sequenceElement to get a particular row (the first row)
carPtr = (Car *) sequenceElement(carList,0);

// retrieve all the rows from the table.
carList = carFactoryPtr->retrieveAll(ev);

Here is the C code example:

#include "cari.h"

Car *carPtr;
Car *carPtr1;
CarFactory *carFactoryPtr;
char CurrentModel[20];
char CurrentMake[20];
int selectedRowNumber;
_IDL_SEQUENCE_PersistentObject carList;

carPtr = CarNew();

/* Delete a row with the key value, license = 'ABC-456' */
Car__set_license(carPtr,ev,"123-ZYX");
Car_del(carPtr,ev);

248 VisualAge C++ Open Class Library User's Guide

Using SOM Programs

/* retrieve a row with the key value, license = '123-ZYX' */
Car__set_license(carPtr,ev,"123-ZYX");
Car_retrieve(carPtr,ev);
CurrentModel = Car__get_model(carPtr,ev);
CurrentMake = Car__get_make(carPtr,ev);

/* add a row with a new key value, 'MNO-456' */
Car__set_license(carPtr,ev,"MNO-456");
Car__set_model(carPtr,ev,"CRX");
Car__set_make(carPtr,ev,"Honda");
Car_add(carPtr,ev);

/* update a row with key value, 'MNO-456' */
Car__set_license(carPtr,ev,"MNO-456");
Car__set_model(carPtr,ev,"RV8");
Car__set_make(carPtr,ev,"MG");
Car_update(carPtr,ev);

/* retrieve a selected set of rows from the car table */
carList = CarFactory_select(carFactoryPtr, ev, "make = 'Honda'");

/* use sequenceLength to get the number of selected rows */
selectedRowNumber = sequenceLength(carList);

/* sequenceElement to get a particular row (the first row) */
carPtr2 = (Car *) sequenceElement(carList, 0);

/* retrieve all the rows from the table */
carList = CarFactory_retrieveAll(carFactoryPtr, ev);

Commit Work

or Roll Back

Use the transact method to either commit the work you have done, or rollback the

work you have done.

Here is a C++ example to commit the transaction:

// to commit ...
 dsm.commit(ev);

Here is a C++ example to roll back the transaction:

// to rollback ...
 dsm.rollback(ev);

Here is the C code example to commit the transaction:

/* code example to commit and rollback */
 Datastore_commit(dsm,ev);

Here is the C code example to roll back the transaction:

/* code example to commit and rollback */
 Datastore_rollback(dsm,ev);

 Chapter 20. Using the Database Access Class Library 249

Using SOM Programs

Disconnecting from the Database

You must disconnect from one database before you can connect to another.

Here is an example to disconnect:

// to disconnect...
 dsm.disconnect(ev);

Here is the C code example:

/* to disconnect ... */
 Datastore_disconnect(dsm,ev);

Read Only Support Considerations

If the SOM classes are generated from a read only view, the update, delete, and add

methods will always return an exception.

You can check the read only status by using the get method on the defaultReadOnly

attribute. If the defaultReadOnly attribute is read only, the get_method returns true.

Note: The set method for this defaultReadOnly is disabled. You are not allowed to

modify this attribute. This attribute is set based on the information extracted from the

table (or view) in code generation.

If the defaultReadOnly attribute is not read only, the attribute returns false. If the

defaultReadOnly attribute is false, you can update, delete, or add the table (or view)

through the class. You can make the table or view read only by setting the

currentReadOnly attribute. Once this attribute is set, the methods will always return

an exception. You can check the value of the currentReadOnly using the get method.

If the defaultReadOnly attribute is true, you cannot change the value of the

currentReadOnly attribute.

Here is the C++ sample code for the read only support:

// create car object
Car *CarPtr = new Car;

// Check the defaultReadOnly status before delete a row.
if (CarPtr->_get_defaultReadOnly(ev) == false) {

// Delete a row with the key value, license = 'ABC-456'
 carPtr->_set_license(ev,"ABC-456");
 carPtr->del(ev);
}

// set the currentReadOnly to true.
CarPtr->_set_currentReadOnly(ev, true);

Here is the C sample code for the read only support:

250 VisualAge C++ Open Class Library User's Guide

Using SOM Programs

#include "cari.h"

Car *carPtr;

/* create a car object */
carPtr = CarNew();

/* Check the defaultReadOnly status before delete a row */
if (Car__get_defaultReadOnly(carPtr,ev) == false) {

/* Delete a row with the key value, license = 'ABC-456' */
 Car__set_license(carPtr,ev,"ABC-456");
 Car_del(carPtr,ev);
}

/* set the currentReadOnly to true */
Car__set_currentReadOnly(carPtr,ev,true);

Null Value Support Considerations

In the generated SOM IDL, attributes generated for each table column:

¹ One is for keeping the column value

¹ Two are for the null value support.

For example, if the table column name is called model and it is a string, the

generated attributes are:

¹ attribute string model,

¹ attribute boolean modelIsNull,

¹ readonly attribute boolean modelIsNullable.

To check if model is a nullable attribute, you can use the get method on the

modelIsNullable attribute (_get_modelIsNullable). If the result is true (nullable), you

can set modelIsNull (_set_modelIsNull) to true. If the result is false (non-nullable),

an exception will occur for the set method. You can also use get method to check if

model is set to null or not.

Note: Once the modelIsNull attribute is set to true, the value kept in the model

attribute is ignored for the data access operations. For example, the add operation

will put NULL to the model column when it adds a row to the table. If the setModel

method is called with a value, the NULL flag is reset.

Here is the C++ sample code for the null value support:

 Chapter 20. Using the Database Access Class Library 251

Using SOM Programs

// create car object
Car *CarPtr = new Car;
boolean result;

// Check if the model column is a nullable one
if (CarPtr->_get_modelIsNullable(ev) == true) {

//model is nullable, we can set it to null
 carPtr->_set_modelIsNull(ev,true);
}

// Check if model is set to null
result = CarPtr->_get_modelIsNull(ev);

Here is the C sample code for the null value support:

#include "cari.h"

Car *carPtr;
boolean result;

/* create a car object */
carPtr = CarNew();

/* Check if the model column is a nullable one */
if (Car__get_modelIsNullable(carPtr,ev) == true) {

/* model is nullable, we can set it to null */
 Car__set_modelIsNull(carPtr,ev,true);
} /* endif */

/* Check if model is set to null */
result = Car__get_modelIsNull(carPtr,ev);

Exception

Handling

Exception handling used in SOM uses a separate routine to check the environment

structure for exceptions occurring in the classes or in the generated files. For the

SQL errors in the generated classes, you can get the sqlcode from the exception.

Here is an example of the exception handling routine:

int exceptionCheck(void) {
int rc = 0;

 char *exId;
 DaxExcep_DatastoreLogonFailed erDSLogon;
 POFError *erPOF;
 POError *erPO;

switch (ev->_major) {
 case SYSTEM_EXCEPTION:

cout << "system exception" << endl;
 rc ++;
 break;
 case USER_EXCEPTION:

exId = somExceptionId(ev);
cout << "Exception ID: " << somExceptionId(ev) << endl;
if (strcmp(exId, ex_DaxExcep_DatastoreLogonFailed) == 0) {

erDSLogon = (DaxExcepDatastoreLogonFailed *) somExceptionValue(ev);
cout << "Error number: " << erDSLogon->error_number << endl;

252 VisualAge C++ Open Class Library User's Guide

Using SOM Programs

if (strcmp(exId, ex_POFactory_POFError) == 0) {
erPOF = (POFError *) somExceptionValue(ev);
cout << "Error code: " << erPOF->error_code << endl;
if ((erPOF->error_code == DAX_REF_SQLERR) ||

(erPOF->error_code == DAX_SEL_SQLERR)) {
cout << "SQL code: " << erPOF->sqlcode << endl;

 }
} else if (strcmp(exId, ex_PersistentObject_POError) == 0) {

erPO = (POError *) somExceptionValue(ev);
cout << "Error code: " << erPO->error_code << endl;
if (erPO->error_code == DAX_ADD_SQLERR) {
cout << "SQL code: " << erPO->sqlcode << endl;

 }
 }
 somExceptionFree(ev);
 rc ++;
 break;
 case NO_EXCEPTION:
 break;
 }

return rc; }

The exception is checked by calling the routine after a Data Access Builder operation.

Here is an example:

 table1->update(ev);
if (exceptionCheck() !=0) {

cout << "Update failed." << endl;
 }

 Chapter 20. Using the Database Access Class Library 253

Using SOM Programs

254 VisualAge C++ Open Class Library User's Guide

Sample Application Description

21 Constructing Applications Using Data

Access Builder and the Visual Builder

Data Access Builder and the Visual Builder provide a number of reusable parts to

help you create your application. In addition, Data Access Builder and the Visual

Builder allow you to import parts generated by the Data Access Builder into the

Visual Builder This example shows you how to use these features to build two

applications used for managing a car lot. These applications allows you to add and

retrieve vehicle information from a database. The samples are built using Data

Access, Visual Builder and WorkFrame. No coding is required.

Files to Build the Applications

To build the applications you will use a set of files specific to the applications as well

as a file containing reusable parts. The files are found in the Database folder, which

is in the Samples folder of the VisualAge C++ Tools folder.

Note: If you are not using WorkFrame, follow the directions in the README files

contained in each of the directories shown below.

The application files are found in the directory :

\ibmcpp\samples\dax\car
\ibmcpp\samples\dax\car\DAXSAMP
\ibmcpp\samples\dax\car\CarBrws
\ibmcpp\samples\dax\car\CarEdit

The file VBDAX.VBB which contains the reusable parts is found in the directory :

\ibmcpp\dde4vb

Sample Applications Description

There are two separate applications, CarBrws and CarEdit .

The CarBrws Application

The first application, CarBrws, browses the contents of a car lot database. It might,

for example, be used by a salesperson to help a customer identify the vehicles he

would be interested in examining more closely.

The CarEdit Application

The second application, CarEdit, would be used to modify the contents of the

database. The user can add, delete, or update the cars in the database table.

 Copyright IBM Corp. 1993, 1995 255

Running the Samples

There are several windows in this application. The first window handles the database

connection using a reusable visual part that is included with the Data Access Builder

visual builder library.

The second window displays the database contents, and allows the user to select cars

for further operations. Other windows allow the user to modify the car database.

Creating the Sample Database and the Table

The first thing you must do is recreate the sample database with the contents and

tables needed for this sample.

1. Open the DAXSAMP Database DLL Folder. Double click on

DAXSAMP.CMD. Enter the target drive letter for the database.

This creates a database called DAXSAMP on the specified drive and invokes a

command line processor script to create a table called CAR. The database and

table take approximately 3.5 MB of disk space. The CARV.DLL is automatically

copied to the ibmcpp\dll directory, and bound to the DAXSAMP database.

Running the Samples

 Running CarBrws

1. To logon to your system, from an OS/2 command line type:

logon userid /p:password /l:

2. Open the Data Access CarBrws Sample project. Select Run from the Project

pull-down menu.

3. Choose ...or all cars to see the complete contents of the table.

4. Choose Only these... to see a subset of the table based on the clause specified in

the entry box.

5. Modify the clause in the entry box to specify a different filter for the car lot

contents.

6. Choose Only these... to see the result of your modified query.

7. Close the application.

 Running CarEdit

1. Open the Data Access CarEdit Sample project. Select Run from the Project

pull-down menu. The connection panel will appear. The entry box for the

database name will default to DAXSAMP.

2. Enter your userid and password. The default userid is USERID and the default

password is PASSWORD.

256 VisualAge C++ Open Class Library User's Guide

Generating Database Parts

3. Choose Connect to connect to the database. You can modify the name to force a

connect error, displayed in a message box. If you are not or cannot be logged

on, you will not be able to connect.

4. Single clicking on "Exclusive Mode" will ensure that this application is the only

one accessing this database. Other "Exclusive Mode" connect attempts (for

example by running CarEdit from a different window) will fail.

5. Changing the settings and reselecting Connect will cause any current connection

to be disconnected, and a new connection to be made with the new parameters.

6. When a connection is successfully established, the Disconnect, Commit and

Rollback buttons are enabled, and the second window of this application is

displayed. The data is retrieved from the database and displayed in this window

when the connection is made.

7. Select Add to add a new car. Select Delete to remove a car. Select Update to

edit a car. Commit or Rollback to complete the transaction.

8. Selecting Disconnect will cause any active connection to be terminated. The

Disconnect, Commit and Rollback buttons are again disabled, and the second

window is hidden. Note: Depending on your system configuration, Disconnect

will automatically either Commit or Rollback any pending transactions.

9. Closing the primary connection window will close the other windows and

terminate the application.

Generating the Database Parts

You may skip this step. You can use the CARV.VBE,CARV.DLL, CARV.LIB, and

CARV.BND files which have been provided, in which case the database access

components of the sample do not need to be generated or compiled.

1. Open the DAXSAMP Database DLL Project. There are two ways to generate the

database parts :

 a.

1) Select Database from the Project pull-down menu.

2) Choose Create Classes from the Startup Window.

3) Select the DAXSAMP database, and then select Connect. This displays

the CAR table from the DAXSAMP database.

4) Select the USERID.CAR table, and then select Create Classes.

5) Display the pop-up menu for the CAR class.

b. Alternatively, right-click on DAXSAMP.DAX and select Database. This

loads a file in which a table and class definition already exist.

2. Choose Generate. You can overwrite the existing files.

3. Close Data Access Builder. You do not need to save the current session when

prompted.

 Chapter 21. Constructing Applications Using Data Access Builder and the Visual Builder 257

Building CarEdit

Compiling the Database Parts

Note: You may skip this step. The CARV.DLL, CARV.BND and CARV.LIB files

have been provided, so the database access components of the sample can be used

without generation or compilation.

1. Open the DAXSAMP Database DLL project. Choose Build from the Project

pull-down menu. This compiles and links the generated code. A CARV.DLL file

and a CARV.LIB file are created.

2. Copy CARV.DLL into the directory ibmcpp\dll.

Building the CarBrws Application

1. Open the DAXSAMP Database DLL project. Choose Visual from the Project

pull-down menu.

2. Load the file VBDAX.VBB (see “Files to Build the Applications” on page 255).

3. Load the file CARBRWS.VBB.

4. Import the file CARV.VBE from the directory ..\DAXSAMP.

5. Select CARBRWS.VBB from the Loaded Parts files. Select CARBRWS in the

Visual Parts list.

6. Right-click, and select Generate->Part Source.

7. Right-click, and select Generate->Main for part.

8. Close the Visual Builder

9. Select Build from the Project pull-down menu.

Building the CarEdit Application

1. Open the DAXSAMP Database DLL project. Choose Visual from the Project

pull-down menu.

2. Load the file VBDAX.VBB (see “Files to Build the Applications” on page 255).

3. Load the file CAREDIT.VBB.

4. Import the file CARV.VBE from the directory ..\DAXSAMP.

5. Select CAREDIT.VBB from the Loaded Parts files. Select all parts in the

Visual Parts list.

6. Right-click, and select Generate->Part Source.

7. Select only CAREDIT from the Visual Parts list.

8. Right-click, and select Generate->Main for part.

9. Close the Visual Builder

10. Select Build from the Project pull-down menu.

258 VisualAge C++ Open Class Library User's Guide

Running the Sample from a Project

22 Constructing an Application Using

Data Access Builder and C++

Use Data Access Builder and the C++ classes to build an inventory application that

allows you to use Data Access Builder generated classes to make adjustments to an

inventory database based on changes in another database used for received orders.

The C++ Stock Sample program can be run from either:

 ¹ a project

¹ an OS/2 command line.

Files to Build this Application

All of the files you need to build this application are in:

samples\dax\stock\csetpp.

samples\dax\stock\csetpp\README.

Running the C++ Stock Sample from a Project

Creating the Database and the Table

1. Double click on the DAX C++ Stock Sample Project to open it.

2. Create the database and tables for the sample by double clicking setupdb.cmd.

The database will be created on drive e. If you want to create the database on a

different hard drive, click the right mouse button and Select setting. On the

Program pages, change the hard drive letter for the parameters you want. The

default hard drive letter is the one you created the database on.

Generating the Database Classes

1. Start Data Access Builder

2. Click mouse button 2 on brchone.dax. Choose Database on the pop-up menu.

brchone.dax is a pre-built file containing the mappings between the database

tables and the classes.

You can create the mapping yourself, doing the following:

a. Click mouse button 2 on any white space in the project.

b. Choose Database from the pop-up menu.

c. Choose Create classes. The Create classes window displays.

d. Select the BRCHONE database and choose Connect. The Tables list box

fills with two tables.

 Copyright IBM Corp. 1993, 1995 259

Running the Sample from a Project

e. Choose Select All then choose Create classes. The Create classes window

closes, and the mapping for the table icon and a class icon displays in the

client area

f. Click mouse button 2 on the inventory table icon and choose Create class A

second inventory class icon, Inventory1, displays.

g. Double click on the Inventory1 class icon to display the class notebook.

h. On the Names page, change the class name to PriceList and change the file

name Invent1 to prclist. The mapping is complete.

i. Choose Save from the File menu.

3. Click mouse button 2 on the class icon and choose Generate → then choose

PARTS from the cascade menu. There are three groups of generated files:

invento*.*, prclist*.*, and receive*.*.

4. Close Data Access Builder.

5. Click mouse button 2 on any white space in the project. Choose Refresh from

the pop-up menu. The generated files are shown in the project.

Compiling the Database Classes

1. Click mouse button 2 on any white space in the project. Choose Build from the

pop-up menu to build the project.

2. Choose Refresh from the pop-up menu. You see client.exe is built.

Running the Application

1. Double click on client.exe to run the sample.

The following output displays:

The following is a price list before update:

Prod. ID Description Price
======== ===================== ======
RAM4-72 4M SIMM 72 pin 70 ns $210.68
MONAD14 ADI 14i .28 Microsc. $409.00
PRTZP52 ZP Inkjet 360x360 $389.00

The following is an updated price list:

Prod. ID Description Price
======== ===================== ======
RAM4-72 4M SIMM 72 pin 70 ns $296.44
HDR0025 Hard Drive 250MD IDE $286.36
MONAD14 ADI 14i .28 Microsc. $197.58
PRTZP52 ZP Inkjet 360x360 $389.00
HDR0034 Hard Drive 340MD IDE $270.89
CPU486a 486SLC-33 TI CPU,AMI $139.99
CPUPTMa Pentium 60/66 PCI256 $534.34

Note: To run the application again, you must reset the database tables, double click

on resetdb.cmd.

260 VisualAge C++ Open Class Library User's Guide

Running the SOM Sample from a Project

23 Constructing an Application Using

Data Access Builder and SOM

Use Data Access Builder and the SOM classes to build an inventory application that

allows you to use Data Access Builder generated classes to make adjustments to an

inventory database based on changes in another database used for received orders.

The SOM Stock Sample program can be run from either:

 ¹ a project

¹ an OS/2 command line.

Files to Build this Application

All of the files you need to build this application are in:

samples\dax\stock\som.

samples\dax\stock\som\README.

Running the SOM Stock Sample from a Project

Creating the Database and the Table

1. Double click on the DAX SOM Stock Sample Project to open it.

2. Create the database and tables for the sample by double clicking setupdb.cmd.

If you want to create the database on a different hard drive, click the right mouse

button and Select setting. On the Program pages, change the hard drive letter

for the parameters you want. The default hard drive letter is the one you created

the database on.

Generating the Database Classes

1. Start Data Access Builder

2. Click mouse button 2 on brchone.dax. Choose Database on the pop-up menu.

brchone.dax is a pre-built file containing the mappings between the database

tables and the classes.

You can create the mapping yourself, doing the following:

a. Click mouse button 2 on any white space in the project.

b. Choose Database from the pop-up menu.

c. Choose Create classes from the File menu. The Create classes window

displays.

d. Select the BRCHONE database and choose Connect. The Tables list box

fills with two tables.

 Copyright IBM Corp. 1993, 1995 261

Running the SOM Sample from a Project

e. Choose Select All then choose Create classes. The Create classes window

closes, and the mapping for the table icon and a class icon displays in the

client area

f. Click mouse button 2 on the inventory table icon and choose Create class A

second inventory class icon, Inventory1, displays.

g. Double click on the Inventory1 class icon to display the class notebook.

h. On the Names page, change the class name to PriceList and change the file

name Invent1 to prclist. The mapping is complete.

i. Choose Save from the File menu.

3. Click mouse button 2 on the class icon and choose Generate → then choose

IDL from the cascade menu. There are three groups of generated files:

invento*.*, prclist*.*, and receive*.*.

4. Close Data Access Builder.

5. Click mouse button 2 on any white space in the project. Choose Refresh from

the pop-up menu. The generated files are shown in the project.

Compiling the Database Classes

1. Click mouse button 2 on any white space in the project. Choose Build from the

pop-up menu to build the project.

2. Choose Refresh from the pop-up menu. You see client.exe is built.

Running the Application

1. Double click on client.exe to run the sample.

The following output displays:

The following is a price list before update:

RAM4-72 4M SIMM 72 pin 70 ns 210.68
MONAD14 ADI 14i .28 Microsc. 409.00
PRTZP52 ZP Inkjet 360x360 389.00

The following is an updated price list:

Prod. ID Description Price
======== ===================== ======
RAM4-72 4M SIMM 72 pin 70 ns 210.68
HDR0025 Hard Drive 250MD ID 239.45
MONAD14 ADI 14i .28 Microsc. 409.00
PRTZP52 ZP Inkjet 360x360 389.00
HDR0034 Hard Drive 340MD ID 270.89
CPU486a 486SLC-33 TI CPU,AM 139.99
CPUPTMa Pentium 60/66 PCI25 459.50

Program completed successfully

Note: To run the application again, you must reset the database tables, double click

on resetdb.cmd.

262 VisualAge C++ Open Class Library User's Guide

Part 6. The User Interface Class Library

The User Interface Class Library is one of the class libraries included in the IBM

VisualAge C++ for OS/2 product. It is a C++ class library that simplifies how you

develop OS/2 applications with graphical user interfaces (GUI). The User Interface

Class Library provides classes that you can use in your applications and reuse to

extend your applications.

You can use the User Interface Class Library classes to build applications that

simulate Common User Access (CUA) workplace look and feel and take advantage of

PM features. You can also use the User Interface Class Library to develop

applications that are portable between the AIX and OS/2 operating systems.

Chapter 24. Using the User Interface Class Library 265

Chapter 25. Summary of Changes . 271

Chapter 26. Introducing the User Interface Class Library 289

Chapter 27. Creating User Interface Class Library Applications 295

Chapter 28. Creating and Using Windows . 307

Chapter 29. Creating and Using Text Controls 321

Chapter 30. Creating and Using List Controls 343

Chapter 31. Creating and Using Canvas Controls 361

Chapter 32. Creating and Using File and Font Dialogs 381

Chapter 33. Creating Menus . 387

Chapter 34. Creating and Using Notebooks 397

Chapter 35. Creating and Using Containers 405

Chapter 36. Supporting Direct Manipulation 419

Chapter 37. Defining Application Resources 459

Chapter 38. Adding Events and Event Handlers 467

Chapter 39. Understanding Fonts . 487

Chapter 40. Adding Clipboard Support . 489

Chapter 41. Adding Tool Bars . 503

Chapter 42. Using Graphics in Your Application 513

Chapter 43. Creating and Using Multimedia Controls 541

Chapter 44. Providing Help Information . 583

Chapter 45. Introducing the Sample Application 595

Chapter 46. Creating a Main Window . 597

Chapter 47. Adding a Resource File and Frame Extensions 603

Chapter 48. Adding a Command Handler and Menu Bars 613

Chapter 49. Adding Dialogs and Push Buttons 621

Chapter 50. Adding Split Canvases, a List Box, and More 643

Chapter 51. Adding a Font Dialog, a Pop-up Menu, and a Notebook 647

 Copyright IBM Corp. 1993, 1995 263

264 VisualAge C++ Open Class Library User's Guide

Using the User Interface Class Library

24 Using the User Interface Class Library

This part enables you to start using the IBM VisualAge C++ User Interface Class

Library classes and helps you learn about features that the class library provides to

help you develop your own applications.

Using the User Interface Class Library, the chapter you are reading now, contains

an introduction to the User Interface Class Library.

Chapter 25, “Summary of Changes” provides you with a listing of the classes and

member functions that have changed in this release.

Chapter 26, “Introducing the User Interface Class Library” provides a high-level

description of the User Interface Class Library. The classes are grouped into

categories based on the tasks you perform when developing applications.

Chapter 27, “Creating User Interface Class Library Applications” describes the

classes that make up a typical application and the classes you use to develop basic

application components.

Chapter 28, “Creating and Using Windows” describes the classes that enable you

to create frame windows with extensions and basic controls, as well as message

boxes.

Chapter 29, “Creating and Using Text Controls” describes how you create entry

fields, multiple-line edit (MLE) fields, and button controls.

Chapter 30, “Creating and Using List Controls” describes the classes that enable

you to create list controls, including list boxes, combination boxes, sliders, and spin

buttons.

Chapter 31, “Creating and Using Canvas Controls” describes how you create

canvas controls, including split canvases, set canvases, multiple-cell canvases, and

view ports.

Chapter 32, “Creating and Using File and Font Dialogs” describes the classes that

enable you to create file dialogs and font dialogs.

Chapter 33, “Creating Menus” describes how you can create menus for your

applications.

 Copyright IBM Corp. 1993, 1995 265

Using the User Interface Class Library

Chapter 34, “Creating and Using Notebooks” describes the classes that you use to

create notebooks and how to add notebook styles.

Chapter 35, “Creating and Using Containers” describes how you create a

container control.

Chapter 36, “Supporting Direct Manipulation” describes how to implement direct

manipulation in your applications.

Chapter 37, “Defining Application Resources” describes a resource file and

explains how you convert OS/2 PM resource files to AIX resource files.

Chapter 38, “Adding Events and Event Handlers” describes the classes that you

use to create event handlers, mouse handlers and events, as well as explains how you

can write your own handler class.

Chapter 39, “Understanding Fonts” describes how you set and change fonts.

Chapter 40, “Adding Clipboard Support” describes how to add a clipboard to your

applications.

Chapter 41, “Adding Tool Bars” describes the classes that you use to create and

customize tool bars for your applications.

Chapter 42, “Using Graphics in Your Application” describes the different classes

provided by the User Interface Class Library to create 2-dimensional graphics.

Chapter 43, “Creating and Using Multimedia Controls” describes the multimedia

classes and provides samples and instructions for their use.

Chapter 44, “Providing Help Information” explains how you add help information

to your application. This section includes adding fly over help to your applications

and setting time intervals.

Chapter 45, “Introducing the Sample Application” through Chapter 51, “Adding

a Font Dialog, a Pop-up Menu, and a Notebook” take you step-by-step through the

Hello World application. This application illustrates many features of the User

Interface Class Library. Each version of the Hello World application builds on

concepts covered in the previous versions and shows you a different aspect of the

class library.

You can find sample code for the examples in the User Interface Class Library

samples directory, \ibmcpp\samples\ioc so you can follow along and create your own

examples as you read this book.

266 VisualAge C++ Open Class Library User's Guide

Using the User Interface Class Library

This guide also provides appendixes with commonly used information.

Appendix A, “Class Hierarchy by Category” lists all User Interface Class Library

classes.

Appendix B, “New Color Support” lists all the new User Interface Class Library

color support member functions.

Appendix C, “Task and Samples Cross-Reference Table” lists common tasks

performed using the User Interface Class Library and the sample that demonstrates

each task.

Appendix D, “Using Extended Style Support” discusses using the extended style

support provided by the User Interface Class Library as solutions to a number of

window style issues.

Appendix E, “Obsolete and Ignored Members Cross-Reference Tables” provides

cross-reference tables listing unsupported and obsolete member functions and classes

and their replacements, if any.

“Bibliography” contains lists of related books and publications.

 Refer to the IBM VisualAge C++ Open Class Library Reference Volume II and III

(hereafter called Open Class Library Reference) for complete reference details on the

User Interface Class Library.

The Contextual Help Feature

The User Interface Class Library provides contextual help for each class and member

function. To access contextual help:

¹ Install the CPP*.INF and CPP.NDX and CPPBRS.NDX files

¹ Use the VisualAge Editor

Access contextual help by positioning the cursor over the name of a class or member

function in the text you are editing and pressing Ctrl-H. This opens the online

version of the Open Class Library Reference and displays information about that class

or member function.

Refer to the product installation instructions for complete details on setting the

environment variables needed to use the contextual help feature.

 Chapter 24. Using the User Interface Class Library 267

Conventions

User Interface Class Library Conventions

This section describes the User Interface Class Library conventions for the following:

 ¹ File names

¹ Class names and member names

¹ Function return types

 ¹ Function arguments

 ¹ Examples

 File Names

File names have a maximum of eight characters. All files provided by the User

Interface Class Library begin with the letter “I” for IBM, for example, IAPP.HPP.

The following table lists file names, file extensions, and a brief description.

Refer to the Open Class Library Reference for cross-reference tables for the header

files and the classes they contain.

The IBM VisualAge C++ product files begin with the letters “CPP”. The following

table lists some file names, files extensions, and a brief description.

File Name and

Extension

Description

Ixxxxxxx.CPP Source code

Ixxxxxxx.H Constant definitions file

Ixxxxxxx.HPP Class interface file

Ixxxxxxx.INL Inline functions

File Name and

Extension

Description

CPPOOC3I.LIB Import library file

CPPOOB3.DLL Multithreaded dynamic-link library file containing the base library

classes (Collection/Application Support classes)

CPPOOB3.DEF Import module-definition file used to rebuild the CPP00B3.DLL file

CPPOOD3.DLL Multithreaded dynamic-link library file containing the dynamic data

exchange classes.

CPPOOD3.DEF Import module-definition file used to rebuild the CPP00D3.DLL file

CPPOOM3.DLL Multithreaded dynamic-link library file containing the Multimedia

classes.

CPPOOM3.DEF Import module-definition file used to rebuild the CPP00M3.DLL file

268 VisualAge C++ Open Class Library User's Guide

Conventions

File Name and

Extension

Description

CPPOOU3.DLL Multithreaded dynamic-link library file containing the User Interface

Base library classes.

CPPOOU3.DEF Import module-definition file used to rebuild the CPP00U3.DLL file

CPPOOC3.LIB Static object library

CPP.NDX Index for online help (Does not contain class::member syntax for

members)

CPPBRS.NDX Index for online help (Contains class::member references)

CPP*.INF Online help and online documentation files

CPPOOC3U.MSG Exception messages

Class Names and Member Names

The following rules were used for naming the User Interface Class Library classes

and members:

¹ Type names begin with a capital letter.

¹ Global type names begin with the letter “I”, as in ICurrentApplication.

¹ Member names, including member functions, member data, and enumerations,

begin with lowercase letters, as in autoSize data member.

Note: In this book, single-word member functions have ClassName:: added to

them; for example, the member function “show” appears as

IWindow::show.

Function Return Types and Function Arguments

To follow the User Interface Class Library conventions, pass objects as const

references or references and return objects by value rather than by reference. Pass

objects by pointer rather than by reference when you want a parameter to use its

default.

Function return types for the various functions are as follows:

¹ A Boolean (true or false). Use IBase::Boolean because it is portable between

OS/2 and AIX. The following is an example of a testing function:

IBase::Boolean isValid() const;

 Chapter 24. Using the User Interface Class Library 269

Conventions

Note: The User Interface Class Library returns a 0 if false and a nonzero if true,

so do not test for the following:

isValid()== true

Instead use if(isValid)

¹ An object. Accessor functions typically return an object. An accessor returns

information about the elements of a data type. The following example returns a

pointer to an IWindow object.

IWindow* owner(); //Returns a pointer to an object

¹ An object reference. Functions that act on an object return a reference to the

object on which they were called. For example:

IWindow& hide();

This lets you chain function calls together, as shown in the following example:

window.moveTo(IPoint(10,10)).show();

Function arguments are passed in the following ways:

¹ Built-in types (integers or doubles, for example) and enumerations are passed in

by value.

¹ Objects are passed by reference. If the argument is not modified by the function,

it is passed as a const reference.

¹ Optional objects are passed by pointer. This allows a 0 pointer to signify that no

object is being passed.

¹ IWindow objects are passed by pointer.

¹ IContainerObjects are passed by pointer.

¹ Strings are passed as a const char *. This enables you to pass either an IString

object or an array of characters.

A Note about Samples and Examples

This part of the User’s Guide contains both samples and examples. Samples,

including the Hello World sample application, are shipped with the User Interface

Class Library product in the \ibmcpp\samples\ioc directory. Examples, on the other

hand, exist only in the User’s Guide.

270 VisualAge C++ Open Class Library User's Guide

Classes

25 Summary of Changes

The User Interface Class Library version 3.0 contains the following changes and

enhancements:

¹ New and enhanced classes

¹ New and enhanced functions

 ¹ New styles

For late-breaking news, refer to the README file shipped with the product.

Some header files have been optimized to include only the headers it requires.

Therefore, if you obtain compiler errors stating that a class was not found, you should

include the necessary header file.

New and Enhanced Classes

The following classes are new:

 ¹ Bi-directional Support

 IWindow::BidiSettings

 ¹ Control Classes

 IMouseEvent

 IMouseHandler

 IMousePointerEvent

 IMousePointerHandler

 ¹ Multimedia Classes

 IMM24FramesPerSecondTime

 IMM25FramesPerSecondTime

 IMM30FramesPerSecondTime

 IMMAmpMixer

 IMMAudioBuffer

 IMMAudioCD

 IMMAudioCDContents

 IMMCDDA

 IMMCDXA

 IMMConfigurableAudio

 IMMCuePointEvent

 IMMDevice

 IMMDeviceEvent

 Copyright IBM Corp. 1993, 1995 271

Classes

 IMMDeviceHandler

 IMMDigitalVideo

 IMMErrorInfo

 IMMFileMedia

 IMMHourMinSecFrameTime

 IMMHourMinSecTime

 IMMMasterAudio

 IMMMillisecondTime

 IMMMinSecFrameTime

 IMMNotifyEvent

 IMMPassDeviceEvent

 IMMPlayableDevice

 IMMPlayerPanel

 IMMPlayerPanelHandler

 IMMPositionChangeEvent

 IMMRecordable

 IMMRemoveableMedia

 IMMSequencer

 IMMSpeed

 IMMTime

 IMMTrackMinSecFrameTime

 IMMWaveAudio

¹ Notification Support Classes

 IButtonNotifyHandler

 ICircularSliderNotifyHandler

 IComboBoxNotifyHandler

 IContainerControlNotifyHandler

 IEntryFieldNotifyHandler

 IFrameWindowNotifyHandler

 IListBoxNotifyHandler

 IMenuNotifyHandler

 IMultiLineEditNotifyHandler

 INotebookNotifyHandler

 INotificationEvent

 INotifier

 INumericSpinButtonNotifyHandler

 IObserver

 IObserverList

 IScrollBarNotifyHandler

 ISettingButtonNotifyHandler

 IStandardNotifier

 ITextControlNotifyHandler

 ITextSpinButtonNotifyHandler

272 VisualAge C++ Open Class Library User's Guide

Classes

 ITitleNotifyHandler

 IWindowNotifyHandler

¹ Tool Bar Support Classes

 ICustomButton

 ICustomButtonDrawEvent

 ICustomButtonDrawHandler

 IToolBar

 IToolBarButton

 IToolBarContainer

 IToolBarFrameWindow

¹ 2-D Graphics Support Classes

 IGArc

 IGBitmap

 IGChord

 IGEllipse

 IGLine

 IGList

 IGList::Cursor

 IGPie

 IGPolygon

 IGPolyline

 IGRectangle

 IGRegion

 IGString

 IGraphic

 IGraphicBundle

 IGraphicContext

 IG3PointArc

 IPointArray

 ITransformMatrix

¹ Fly Over Help Classes

 IFlyOverHelpHandler

 IFlyText

¹ String Parsing Support Class

 IStringParser

¹ Timer Support Classes

 ITimer

 ITimer::Cursor

 ITimerFn

 Chapter 25. Summary of Changes 273

Classes

 ITimerMemberFn

 ITimerMemberFn0

¹ Spin Button Classes

 IBaseSpinButton

 INumericSpinButton

 ITextSpinButton

 ITextSpinButton::Cursor

 ¹ ListBox Classes

 IBaseListBox

 ICollectionViewListBox

 IListBoxSizeItemEvent

 ¹ ComboBox Classes

 IBaseComboBox

 ICollectionViewComboBox

¹ String Generation Support Classes

 IStringGenerator

 IStringGeneratorFn

 IStringGeneratorMemberFn

 IStringGeneratorRefMemberFn

¹ ClipBoard Support Classes

 IClipBoard

 IClipBoardHandler

¹ Window Coordinate Mapping Support Classes

 ICoordinateSystem

¹ Animated Button Support Class

 IAnimatedButton

¹ Additional Canvas Classes

 IDrawingCanvas

¹ Additional Container Class

 ICnrAllocator

¹ Additional Direct Manipulation Classes

 IDMMenuItem

 IDMTBarButtonItem

 IDMToolBarItem

274 VisualAge C++ Open Class Library User's Guide

Member Functions

 IDMTargetEvent

¹ Additional Help Classes

 IHelpHyperlinkEvent

¹ Additional Slider Classes

 ICircularSlider

 ISliderArmHandler

New and Enhanced Member Functions

The following classes have new member functions:

Class Name Member Function

I3StateCheckBox convertToGUIStyle

IAccelerator reset

IBitmapControl convertToGUIStyle

IBuffer includesMBCS

isMBCS

isValidMBCS

IButton backgroundColor

disabledForegroundColor

enableNotification

foregroundColor

hiliteBackgroundColor

hiliteForegroundColor

ICanvas backgroundColor

convertToGUIStyle

ICheckBox convertToGUIStyle

IComboBox convertToGUIStyle

enableNotification

layoutAdjustment

minimumRows

setMinimumRows

visibleRectangle

enum ControlType dropDownList

IContainerColumn isHeadingWriteable

isWriteable

IContainerObject isWriteable

operator new

ICurrentThread isGUIInitialized

initializeGUI

terminateGUI

 Chapter 25. Summary of Changes 275

Member Functions

Class Name Member Function

IDBCSBuffer charLength

includesMBCS

isMBCS

isValidMBCS

isSBC

maxCharLength

prevCharLength

IDM enum RenderCompletion targetSuccessful

enum RenderCompletion targetFailed

IDMHandler isContainerControl

IDMImage defaultStyle

setDefaultStyle

IDMItem isTargetTheSource

tokenForWPSObject

IDMOperation dragWasInterrupted

setDragResult

setContainerRefreshOff

setContainerRefreshOn

IDMSourceOperation operation

setStackingPercentage

stackingPercentage

IEntryField backgroundColor

convertToGUIStyle

cursorPosition

enableNotification

foregroundColor

isWriteable

removeAll

selectedTextLength

setChangedFlag

setCursorPosition

IEvent controlHandle

controlWindow

dispatchingWindow

operator =

setControlHandle

setDispatchingHandle

setHandle

IEventData asLong

IFileDialog convertToGUIStyle

276 VisualAge C++ Open Class Library User's Guide

Member Functions

Class Name Member Function

IFileDialog::Settings fileName

initialDrive

initialFileType

isDialogTemplateSet

isOpenDialog

isPositionSet

okButtonText

position

title

IFileDialogHandler handleEventsFor

stopHandlingEventsFor

IFont operator =

enum Direction leftToRight

enum Direction topToBottom

enum Direction rightToLeft

enum Direction bottomToTop

IFontDialog defaultStyle

setDefaultStyle

convertToGUIStyle

IFontDialog::Settings setFont

IFrameExtension useMinimumSize

IFrameHandler positionExtensions

IFrameWindow backgroundColor

convertToGUIStyle

disabledBackgroundColor

enableNotification

enum FrameSource dialogResource

enum FrameSource noDialogResource

enum FrameSource tryDialogResource

isAnExtension

mousePointer

resetBackgroundColor

resetDisabledBackgroundColor

setLayoutDistorted

setMousePointer

setToolBarList

toolBarList

useExtensionMinimumSize

IGraphicPushButton convertToGUIStyle

marginSize

setMarginSize

IGroupBox convertToGUIStyle

foregroundColor

visibleRectangle

IHandle asUnsigned

IHelpHandler hyperlinkSelect

 Chapter 25. Summary of Changes 277

Member Functions

Class Name Member Function

IIconControl convertToGUIStyle

visibleRectangle

IListBox backgroundColor

calcMinimumSize

convertToGUIStyle

enableNotification

minimumCharacters

minimumRows

setItemHeight

setMinimumCharacters

setMinimumRows

IListBoxDrawItemEvent isSelectionStateDrawn

setSelectionStateDrawn

IListBoxDrawItemHandler deselectItem

drawItem

handleEventsFor

selectItem

setItemSize

IMenu add

addAsNext

backgroundColor

convertToGUIStyle

disabledBackgroundColor

disabledForegroundColor

enableNotification

foregroundColor

hiliteBackgroundColor

hiliteForegroundColor

isItemEnabled

resetBackgroundColor

resetDisabledBackgroundColor

resetDisabledBackgroundColor

resetForegroundColor

resetHiliteBackgroundColor

resetHiliteForegroundColor

setForegroundColor

setHiliteBackgroundColor

setHiliteForegroundColor

IMenuBar convertToGUIStyle

IMenuItem convertToGUIStyle

extendedStyle

isBitmap

setExtendedStyle

IMenuNotifyHandler dispatchHandlerEvent

IMultiCellCanvas convertToGUIStyle

278 VisualAge C++ Open Class Library User's Guide

Member Functions

Class Name Member Function

IMultiLineEdit backgroundColor

convertToGUIStyle

cursorLinePosition

cursorPosition

disableUpdate

enableNotification

enableUpdate

foregroundColor

isWriteable

setCursorLinePosition

setCursorPosition

INotebook backgroundColor

convertToGUIStyle

hiliteBackgroundColor

majorTabBackgroundColor

majorTabForegroundColor

minorTabBackgroundColor

minorTabForegroundColor

pageBackgroundColor

resetMajorTabBackgroundColor

resetMajorTabForegroundColor

resetMinorTabBackgroundColor

resetMinorTabForegroundColor

resetPageBackgroundColor

setMajorTabForegroundColor

setMinorTabBackgroundColor

setMinorTabForegroundColor

setPageBackgroundColor

setMajorTabBackgroundColor

IOutlineBox convertToGUIStyle

visibleRectangle

IPaintEvent setGraphicContext

IProgressIndicator backgroundColor

convertToGUIStyle

IPushButton addBorder

convertToGUIStyle

hasBorder

removeBorder

IRadioButton convertToGUIStyle

 Chapter 25. Summary of Changes 279

Member Functions

Class Name Member Function

IRectangle centerXCenterY

centerXMaxY

centerXMinY

maxX

maxXCenterY

maxXMaxY

maxXMinY

maxY

minX

minXCenterY

minXMaxY

minXMinY

minY

IResourceLibrary tryToLoadBitmap

tryToLoadIcon

tryToLoadMessage

tryToLoadString

ISWP isHide

isMove

isShow

isSize

isZOrder

setHide

setMove

setNoAdjust

setShow

setSizeFlag

setZOrder

IScrollBar convertToGUIStyle

enableNotification

foregroundColor

hiliteForegroundColor

ISetCanvas setGroupPad

convertToGUIStyle

groupPad

ISettingButton enableNotification

ISlider convertToGUIStyle

ISplitCanvas convertToGUIStyle

resetSplitBarEdgeColor

resetSplitBarMiddleColor

setSplitBarEdgeColor

setSplitBarMiddleColor

splitBarEdgeColor

splitBarMiddleColor

visibleRectangle

280 VisualAge C++ Open Class Library User's Guide

Member Functions

Class Name Member Function

IStaticText backgroundColor

convertToGUIStyle

fillColor

foregroundColor

resetFillColor

setFillColor

IString includesMBCS

isMBCS

isValidMBCS

IThread autoInitGUI

messageQueue

variable

setAutoInitGUI

setVariable

setDefaultAutoInitGUI

ITitle activeColor

activeTextBackgroundColor

activeTextForegroundColor

borderColor

inactiveColor

inactiveTextBackgroundColor

inactiveTextForegroundColor

enableNotification

resetActiveTextBackgroundColor

resetActiveTextForegroundColor

resetInactiveTextBackgroundColor

resetInactiveTextForegroundColor

setActiveTextBackgroundColor

setActiveTextForegroundColor

setInactiveTextBackgroundColor

setInactiveTextForegroundColor

setViewNumber

viewNumber

IViewPort convertToGUIStyle

 Chapter 25. Summary of Changes 281

Member Functions

Class Name Member Function

IWindow activeColor

addObserver

applyBidiSettings

backgroundColor

borderColor

capturePointer

characterSize

convertToGUIStyle

disableNotification

disabledBackgroundColor

disabledForegroundColor

dispatchRemainingHandlers

enableNotification

enum BidiLayout

enum BidiNumeralType

enum BidiTextOrientation

enum BidiTextShape

enum BidiTextType

enum EventType control

extendedStyle

font

foregroundColor

handleWithParent

handleWithPointerCaptured

hasPointerCaptured

hiliteBackgroundColor

hiliteForegroundColor

inactiveColor

isBidiSupported

isEnabled

isEnabledForNotification

isGroup

isTabStop

isWindowValid

movePointerTo

nativeRect

notificationHandler

notifyObservers

observerList

parentSize

pointerPosition

282 VisualAge C++ Open Class Library User's Guide

Member Functions

Class Name Member Function

IWindow cont. releasePointer

removeAllObservers

removeObserver

resetActiveColor

resetBackgroundColor

resetBorderColor

resetColor

resetDisabledBackgroundColor

resetDisabledForegroundColor

resetFont

resetForegroundColor

resetHiliteBackgroundColor

resetHiliteForegroundColor

resetInactiveColor

resetShadowColor

setActiveColor

setBackgroundColor

setBorderColor

setDisabledBackgroundColor

setDisabledForegroundColor

setExtendedStyle

setFont

setForegroundColor

setHiliteBackgroundColor

setHiliteForegroundColor

setId

setInactiveColor

setNotificationHandler

setShadowColor

shadowColor

windowWithOwner

windowWithParent

Enhanced Member Functions

The following classes have changed member functions:

Class Name Member Function

IApplication adjustPriority

setPriority

IButton highlight

IButton

ICanvas ICanvas

ICnrDrawHandler ICnrDrawHandler

ICnrMenuHandler ICnrMenuHandler

IColor IColor

 Chapter 25. Summary of Changes 283

Member Functions

Class Name Member Function

IComboBox add

setItemText

remove

IControl IControl

ICurrentThread initializePM

IDDEClientConversation acknowledged

beginHotLink

conversationEnded

data

endHotLink

executeAcknowledged

hotLinkInform

pokeAcknowledged

pokeData

requestData

IDDETopicServer acceptConversation

acknowledged

beginHotLink

conversationEnded

executeCommands

hotLinkEnded

pokeData

requestData

requestHotLinkData

IDMHandler setItemProvider

enableDragDropFor

enableDragFrom

enableDropOn

IDMImage IDMImage

style

IDMSourceHandler sourceBegin

IDMTargetHandler targetDrop

IDMTargetRenderer informSourceOfCompletion

IEntryField clear

copy

cut

selectRange

IEvent setResult

IEventData operator char*

operator unsigned long

IFileDialog IFileDialog

284 VisualAge C++ Open Class Library User's Guide

Member Functions

Class Name Member Function

IFont setCharHeight

setCharSize

setCharWidth

setFontAngle

setFontShear

setName

setPointSize

useBitmapOnly

useNonPropOnly

useVectorOnly

IFontDialog IFileDialog

IFontDialogHandler modelessResults

IFrameExtension separator

setSize

width

IFrameWindow addExtension

borderHeight

borderWidth

IFrameWindow

notifyOwner

removeExtension

setBorderHeight

setBorderSize

setBorderWidth

setExtensionSize

tryToLoadDialog

IHelpHandler controlSelect

handleError

helpUndefined

keysHelpId

menuBarCommand

openLibrary

showContents

showCoverPage

showHistory

showIndex

showPage

showSearchList

showTutorial

subitemNotFound

swapPage

IHandle operator Value

IHelpNotifyEvent controlId

IIconControl IIconControl

 Chapter 25. Summary of Changes 285

Member Functions

Class Name Member Function

IListBox add

locateText

remove

setHeight

setItemText

IMenu IMenu

IMenuItem attribute

index

isSubmenu

isText

setAttribute

setIndex

setStyle

style

IMultiLineEdit clear

copy

cut

selectRange

setChangedFlag

IPaintHandler IPaintHandler

IPrivateResource handle

IProgressIndicator setHomePosition

setPrimaryScale

IResizeHandler IResizeHandler

IResource handle

IResourceId IResourceId

ISelectHandler ISelectHandler

ISettingButton select

ISharedResource handle

IShowListHandler IShowListHandler

ISize asSIZEL

IStaticText setAlignment

ISubmenu addBitmap

addItem

addSeparator

addText

ISWP ISWP

ITextControl ITextControl

IThread setAutoInitPM

setDefaultAutoInitPM

286 VisualAge C++ Open Class Library User's Guide

Member Functions

Class Name Member Function

IWindow windowWithHandle

windowWithId

Additional Library Enhancements

Existing member functions have been updated to conform to the following User

Interface Class Library conventions:

¹ Many functions are now declared as "const".

¹ Many parameters are now passed by "const" references instead of being passed

by value.

¹ Many functions are now declared as "virtual".

Many of the include statements in the header files have been replaced with forward

declares. This was done so that applications will only have required files included.

You might need to add include statements in your application to replace the removed

includes.

In place of FID_CLIENT and 0x8008 for the window identifier of a client window,

you can now use the #define IC_FRAME_CLIENT_ID.

Window identifiers of the child windows created by an IViewPort have been changed.

The changes are:

IWindow::clipToParent and IWindow::synchPaint have been removed from the default

style of ICanvas.

INotebook::setStatusText(const char*) now throws an IInvalidRequest exception when

invoked and the page does not allow status text.

IEntryField::selectedRange() and IMulitLineEdit::selectedRange() throws an

IInvalidRequest when invoked and there is no text selected.

A message box will always have a title bar when IMessage::moveable style is

specified, even if there is no title text.

Child Window Old Window id New Window id

Vertical Scroll Bar 0x8000 IC_VIEWPORT_VERTSCROLLBAR

Horizontal Scroll Bar 0x8001 IC_VIEWPORT_HORZSCROLLBAR

View Rectangle 0x8002 IC_VIEWPORT_VIEWRECTANGLE

 Chapter 25. Summary of Changes 287

Styles

 New Styles

The following classes have new styles:

Class Name New Style

IComboBox readOnlyDropDownType

IContainerControl noSharedObjects

ISetCanvas decksByGroup

Extended Styles Support

Extended styles are now supported with the ICLUI framework. New functions have

been added to the IWindow hierarchy. See Appendix D, “Using Extended Style

Support” on page 677 for more details.

288 VisualAge C++ Open Class Library User's Guide

Introducing the User Interface Class Library

26 Introducing the User Interface Class Library

The User Interface Class Library contains over 400 classes and over 4000 member

functions. To assist you in learning about the classes and to guide you as you start

developing applications, we organized the classes into the following basic categories:

¹ Application Control Classes

¹ Data Types and Base Classes

¹ Base Windows, Menus, Handlers, and Events

 ¹ Basic Controls

¹ Advanced Controls, Dialogs, and their Handlers

¹ Direct Manipulation Classes

¹ Dynamic Data Exchange Classes

¹ 2-Dimensional Graphic Classes

 ¹ Multimedia Classes

Application Control Classes: Provide support for the application, threads, timers,

profiles, and the resources used by the applications you develop.

Data Types and Base Classes: Provide support for the exceptions, trace output,

messages, strings, notifications, and window geometry used by the applications you

develop.

Model basic data types, such as strings, points, and rectangles. These classes hide the

structure of the data, while providing the capability to access and alter the data. In

addition, a set of handle classes are provided to access window or application-specific

handles.

Base Windows, Menus, Handlers, and Events: Provide support for the basic

windows, handlers, events, and menus used by the applications you develop.

Encapsulates the basic graphical building blocks that are used to construct application

windows. This allows window position and appearance (parent windows) to be

separated from event handling (owner windows).

Encapsulate the user’s interaction with application windows. The library creates

event objects as a result of some action by the user or by other applications. These

event objects contain information about what occurred; they are passed to handler

objects for processing. Each window has some default event processing; however,

the application can create instances of the handler classes to process certain event

objects to override the default behavior.

 Copyright IBM Corp. 1993, 1995 289

Creating Classes

Use handlers to override or augment a control’s default behavior. For example, use a

handler when you want to take some action based on user input such as selecting a

button or list box item.

Basic Controls: Provide support for the basic controls like entry field, static text and

buttons used by the applications you develop.

Advanced Controls, Dialogs, and their Handlers: Provide support for the advanced

controls like container, notebook, tool bar, and the font and file dialogs used by the

applications you develop.

Direct Manipulation Classes: Provide support for the direct manipulation used by

the applications you develop.

Dynamic Data Exchange Classes: Provide support for the Dynamic Data Exchange

(DDE) used by the applications you develop.

2-Dimensional Graphic Classes: Provide support for the 2D graphic elements used

by the applications you develop.

Multimedia Classes: Provide support for the multimedia devices and controls used

by the applications you develop.

Creating Your Own Classes

Most applications require new classes, which you can derive from existing classes.

You derive new classes for two reasons:

¹ To inherit implementation details from a base class

¹ To substitute for a base class

The following table provides a starting point to determine which base class to use:

Added New Function Derived From

Attribute IBase or IVBase

Canvas class ICanvas

Control IControl or ITextControl

Cursor IVBase

Data type IBase or IVBase

Dialog window IFrameWindow

Event IEvent

290 VisualAge C++ Open Class Library User's Guide

Design Recommendations

Added New Function Derived From

Primary or secondary window IFrameWindow

Settings IBase

Style IBitFlag

Window behavior Handler specific to the window

Understanding the Design Recommendations

This section gives recommendations for designing User Interface Class Library

applications. These general recommendations should not substitute for detailed design

guidelines. Many of the topics listed here require a great deal of consideration when

you design complex object-oriented applications.

The Hello World sample application shipped with this product uses these design

recommendations.

Reviewing C++ Recommendations

The following topics are general C++ recommendations.

Choosing

Multiple

Inheritance or

Composition

It is easier to inherit from multiple classes when you design simple applications.

Because all of the functions from the derived classes are immediately available, you

can easily use them as-is and not override them.

However, as your application evolves into a more complex application, it can be

difficult to anticipate how changes in the functions of the inherited classes will affect

the derived class.

Generally, if the class you design is-a, for example, frame window, then it should

inherit from the IFrameWindow class. Inheriting from IFrameWindow is typical.

However, if the class has-a, for example, command handler, ICommandHandler

should be represented by a member in the derived frame window. It should not

inherit from the command handler class. The Hello World version 3 sample

application provides an example.

 Refer to Chapter 48, “Adding a Command Handler and Menu Bars” on page 613

for more information about this sample.

Overriding

Virtual

Functions

When you override inherited member functions, such as the

ICommandHandler::command function, that are defined as virtual, you should declare

the overriding function as virtual too. This improves the readability of the inheriting

 Chapter 26. Introducing the User Interface Class Library 291

Design Recommendations

class by saving the reader from having to search up the inheritance chain to discover

that the function was originally defined as virtual.

Deleting

Objects

Created with

New

If you create objects dynamically by using the new operator, you should delete

them by using the delete operator. If an object is composed of dynamically created

objects, that is, you create the composed objects with the new operator in the

constructor of the composing object, then you should delete the object in the

destructor of the composing object.

Note: An exception to this rule is when you use the autoDelete behavior of

IWindow derived classes. Refer to IWindow::setAutoDeleteObject in the

Open Class Library Reference for more information.

If you want to create objects that exist for the lifetime of the main window object, do

not create them using new. Instead, create them as static objects (for example, in the

frame window constructor).

Understanding the User Interface Class Library Recommendations

The following topics are general User Interface Class Library recommendations.

Using String

Resources

The values of strings in applications vary by user because of preference or national

language, for example. Therefore, you should define strings outside the application.

In OS/2 this capability is provided by using OS/2 Presentation Manager (PM)

resource compiler (.RC) files. This format lets you use descriptive tags to identify

tables of strings and associate them with unique IDs in your application.

Motif In AIX, you can also use the .rc files, as long as you convert the files using the

ipmrc2X tool. The User Interface Class Library provides the ipmrc2X tool to convert

the PM .RC format to X Toolkit resource files. For more information about ipmrc2X,

refer to “Converting Resource Files” on page 463. Hello World version 2 shows

how to use User Interface Class Library functions to reference strings from resource

files.

 Refer to Chapter 47, “Adding a Resource File and Frame Extensions” on
page 603 for more information about this sample.

Defining

Menus in

Resource

Files

For ease of programming and to accommodate user preference and national

languages, the User Interface Class Library provides the ipmrc2X tool to support

defining menu bars, submenus, menu items, and accelerators in .RC file format. By

using the same ID for the menu bar and the frame window, you can define the layout,

menu item text, and accelerator key definitions external to application logic. Hello

World version 3 or version 4 demonstrates this feature.

292 VisualAge C++ Open Class Library User's Guide

Design Recommendations

 Refer to Chapter 48, “Adding a Command Handler and Menu Bars” on page 613

or Chapter 49, “Adding Dialogs and Push Buttons” on page 621 for more

information about these samples.

Using

Canvases

Instead of

Dialog

Templates

OS/2 PM provides support for dialog templates, which are “layouts” of frame

windows and controls. This support is not available in Motif and, therefore, is not

portable. Instead, use the canvas classes, such as IMultiCellCanvas and ISetCanvas,

for designing portable dialogs across AIX and OS/2. Hello World version 4

demonstrates this feature.

 Refer to Chapter 49, “Adding Dialogs and Push Buttons” on page 621 for more

information about this sample.

Defining the

Client

Window ID

In OS/2 PM, applications that define client windows should use the window ID

0x8008 because IFrameWindow::setClient changes the ID to that value regardless of

the ID passed to it. Therefore, if you write portable applications, use 0x8008 as the

ID for all client windows on both OS/2 and AIX. The User Interface Class Library

also provides a #define IC_FRAME_CLIENT_ID statement for the 0x8008 ID.

 Chapter 26. Introducing the User Interface Class Library 293

Design Recommendations

294 VisualAge C++ Open Class Library User's Guide

Creating User Interface Class Library Applications

27 Creating User Interface

Class Library Applications

To create a User Interface Class Library application, you need to know which files to

create and what goes into them. The following list describes the minimum files

required for an application. Typically, the name of each file is the same; only the

extensions differ.

As you create more complex applications, separate your code into different files. The

following files are optional:

When you use the User Interface Class Library to write applications, use the

following structure for your files:

 ¹ #include statements

Insert #include statements at the beginning of the file to specify other files that

contain information that your application requires. The following order is

recommended for #include statements in an application:

1. Standard C library headers

2. OS/2 Toolkit headers

3. User Interface Class Library headers

4. Your class headers

File Name Contains

filename.CPP Primary C++ code for your application.

filename.HPP Declaration of any class or classes that you create. You can put each class in a

separate .HPP file or all classes in one file. If your classes are used in only one

.CPP file, they can be declared in that .CPP file instead.

File Name Contains

filename.RC Application resource file and associated resources used when the application

requires data, such as text strings or bit maps, from an external source. Examples

of external sources include .BMP, .ICO, and .DLG files.

filename.H Header file, which defines constants used in a resource (.RC) file.

filename.DEF Module definition file, which holds information that defines your application for

the linker.

filename.IPF Text and tags to produce the help information for your application.

filename.MAK makefile, which holds information to compile and link your application.

 Copyright IBM Corp. 1993, 1995 295

Creating User Interface Class Library Applications

Note: In certain cases, the User Interface Class Library headers can detect

whether the OS/2 Toolkit headers are included and can define some

Toolkit-specific functions.

Typical #include statements are:

 – #include <Ixxxxx.HPP>

Includes the header file that contains information about a User Interface

Class Library class that your application uses. You must include the header

file for each class you use. All User Interface Class Library header files

begin with the letter “I”.

 Refer to the Open Class Library Reference for cross-reference tables for

header files and the classes they contain.

 – #include "xxxxx.HPP"

Represents the inclusion of a header file that contains the definition of a

class that you created. Include header files for classes that you create if your

source file uses those classes. See “Creating Your Own Classes” on

page 290 for more information.

 – #include "xxxxx.H"

Includes the file that defines your symbolic definitions.

¹ The function called “main” defines the application’s entry point

Create the primary application window, call its functions to change settings, such

as color, size, or position; call its inherited frame window functions to give it

focus and have it displayed; and call ICurrentApplication::run to begin event

processing.

¹ Constructor for the application window

Typically, a new class derived from IFrameWindow defines the main application

window. This new class’ constructor can follow the Main function. Its purpose

is to initialize the inherited IFrameWindow, initialize data members that compose

the new class, start event handlers, and set controls used in the frame window.

Once the application window is constructed, your application can call other

classes to insert controls and dialogs into the window and to handle events.

 ¹ Destructor

Use a destructor to stop event handlers and delete any composed objects that you

created using the new operator, except those IWindow objects set as autoDelete.

¹ Member functions for the application window

296 VisualAge C++ Open Class Library User's Guide

User Interface Class Library Applications

If the new class that defines the application window defines any new functions or

overrides inherited functions, include them here.

Understanding a User Interface Class Library Application

An easy way to understand how the classes and objects work together is to look at a

simple application, called Hello World version 1. This application has two basic user

interface components:

¹ A standard frame window with a title bar, system menu, border, and minimize

and maximize buttons.

¹ The rest of the window, called the client area, that contains the phrase “Hello

World!!!”

The main window for Hello World version 1 looks like this:

Figure 24. Hello World Version 1 Main Window

One source file, the .CPP file, is required for this application.

Creating a C++ Source File

The Hello World application, versions 1 through 6, illustrates many User Interface

Class Library features. Hello World version 1 has only a .cpp file. This file is the

C++ source file used by the C++ compiler to generate the executable part of this

 Chapter 27. Creating User Interface Class Library Applications 297

Event Processing

application. A copy of the “Hello World” version 1 application is in the

\ibmcpp\samples\ioc\hello1 directory.

The listing of the C++ source file for the Hello World version 1 application follows:

1 //Include User Interface Class Library class headers:
2 #include <iapp.hpp> //IApplication class
3 #include <istattxt.hpp> //IStaticText class
4 #include <iframe.hpp> //IFrameWindow class
5
6 /**
7 * main - Application entry point for Hello World Version 1. *
8 * This simple application does the following: *
9 * 1) Creates a new object mainWindow of class IFrameWindow *
10 * 2) Creates a new object hello of class IStaticText *
11 * 3) Sets the static text value and aligns it *
12 * 4) Sets the static text as the client of the mainWindow *
13 * 5) Sets the size of mainWindow *
14 * 6) Sets the window focus to mainWindow *
15 * 7) Displays the mainWindow *
16 * 8) Starts the events processing for the application *
17 **/
18 int main()
19 {
20 IFrameWindow mainWindow ("Hello World Sample - Version 1", 0x1000);
21
22 IStaticText hello(IC_FRAME_CLIENT_ID, &mainWindow, &mainWindow);
23 hello.setText("Hello, World!!!");
24 hello.setAlignment(IStaticText::centerCenter);
25 mainWindow.setClient(&hello);
26
27 mainWindow.sizeTo(ISize(400,300));
28 mainWindow.setFocus();
29 mainWindow.show();
30 IApplication::current().run();
31 return 0;
32 } /* end main */

This application creates the following objects:

mainWindow This IFrameWindow object is the main window for the application.

It is constructed in line 20.

hello This is the static text control (IStaticText) object that contains the

phrase “Hello World!!!” This object is constructed on line 22.

ISize object A temporary ISize object is created on line 27.

Starting Event Processing

To develop a User Interface Class Library application, you can use IApplication and

the single instance of its derived class, ICurrentApplication. Objects of the

ICurrentApplication class represent the application that is currently running.

298 VisualAge C++ Open Class Library User's Guide

Event Processing

To start event processing for a C++ application using the User Interface Class Library,

obtain a reference to ICurrentApplication by using the static member function

IApplication::current. The instance of this class contains information about the

application that is accessible to the ICurrentApplication::run member function

executing in the process. The following example comes from the Hello World

version 1 source file:
...
30 IApplication::current().run();
...

Loading Resources into an Application

There are two ways to load resources into your application:

1. Code the values directly in the file

2. Create a resource file

The User Interface Class Library loads resources where necessary for an application.

Use the ICurrentApplication member function setUserResourceLibrary to identify

which resource library will be used if none is specified on a call that loads a resource.

The following highlighted code shows an example.

int main(int argc, char **argv) //Main function with arguments
 {
IApplication::current(). //Save the command line arguments
setArgs(argc, argv); //in the current application object.

 IString Dllname(IApplication::current().argv(1));

IApplication::current(). //Get current application
setUserResourceLibrary(dllname.asString()); // Set the name of resource DLL.

AHelloWindow mainWindow (WND_MAIN); //Create main window

IApplication::current().run(); //Get current & run the application
 return 0;
} /* end main */

First, the library tries to create a frame window by loading a dialog with the

WND_MAIN ID from specified resource library.

You can also determine the current user resource library by calling the

userResourceLibrary member function. The following highlighted code shows an

example.

AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow(windowId) //Call IFrameWindow constructor

{
hello = new IStaticText(WND_HELLO, //Create static text control
this, this); // Pass in myself as owner & parent

 hello->setText(
 IApplication::current().
 userResourceLibrary().asString());

 Chapter 27. Creating User Interface Class Library Applications 299

Compiling and Linking

//Set text in static text control
hello->setAlignment(//Set alignment to center in both

 IStaticText::centerCenter); // directions
setClient(hello); //Set hello control as client window

setFocus(); //Set focus to main window
show(); //Set to show main window

} /* end AHelloWindow :: AHelloWindow(...) */

Recording and Querying Command Line Arguments

With ICurrentApplication, you can record and query the command line arguments of

your application. Set the arguments by calling setArgs with the arguments that were

passed to the main function.

To query the number of arguments, use the member function

ICurrentApplication::argc. This member function always returns a nonzero value

because it has at least the name of the application as a parameter.

To get the nth parameter, use the member function ICurrentApplication::argv, where

the argv(0) component is always the name of the application. Because argv is

returned as an IString, you can use all the overloaded operators for this class.

For example, the following highlighted (bold face) code records the command line

parameters.

int main(int argc, char **argv)
{
 IApplication::current().setArgs(argc, argv);
...

where

argc is the number of arguments received

argv represents the actual arguments.

 Refer to the Open Class Library Reference for more information about the

ICurrentApplication and IApplication classes.

Compiling and Linking Your User Interface Class Library Application

The make utility helps you manage your software development projects and the files

associated with your project. Make uses a makefile to convert your source code file

into an object file. The makefile is a special file containing a list of tasks that you

provide to convert your source file.

The following example shows the Hello World version 1 makefile for the OS/2

operating system.

300 VisualAge C++ Open Class Library User's Guide

Compiling and Linking

Make file assumptions:
- Environment variable INCLUDE contains paths to:
VisualAge C++ target_directory\include;
OS/2 Developer's Toolkit target_directory include paths
- Environment variable LIB contains paths to:
VisualAge C++ target_directory\lib;
OS/2 Developer's Toolkit target_directory lib paths
- Current directory contains source files. Originals are in:
VisualAge C++ target_directory\samples\ioc\hello1
- current directory will be used to store:
object, executable, and resource files

ERASE=ERASE
GCPPC=ICC.EXE
GLINK=ICC.EXE

ICLCPPOPTS=/GM /GD

GCPPFLAGS=$(LOCALOPTS) $(ICLCPPOPTS)

GCPPLFLAGS=/B" /pmtype:pm"

all: HELLO1.EXE

HELLO1.EXE: AHELLOW1.OBJ
$(GLINK) $(GCPPLFLAGS) /Fe"HELLO1.EXE" $(CPPOLIBS) \

 AHELLOW1.OBJ

AHELLOW1.OBJ: AHELLOW1.CPP
$(GCPPC) /C $(GCPPFLAGS) AHELLOW1.CPP

clean:
 $(ERASE) HELLO1.EXE
 $(ERASE) AHELLOW1.OBJ

There are two ways to invoke make, depending on what you name your make file.

1. If you have a file named “makefile”, type the following:

nmake

2. If you have a file by a different name, for example, makefile.OS2, type the

following:

nmake -f makefile.OS2

A successful make generates the files you need for linking and executing. To remove

the files you generate, for example if you want to put the sample directory back the

way you found it, run the make clean command. The makefiles provided with Hello

World samples include a clean section that erases files you generate. The following

make clean command is set at the beginning of the Hello World makefiles, to erase

the files:

 Chapter 27. Creating User Interface Class Library Applications 301

Linking an Application

clean:
 $(ERASE) HELLO1.EXE
 $(ERASE) AHELLOW1.OBJ

Using the Conversion Tools

OS/2 resource files and bit-maps, and icons cannot be directly used in Motif. C Set

++ for AIX provides a set of utilities which convert resource files to X resource files

and bit-maps and icons to .xpm files. The ipmrc2X tool converts OS/2 resource files

into X resource files.

Note: Also, you should recompile all OS/2 .IPF (help) files that you want to use on

AIX.

Linking an Application to the Open Class Library

Link your application to the Open Class Library in one of the following ways,

depending on your needs:

1. If you are developing an application, use the CPPOOC3I.LIB import library.

Your application links dynamically to the following .DLLs at run time:

 ¹ CPPOOB3.DLL

 ¹ CPPOOD3.DLL

 ¹ CPPOOM3.DLL

 ¹ CPPOOU3.DLL

Using these .DLLs during development reduces the time it takes to link your

application and the amount of swap space used.

You must also link with CPPOM30I.LIB. This library resolves C++ runtime

external references and uses CPPOM30.DLL.

By compiling with the -Gd -Gm options, the compiler will automatically generate

the appropriate .LIB names in the resulting .OBJ files. The linker will then use

these files without you explicitly listing them. Compiling with -Gn or linking

with /NOD will suppress the use ot the compiler generated .LIB names. You may

need to do this if you rebuild the DLLs.

2. If you are delivering an application, you must decide whether to rename the Open

Class Library .DLLs and ship them with your application or statically link the

Open Class Library code directly into your executable. To statically link to the

Open Class Library code, use the CPPOOC3.LIB static object library by coding

the -Gd- -Gm compiler options.

Using this library does not create dependencies on the four DLLs. You must

also link your application to CPPOM30.LIB which resolves C++ runtime external

references.

302 VisualAge C++ Open Class Library User's Guide

Rebuilding the DLLs

Note: You must link your application using ICC.EXE with the -Tdp compiler option.

By compiling with the appropriate +Gd option, the compiler will automatically

generate the appropriate .LIB names in the resulting .OBJ files. The linker will then

use these files without you explicitly listing them.

The following additional rules apply when you build your application with the

dynamic libraries, instead of the static object libraries:

1. A .DLL using the Open Class Library must link dynamically to the Open Class

Library code (that is, you must link with CPPOO3CI.LIB).

2. An .EXE using the Open Class Library and calling a .DLL that also uses the

class library must link dynamically to the Open Class Library (that is, you must

link with CPPOO3CI.LIB).

3. An .EXE or .DLL file should not link both dynamically and statically to the User

Interface Class Library code.

Rebuilding the Open Class Library DLLs

If you deliver a renamed version of the Open Class Library .DLLs with your

application, you can reduce the size of the .DLLs by rebuilding them and leaving out

the classes that your application does not use.

A smaller .DLL takes up less space on your installation media and can also result in

faster load time for the applications that use the .DLL.

How to Rebuild

Use the following steps to rebuild the .DLLs:

1. Make \ibmcpp\iocdll your current directory.

If VisualAge C++ is installed in \ibmcpp, type:

cd \ibmcpp\iocdll

Note: These instructions assume VisualAge C++ is installed in \ibmcpp.

2. Extract the needed .OBJ files from the Open Class Library static library.

To get the best performance for your rebuilt .DLLs, you must link the object files

in the order specified in the .RSP files. To do this, extract the .OBJ files from

the Open Class Library static libraries instead of relinking the DLL by using the

static libraries directly.

To extract the needed .OBJ files and put them in the \ibmcpp\iocdll directory,

type:

GETOBJS ..\LIB\CPPOOC3.LIB

3. Modify the .DEF and .RSP files.

 Chapter 27. Creating User Interface Class Library Applications 303

Rebuilding the DLLs

To remove a class from your rebuilt .DLL, you must first determine the name of

the .OBJ file in which the class implementation resides. However, be aware that

some .OBJ files contain more than one class implementation. If your application

uses any of the classes that an .OBJ file implements, you cannot remove it.

The cross-reference tables in the appendixes of the Open Class Library Reference

can help you determine the .OBJ file that implements a given class. Although

this table lists the .HPP file, you can generally substitute .OBJ for .HPP to

determine the right name for the .OBJ file.

For some classes, such as IString and IResourceLibrary, a single .HPP file

declares the class, but multiple .OBJ files contain the implementation. In these

cases, a number is appended to the file name to make the .OBJ file names

unique. For example, the implementations of the classes declared in

IRESLIB.HPP are in IRESLIB.OBJ, IRESLIB1.OBJ, IRESLIB2.OBJ,

IRESLIB3.OBJ, and IRESLIB4.OBJ. For sequentially numbered .OBJ files such

as these, either remove all of the .OBJ files or do not remove any.

Once you determine the .OBJ files that you do not need for your rebuilt DLL, do

the following:

¹ Edit the .RSP files and remove the lines that list the unneeded .OBJ files.

¹ Edit the .DEF files and remove all lines that export the functions contained

in the .OBJ files whose lines you removed from the .RSP files.

The .RSP and .DEF files are found in the \ibmcpp\iocdll directory.

For example, if you do not use the ITime class, delete the lines that export the

ITime functions. The export statements for the ITime class follow the comment

that identifies the ITIME.OBJ file. For example:

;
; --> Object: C:\DRVRGM3\IBASE\OBJ\ITIME.obj
;
__ls__FR7ostreamRC5ITime @656 noname ----> DELETE
__ct__5ITimeFRC6_CTIME @657 noname ----> DELETE
asCTIME__5ITimeCFv @658 noname ----> DELETE
asString__5ITimeCFPCc @659 noname ----> DELETE
;

The following table can help you identify groups of files that you can delete.

This table provides the file name pattern and the conditions under which you can

delete all files that match the pattern:

File Name Pattern Can Be Deleted if Your Application...

N*.OBJ Never uses I_NO_INLINES when compiling

ICNR*.OBJ Does not use container controls

304 VisualAge C++ Open Class Library User's Guide

Pragma Priority

4. Delete unneeded .OBJ files from the \ibmcpp\iocdll directory.

You can delete the .OBJ files in the current directory once you are sure you no

longer need them for rebuilding. If you do this, do not delete the

DDE4UDLL.OBJ file.

We ship this file in the \ibmcpp\iocdll directory because it is not available from

any of the static libraries. You need this file if you ever attempt to rebuild. (It

is the .DLL Init/Term routine.) You may want to put a backup copy of this file

in another directory.

A safe way to delete the unneeded files is to type the following commands:

DELETE I*.OBJ
DELETE N*.OBJ

File Name Pattern Can Be Deleted if Your Application...

IDDE*.OBJ Does not use dynamic data exchange (you do not need

CPPOOD3.DLL)

IDM*.OBJ Does not use direct manipulation or toolbar.

IMM*.OBJ Does not use multimedia (you do not need CPPOOM3.DLL)

Reserved Pragma Priority Values

The User Interface Class Library reserves the use of #pragma priority values in the

range of -2147482624 through -2147481600. The C++ compiler reserves the range

below that. As a result, avoid using a #pragma priority value less than -2147481599

(this is equivalent to INT_MIN + 2048) to control the order of static object

construction in your User Interface Class Library application.

 See the VisualAge C++: Language Reference for more information on #pragma

priority values.

 Chapter 27. Creating User Interface Class Library Applications 305

Pragma Priority

306 VisualAge C++ Open Class Library User's Guide

Frame Windows

28 Creating and Using Windows

When you develop an application, you usually start with a window that is a

composite of a frame window, title bar, menu bar, system menu, maximize and

minimize buttons, client window, and extensions. The frame window coordinates the

actions of the frame extensions and client window, enabling the composite window to

act as a single unit. A frame’s client window is the control that corresponds to the

rectangular portion of the frame window not occupied by other controls (menus or

buttons).

The User Interface Class Library provides classes that construct the frame window

and that let you add a variety of styles and controls.

Creating a Frame Window

A frame window is a window that an application uses as the base when constructing a

main window or other composite window, such as a dialog window or message box.

A frame window provides basic features, such as borders and a title bar. It can also

have a set of resources associated with it, such as icons, menus, and accelerators.

The parent window is used mainly for window location. For example, most frame

windows have the desktop as a parent so that they can appear anywhere on the

desktop. A child window is a window that is only visible inside of another window,

the parent. The child is “clipped” to its parent, meaning it is confined within it, and

it cannot move beyond the boundaries of the parent window.

The owner window is mainly used for message passing. Several messages are passed

up the owner chain for processing and changes to color and font are passed down the

owner chain. When you move an owner window, all of the windows that it owns are

moved as well except if the IFrameWindow::noMoveWithOwner style is specified. A

parent window can be an owner window.

A primary window has the desktop as its parent and owner. A secondary window

has the desktop as its parent, but its owner is another window. A child window

would have another window for its parent and owner.

Note: A frame window can be a primary window, secondary window, or a child

window.

Use the IFrameWindow class to create a frame window. The default style of the

IFrameWindow class has a title bar, system menu, minimize button, maximize button,

 Copyright IBM Corp. 1993, 1995 307

Frame Windows

and border. The default style adds an entry for the frame window to the system

window list.

The IFrameWindow class also provides several other styles. You can, for example,

associate an accelerator key table to the frame window or provide an icon to be used

when the window is minimized.

When you construct an IFrameWindow with a style of

IFrameWindow::minimizedIcon, IFrameWindow::accelerator, or

IFrameWindow::menuBar, resources corresponding to the style must be in the

resource library you use to construct the frame. This library is usually the default

user library, which you may use by typing:

IApplication::current().userResourceLibrary()

You can explicitly specify the resource library on the IFrameWindow constructor by

using the const IResourceId argument, giving an IResourceLibrary value.

If a required resource is not found, an exception is thrown, and the frame window is

not constructed.

See “Adding Styles” on page 314 for more information on setting styles. For a list

of the styles provided with IFrameWindow, refer to the Open Class Library

Reference.

Figure 25 shows the components of a frame window created using the

IFrameWindow class with the default style and some added controls.

Figure 25. Frame Window Components

308 VisualAge C++ Open Class Library User's Guide

Frame Windows

The following example defines a frame window:

//***
// framewin.cpp. *
//***
#include <iframe.hpp>
#include <iapp.hpp>
...
//***
// Main Routine - application entry point *
//***
int main()
{

//***
// Construct the frame window
//***
IFrameWindow frame("Basic Frame Window",
 WID_MAIN,
 IFrameWindow::defaultStyle());
frame.setFocus().show();

//***
// Add event handling
//***
IApplication::current().run();

return 0;

}

Figure 26 shows the frame window created using the preceding example.

Figure 26. A Basic Frame Window

 Chapter 28. Creating and Using Windows 309

Frame Windows

When a frame window is minimized, the frame window hides and draws its

minimized icon. Sometimes other windows associated with the frame window are

drawn on top of its icon. This occurs when the windows are children of the frame

window but not the client window or frame extensions.

To suppress the drawing of child windows, that are not frame extensions or the client

window, when they are supposed to be minimized, add a handler to the frame

window that detects when the frame is minimized, and hides these windows. The

handler should make these windows visible when the frame is restored.

The User Interface Class Library defers positioning and sizing components of a frame

window until the frame window shows. As a result, if you query the size and

position of the frame window’s client window or frame extensions, an accurate value

is not returned until the frame window is shown.

The IWindow::show or IFrameWindow::showModally member functions

automatically update the frame window. You can force the frame window to update

itself by calling the IFrameWindow::update member function.

Changing the Title Bar

The title bar is the area at the top of each frame window that contains a window title.

You can specify the icon which displays when the application is minimized using the

minimizedIcon style when you create the frame window.

If you do not provide a window title, the User Interface Class Library sets the title to

a string loaded from the application’s resource library. The ID of the string in the

string table is the frame window’s ID. If the User Interface Class Library cannot find

a string, the title defaults to the system-generated title (typically, the name of the

executable file).

The following code, from Hello World version 3, shows you how to specify a

minimized icon and the window title when you create the frame window.

1. The title text is defined in the resource file:
...
ICON WND_MAIN ahellow3.ico //Application icon

STRINGTABLE
 BEGIN

STR_HELLO, "Hello, World!!!" //Hello World string
WND_MAIN, "Hello World Sample - Version 3" //Main window title string

...

WND_MAIN is the frame window identifier. The frame window uses the

window identifier (windowId) passed on the constructor to load its icon, title,

310 VisualAge C++ Open Class Library User's Guide

Frame Windows

menu bar, or accelerator table resources if these components are specified in the

frame window style.

2. The following code comes from the AHELLOW3.CPP file:
...
int main()
{
AHelloWindow mainWindow (WND_MAIN);

 mainWindow.setAlignment(AHelloWindow::left);
 mainWindow.sizeTo(ISize(400,300));
 mainWindow.setFocus();
 mainWindow.show();
 IApplication::current().run();
 return 0;
} /* end main */
...
AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow(IFrameWindow::defaultStyle() |

 IFrameWindow::minimizedIcon,
 windowId)
...

When the application creates the AHelloWindow object, it constructs the

IFrameWindow base class using the default style with a minimized icon,

AHELLO3.ICO, and “Hello World Sample - Version 3” as the title text. The

frame window determines the icon and title text based on the window ID and the

resource library.

Adding a Menu Bar

The menu bar is the area near the top of a window, below the title bar and above the

client area of the window. A menu bar contains a list of choices. When a user

selects a choice on a menu bar, a pull-down menu associated with that choice is

displayed.

The following sample contains a menu bar with only one submenu named Alignment.

When you run the sample and select Alignment, the pull-down menu is displayed.

The choices in the pull-down menu are Left, Center, and Right. When you select

one of the choices, the text string in the client window aligns to the selected position

and a check mark appears beside the selected item.

1. The following code, from the AHELLOW3.RC file, defines the text for the menu

bar and its associated pull-down menu.
...
MENU WND_MAIN //Main window menu bar
 BEGIN

SUBMENU "¡Alignment", MI_ALIGNMENT //Alignment submenu
 BEGIN

MENUITEM "¡Left", MI_LEFT //Left menu item - F7 Key
MENUITEM "¡Center", MI_CENTER //Center menu item - F8 Key
MENUITEM "¡Right", MI_RIGHT //Right menu item - F9 Key

 Chapter 28. Creating and Using Windows 311

Frame Windows

 END
 END
...

2. Use a command handler to implement the functions to be performed as a result

of a user selecting a menu item. To place a check mark beside the appropriate

menu item, create an IMenuBar object to represent the application menu bar.

The following code, from the AHELLOW3.HPP file, shows the AHelloWindow

class containing an ACommandHandler object, which is derived from the

ICommandHandler class:
...
 private:
 IMenuBar menuBar;
 IStaticText statusLine;
 IStaticText hello;
 IInfoArea infoArea;
 ACommandHandler commandHandler;
...
};
#endif

3. The code in this section is from the AHELLOW3.CPP file.

The following code creates the mainWindow object from the AHelloWindow

class.
...
AHelloWindow mainWindow (WND_MAIN);

...

This code shows the first part of the AHelloWindow constructor. The menu bar

defined in the resource file is associated with this AHelloWindow object.
...
AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow(IFrameWindow::defaultStyle() |

 IFrameWindow::minimizedIcon,
 windowId)
 ,menuBar(WND_MAIN, this)

,statusLine(WND_STATUS, this, this)
,hello(WND_HELLO, this, this)

 ,infoArea(this)
 ,commandHandler(this)
{
...

The following code attaches the command handler to the frame window.
...
 commandHandler.handleEventsFor(this);
...

When the user selects a menu item, the ACommandHandler::command function

is called to select the appropriate frame window function to call.

312 VisualAge C++ Open Class Library User's Guide

Frame Windows

...
switch (cmdEvent.commandId()) {

 case MI_CENTER:
 frame->setAlignment(AHelloWindow::center);
 break;
...

This code from the AHelloWindow::setAlignment function places the check mark

beside the appropriate menu item.
...
 case center:
 hello.setAlignment(
 IStaticText::centerCenter);
 statusLine.setText(STR_CENTER);
 menuBar.checkItem(MI_CENTER);
 menuBar.uncheckItem(MI_LEFT);
 menuBar.uncheckItem(MI_RIGHT);
 break;

Creating an Information Area

The information area is a small rectangular area that is usually located at the bottom

of a frame window. You can use the information area to display:

¹ A brief explanation of the state of an object

¹ Information about the completion of a process

¹ Information messages displayed with fly over help

Use the IInfoArea class to create and manage the information area. Objects of

IInfoArea class provide a frame extension to show information about the menu item

where the cursor is positioned. The string displayed in the information area is

defined in a string table in the resource file.

The following sample uses the IInfoArea class to create the information area and the

text to display in it.

1. The menu bar and string table are defined in the AHELLOW3.RC file. The

string table contains strings of text, and each string is associated with a menu

item. When you choose the menu item, the string related to that item displays in

the information area.
...
MENU WND_MAIN //Main window menu bar
 BEGIN

SUBMENU "˜Alignment", MI_ALIGNMENT //Alignment submenu
 BEGIN

MENUITEM "˜Left", MI_LEFT //Left menu item - F7 Key
MENUITEM "˜Center", MI_CENTER //Center menu item - F8 Key
MENUITEM "˜Right", MI_RIGHT //Right menu item - F9 Key

 END
 END
...
STRINGTABLE

 Chapter 28. Creating and Using Windows 313

Styles

 BEGIN
...

STR_INFO, "Use Alt-F4 to Close Window" //Information area string
MI_ALIGNMENT,"Alignment Menu" //InfoArea - Alignment menu
MI_CENTER, "Set Center Alignment" //InfoArea - Center menu item

 MI_LEFT, "Set Left Alignment" //InfoArea - Left menu item
MI_RIGHT, "Set Right Alignment" //InfoArea - Right menu item

...
 END

2. This code is from the AHELLOW3.HPP file. The highlighted lines add an

information area object to the AHelloWindow class.
...
class AHelloWindow : public IFrameWindow
{
public:

AHelloWindow(unsigned long windowId);
 ˜AHelloWindow();
...
 private:
 IMenuBar menuBar;
 IStaticText statusLine;
 IStaticText hello;
 IInfoArea infoArea;
 ACommandHandler commandHandler;
};

3. In the AHELLOW3.CPP file, construct the information area when

AHelloWindow is created.
...
AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow(IFrameWindow::defaultStyle() |

 IFrameWindow::minimizedIcon,
 windowId)
 ,menuBar(WND_MAIN, this)

,statusLine(WND_STATUS, this, this)
,hello(WND_HELLO, this, this)

 ,infoArea(this)
 ,commandHandler(this)
{
...
 hello.setText(STR_HELLO);
 infoArea.setInactiveText(STR_INFO);
...

 Adding Styles

A style affects the appearance and behavior of a window. Each window class has

styles that are encapsulated in style objects.

Generic styles are defined in IWindow and IControl. Classes derived from IWindow

and IControl can combine their own styles with those of IWindow and IControl.

314 VisualAge C++ Open Class Library User's Guide

Styles

Each window class maintains its own default style object. You can access default

style objects using the static member function defaultStyle and then set it using the

static member function setDefaultStyle. Each window class also maintains a style

object called classDefaultStyle that corresponds to the initial setting of defaultStyle.

Most window classes provide one or more constructors that accept a style object as

one parameter. You can only construct a style object from existing style objects.

These style objects are only used by window constructors. The style of a window

can subsequently be changed and queried using the window class member functions.

Also, some styles cannot change after a window has been created, in which case, no

member function is provided to change the style.

The following sections describe how you can use bitwise operators. For the sake of

simplicity, the IComboBox class and its styles are used for all examples. The

IBitFlag class provides bitwise operators that you can use with the styles of the User

Interface Class Library just as if you were using them with numbers. See

IComboBox in the Open Class Library Reference for more information about this

class and its styles.

 Copying Styles

The assignment operator (=) returns one style object that is set equal to the specified

style object. The value of the resulting object is equal to the value of the operand

object. For example:

IComboBox::Style
myStyle = IComboBox::dropDownType;

 Combining Styles

The bitwise OR (|) operator returns a style object that is a combination of two style

objects. The value of the resulting object is the bitwise OR of the value of the two

operand objects.

You can combine any existing style objects, such as myStyle1 and myStyle2 in the

following example, to create yet another style object. For example:

IComboBox::Style
myStyle3 = myStyle1 | myStyle2;

This example adds the tabStop style to myStyle object:

IComboBox::Style myStyle = IComboBox::dropDownType;
myStyle |= IControl::tabStop;

In many cases, you can combine styles of one class with those of another class.

Here, an IComboBox style is combined with an IControl style. The documentation

for each class that has styles specifies whether other classes have compatible styles

that you can use when constructing objects for those classes.

 Chapter 28. Creating and Using Windows 315

Styles

 Testing Styles

The bitwise AND (&) operator returns an unsigned long integer that identifies if there

are any bits common to the operand style or attribute objects. Typically, you use this

operator to test whether a bitwise OR (|) operator has been used to combine one style

object with another. For example:

Boolean isADropDown = false;
if (myStyle1 & IComboBox::dropDownType)

isADropDown = true;

 Negating Styles

The bitwise NOT (˜) operator returns a negated style object. The value of the

resulting object is the bitwise NOT of the value of the operand object. For example:

IComboBox::Style::NegatedStyle
negatedStyle = ˜myStyle;

This code returns an object named negatedStyle that negates the value of the myStyle

object.

The precedence of the AND operator (&) is greater than the OR operator (|). You

must be aware of operator precedence to avoid creating invalid styles that might not

be obvious.

Note: If you do not want to consider operator precedence, specify the styles you

want instead of negating others from the default User Interface Class Library

styles.

The following example creates an invalid style that the IViewPort constructor will

reject. This causes the following:

IViewPort::defaultStyle()
 | IViewPort::alwaysHorizontalScrollBar
 & ˜IViewPort::asNeededHorizontalScrollBar

to be evaluated as:

IViewPort::defaultStyle()
 | (IViewPort::alwaysHorizontalScrollBar
 & ˜IViewPort::asNeededHorizontalScrollBar)

as opposed to the following:

(IViewPort::defaultStyle()
 | IViewPort::alwaysHorizontalScrollBar)
 & ˜IViewPort::asNeededHorizontalScrollBar

Therefore, you must consider the order and the operator precedence when you negate

a style because the User Interface Class Library cannot change the order in which

operators are evaluated in the code statement.

316 VisualAge C++ Open Class Library User's Guide

Styles

Setting Window Styles

You can create a window with a specific style in the following ways:

¹ Create a window using a constructor that accepts the style as a parameter. The

following three examples illustrate this method.

This example shows how to create an entry field control with a style that is a

combination of styles from IWindow, IControl, and IEntryField.

IEntryField entryField(ID_EF1, parent, owner,
IRectangle(10, 10, 100, 20),

 IWindow::visible |
 IControl::tabStop |
 IControl::group |
 IEntryField::margin |
 IEntryField::autoScroll);

Alternatively, you can explicitly construct the style object and pass it as a

parameter:

IEntryField::Style efStyle = IWindow::visible |
 IControl::tabStop |
 IControl::group |
 IEntryField::margin |
 IEntryField::autoScroll ;
IEntryField entryField(ID_EF1, parent, owner,

IRectangle(10, 10, 100, 20),
 efStyle);

You can also access the default style object using the static member function

defaultStyle. This simplifies the preceding example to:

IEntryField entryField(ID_EF1, parent, owner,
IRectangle(10, 10, 100, 20),

 IEntryField::defaultStyle() |
 IControl::tabStop |
 IControl::group);

¹ Use the static member function setDefaultStyle to set the default style and then

construct the window. For example:

IEntryField::Style efStyle = IEntryField::defaultStyle() |
 IControl::tabStop |
 IControl::group ;
IEntryField::setDefaultStyle(efStyle);
IEntryField entryField(ID_EF1, parent, owner,

IRectangle(10, 10, 100, 20));

¹ Create a window with the default style and change it using member functions of

the window. The example now becomes:

IEntryField entryField(ID_EF1, parent, owner,
IRectangle(10, 10, 100, 20));

entryField.enableGroup(); // Member function of IControl
entryField.enableTabStop(); // Member function of IControl
entryField.enableAutoScroll(); // Member function of IEntryField

For a complete list of available styles, see the Open Class Library Reference.

 Chapter 28. Creating and Using Windows 317

Message Box

Using Cursor Classes

Window classes that can contain one or more items generally provide a nested cursor

class. The cursor classes provide member functions to move through the items, either

forward or backward.

Note: The User Interface Class Library cursor classes are designed to have the same

look and feel as the Collection Class library cursors.

A cursor must be in a valid state to access the items in a list. A cursor is generally

created in an invalid state. Any cursor function that causes the cursor to point to an

item in the list validates the cursor. For example, the function setToFirst causes the

cursor to be valid if there are items in the list. If the contents of the list that the

cursor is iterating through change by the addition or removal of items, the cursor

becomes invalid. It cannot be used to access items in the list until it is validated

again by a function that points the cursor at a valid item.

Note: IWindow::ChildCursor is an exception to this.

Some cursors support iteration over items in a collection that match a particular

property. For example, the constructor for a list box cursor can have a second

parameter that determines whether the cursor returns all items in the list box or just

the selected items.

The following example, from the Hello World version 5 AHELLOW5.CPP file,

shows how to set text from the first selected item in a multiple-selection list box:
...
AHelloWindow &
AHelloWindow :: setTextFromListBox()

{
/*---------------------- Set Hello Text from ListBox ---------------------|

 | Create a cursor to the list box. Using the default filter for a |
| list box cursor, selectedItems, causes the setToFirst() function |
| to position the cursor to the first selected item. |

 | Set the hello IStaticText control text value. |
 |--*/
 IListBox::Cursor lbCursor(listBox);
 lbCursor.setToFirst();
 hello.setText(listBox.elementAt(lbCursor));

return (*this); //Return a reference to the frame
}
...

Specifying Message Box Information

A message box is a frame window that an application uses to display a note, caution,

or warning to the user. For instance, an application can use a message box to inform

a user of a problem that the application encountered while performing a task. The

318 VisualAge C++ Open Class Library User's Guide

Message Box

User Interface Class Library provides an IMessageBox class for displaying messages

in a message box.

Creating a Message Box

You construct objects of the IMessageBox class by using an object of a class derived

from IWindow. The IWindow object becomes the owner of the new message box, as

follows:

IMessageBox messageBox(owner);

The following example shows you how to create a message box:
...
/***/
/* Create the information type message box */
/***/
int about()
{
 IMessageBox msg(IWindow::desktopWindow());
 msg.setTitle("Basic MsgBox");
msg.show("Could not open file:",

 IMessageBox::abortRetryIgnoreButton |
 IMessageBox::defButton1 |
 IMessageBox::errorIcon |
 IMessageBox::moveable);
 return 0;
}

Figure 27 shows a message box similar to the one created by the preceding example.

Figure 27. Example of a Message Box

 Chapter 28. Creating and Using Windows 319

Message Box

320 VisualAge C++ Open Class Library User's Guide

Static Text

29 Creating and Using Text Controls

A control is a part of the user interface that lets a user interact with data.

This chapter explains how to code the following text controls:

 ¹ Static text

 ¹ Entry fields

¹ Multiple-line edit (MLE) fields

 ¹ Buttons

 – Push buttons

 – Radio buttons

 – Check boxes

– Three-state check boxes

Controls are usually identified by text; for example, headings, labels in push buttons,

field prompts, and titles in windows.

Creating a Static Text Control

Static text controls are text fields, bit maps, icons, and boxes that you can use to label

or box other controls. Your user typically does not interact with these controls using

the keyboard or mouse. Generally, you do not need to change a static control's

appearance on the screen, so visually they tend to be unchanging. Static text control

classes include IBitmapControl, IIconControl, IOutlineBox, IGroupBox, and

IStaticText. The IStaticText class creates and manages the static text control window.

You can set the text and its color, size, and position in the static text window.

Refer to the Open Class Library Reference for a list of the public members provided

with IStaticText as well as informaton on the other static control classes.

The following sample comes from the AHELLOW1.CPP file from the Hello World

sample application and shows how to create a static text control.
...
IStaticText hello(IC_FRAME_CLIENT_ID, &mainWindow, &mainWindow);
hello.setText("Hello, World!!!");
hello.setAlignment(IStaticText::centerCenter);
mainWindow.setClient(&hello);
...

The first line uses the window ID, the parent window, and the owner window to

create the static text control and an object for it.

 Copyright IBM Corp. 1993, 1995 321

Entry Fields

The second line sets a text string in the control using the setText member function,

which is inherited from ITextControl.

The third line uses the setAlignment member function to center the static text.

Figure 28 shows the Hello World version 1 static text control.

Figure 28. Hello World Version 1 Static Text Control

Understanding Entry Fields

An entry field is a control window that enables a user to view and edit a single line

of text. An entry field provides the text-editing capabilities of a simple text editor

and is useful whenever an application requires a short line of text from the user.

If the application requires more sophisticated text-editing capabilities and multiple

lines of text from the user, the application can use a Multiple-line edit field.

Refer to “Viewing and Editing Multiple-Line Edit (MLE) Fields” on page 326 for

more information about MLE controls.

Applications typically use entry fields in dialog windows, although they can be used

in non-dialog windows as well. The following section contains a sample and an

example to show you how to create an entry field.

322 VisualAge C++ Open Class Library User's Guide

Entry Fields

Creating an Entry Field

The following is an example of creating an entry field.

1. Declare three entry fields in the .hpp file, as follows:

#include <ientryfd.hpp>
/***/
/* Create the frame window */
/* Declare the entry fields */
/***/
class AppWindow : public IFrameWindow
{
public:

AppWindow(unsigned long windowId);
 ˜AppWindow();

void handleEvents(unsigned long eventtype);
private:
 ICanvas canvas;
 IEntryField ef1;
 IEntryField ef2;
 IEntryField ef3;

ACommandHandler * commandHandler;
};

2. Construct the entry fields in the .cpp file and manipulate data inside them.
...
/***/
/* Window constructor */
/***/

#include "entryfd.h"
#include "entryfd.hpp"

//***
// Define a customized style to use in the third entryfd
//***
IEntryField::Style efStyle = IWindow::visible |
 IControl::tabStop |
 IControl::group |
 IEntryField::margin |
 IEntryField::autoScroll;

AppWindow :: AppWindow(unsigned long windowId)
: IFrameWindow("Entry Field Example",

 windowId,
 IFrameWindow::defaultStyle() |
 IFrameWindow::menuBar),

canvas(ID_CANVAS, this, this),
 ef1(ID_ENTRY, &canvas,&canvas,

IRectangle(10, 200, 600, 240)),
ef2(ID_ENTRY2, &canvas, &canvas,

IRectangle(10, 125, 300, 175)),
ef3(ID_ENTRY3, &canvas, &canvas,

IRectangle(10, 50, 300, 100),
 efStyle)
{

 Chapter 29. Creating and Using Text Controls 323

Entry Fields

...

//***
// Create first entry field
//***
 ef1.setLimit(50);
ef1.setText("Initial Text for Entry Field 1");

 ef1.setBackgroundColor(IColor::yellow);
 ef1.setForegroundColor(IColor::red);
 ef1.setBorderColor(IColor::green);
 ef1.setFocus();

//***
// Create second entry field
//***
 ef2.setLimit(50);
ef2.setText("Initial Text for Entry Field 2");

 ef2.setBackgroundColor(IColor::yellow);
 ef2.setForegroundColor(IColor::red);
 ef2.setBorderColor(IColor::green);

//***
// Create third entry field
//***

 ef3.setLimit(50);
ef3.setText("Initial Text for Entry Field 3");

 ef3.setBackgroundColor(IColor::yellow);
 ef3.setForegroundColor(IColor::red);
 ef3.setBorderColor(IColor::green);

moveSizeTo(IRectangle(0, 0, 670, 350));
 canvas.setBackgroundColor(IColor::blue);
 setClient(&canvas);
 show();
commandHandler = new ACommandHandler(this, &ef1, &ef2, &ef3);

 commandHandler->handleEventsFor(this);
}

3. Declare a command handler in the .hpp file, as follows:

class ACommandHandler : public ICommandHandler {

public:
 ACommandHandler(AppWindow *efWindow,
 IEntryField *ef1,
 IEntryField *ef2,
 IEntryField *ef3);

protected:
virtual Boolean command(ICommandEvent& cmdEvent);

private:
 AppWindow *ef;
 IEntryField *ef1,
 *ef2,
 *ef3;
};

324 VisualAge C++ Open Class Library User's Guide

Entry Fields

4. Add event handling to manipulate the data inside the entry fields:

ACommandHandler::ACommandHandler(AppWindow *efWindow,
 IEntryField *ef1,
 IEntryField *ef2,
 IEntryField *ef3):
 ef(efWindow),
 ef1(ef1),
 ef2(ef2),
 ef3(ef3)
{
}

IBase::Boolean ACommandHandler::command(ICommandEvent& cmdEvent)
{
 switch (cmdEvent.commandId())
 {
 case ID_READONLY_ITEM:
 ef1->enableDataUpdate(ef1->isWriteable());
 break;
 case ID_COPY_ITEM:

if (ef1->hasSelectedText()) {
 ef1->copy();
 }
 break;
 case ID_CUT_ITEM:

if (ef2->hasSelectedText()) {
 ef2->cut();
 }
 break;
 case ID_PASTE_ITEM:

if (ef3->clipboardHasTextFormat()) {
 ef3->paste();
 }
 break;
 case ID_CLEAR_ITEM:

if (ef3->hasSelectedText()) {
 ef3->clear();
 }
 break;
 return true;

} // end of switch
 return false;
}

Figure 29 shows the entry fields created using the preceding example.

 Chapter 29. Creating and Using Text Controls 325

Multiple-Line Edit Fields

Figure 29. Entry Field Example

Viewing and Editing Multiple-Line Edit (MLE) Fields

A multiple-line edit (MLE) field enables users to view and edit multiple lines of text.

Use the IMultiLineEdit class to create an MLE field. The member functions of the

IMultiLineEdit class enable you to display text files with horizontal and vertical

scrolling, read a file into and save it from an MLE, or perform basic clipboard tasks

(for example, cut, paste, copy, and clear).

Creating an MLE

To create an object of the IMultiLineEdit class, include the ID of a specified MLE,

the parent and owner windows, an IRectangle object, and one or more styles.

Styles define such functions as scrolling text, wrapping words, adding a border, and

making the field read-only.

Refer to Open Class Library Reference for further information about the

IMultiLineEdit class and its styles.

326 VisualAge C++ Open Class Library User's Guide

Multiple-Line Edit Fields

To create an MLE, use the following steps:

1. Declare an application frame window that contains an MLE and a command

handler that can process events for the MLE.

/**/
/* Create the command handler */
//***/
class ACommandHandler : public ICommandHandler {

public:
ACommandHandler(AppWindow *mleWindow, IMultiLineEdit *amle);

protected:
virtual Boolean command(ICommandEvent& cmdEvent);

private:
 IMultiLineEdit *mle;
};

/***/
/* Create the frame window */
/***/
class AppWindow : public IFrameWindow
 {
 public:

AppWindow(unsigned long windowId);
 ˜AppWindow();

 private:
 about();
 ITitle title;
 IMultiLineEdit mle;
 ACommandHandler * commandHandler;
 };

2. The following code constructs the MLE in the .cpp file:
...
/***/
/* Window Constructor */
/***/

AppWindow :: AppWindow(unsigned long windowId)
: IFrameWindow(windowId, // create Frame window

defaultStyle() | menuBar),
title(this,"MLE Example"), // include Title
mle(ID_MLE, this, this) // create MLE

{
 setClient(&mle);
 handleEventsFor(this);
 setIcon(ID_ICON);
 mle.setFocus();

//***
// Create Command Handler
//***

 Chapter 29. Creating and Using Text Controls 327

Multiple-Line Edit Fields

commandHandler = new ACommandHandler(this, &mle);
 commandHandler->handleEventsFor(this);

...

3. Use the following code for event handling:

/***/
/* Command Handler Constructor */
/***/
ACommandHandler :: ACommandHandler (AppWindow *mleWindow,
 IMultiLineEdit *amle):
 mle(amle)
{
}

/***/
/* MyWindow Command Event Handler */
/***/
IBase::Boolean ACommandHandler :: command(ICommandEvent& cmdevt)
 {
 switch (cmdevt.commandId())
 {
 case ID_IMPORT_ITEM:
 mle->importFromFile("import.txt",IMultiLineEdit:: MLEFormat);

 return true;

 case ID_EXPORT_ITEM:
 mle->exportToFile("export.Txt",IMultiLineEdit:: noTran);
 return true;

 case ID_INIT_ITEM:
mle->setText("This is some initial text.");

 return true;

 case ID_MARK_ITEM:
 mle->selectRange(IRange(13,19));
 return true;

 case ID_COPY_ITEM:
 if (mle->hasSelectedText())
 mle->copy();
 return true;

 case ID_CUT_ITEM:
 if (mle->hasSelectedText())
 mle->cut();
 return true;

 case ID_PASTE_ITEM:
 if (mle->clipboardHasTextFormat())
 mle->paste();
 return true;

 case ID_DELMARK_ITEM:
 if (mle->hasSelectedText())
 mle->discard();
 return true;

328 VisualAge C++ Open Class Library User's Guide

Multiple-Line Edit Fields

 case ID_DELALL_ITEM:
 mle->removeAll();
 return true;

 case ID_INSERT_ITEM:
 mle->add("inserted");
 return true;

 case ID_WORDWRAP_ITEM:
 mle->enableWordWrap(!mle->isWordWrap());
 return true;

 case ID_HOME_ITEM:
 mle->setCursorPosition(0);
 return true;

} /* end switch */
 return false;
}

Loading and Saving a File

The following member functions from the IMultiLineEdit class allow you to import

text to an MLE from a file and export text from an MLE into a file.

Refer to the Open Class Library Reference for descriptions of these member

functions.

You can load and save a file to the MLE, as follows:
...
 case ID_IMPORT_ITEM:
 mle->importFromFile("import.txt",IMultiLineEdit::MLEFormat);
 return true;

 case ID_EXPORT_ITEM:
 mle->exportToFile("export.txt",IMultiLineEdit::noTran);
 return true;
...

Member Function Use To

importFromFile Load a file into an MLE

exportToFile Save from an MLE

exportSelectedTextToFile Save marked text in an MLE into a file

Positioning the Cursor

You can position the cursor on a specific line of an MLE or in a specific character

position, add to or remove lines from an MLE, or request the number of lines in an

MLE.

 Chapter 29. Creating and Using Text Controls 329

Multiple-Line Edit Fields

Refer to the Open Class Library Reference for descriptions of MLE member

functions.

Position the cursor on the first line, as follows:

 case ID_HOME_ITEM:
 mle->setCursorPosition(0);
 return true;

Figure 30 shows the cursor on the first line of the MLE.

Figure 30. Example of Positioning the Cursor on the First Line

Performing Clipboard Operations

The IMultiLineEdit class has several member functions to perform clipboard

operations, including copy, cut, paste, clear, and discard. After you define an MLE,

use these member functions to copy text to the clipboard, cut and put text into the

clipboard, or paste only the marked lines from the clipboard. Refer to the Open Class

Library Reference for descriptions of other member functions.

The following code performs clipboard operations:
...
case ID_MARK_ITEM: // First mark some text

 mle->selectRange(IRange(13,19));
 return true;

 case ID_COPY_ITEM:
 if (mle->hasSelectedText())

330 VisualAge C++ Open Class Library User's Guide

Buttons

 mle->copy();
 return true;

 case ID_PASTE_ITEM:
 if (mle->clipboardHasTextFormat())
 mle->paste();
 return true;

...

Figure 31 shows an example of cutting text to the clipboard. It contains marked lines

in the client area and a menu option, Edit, with six menu items, including Cut. The

menu item ID of the Cut menu item is ID_CUT_ITEM.

Figure 31. Example of Cutting Text to the Clipboard

The following statements show you how to implement the ID_CUT_ITEM member

function:
...
case ID_CUT_ITEM: // Check that text is marked
if (mle->hasSelectedText()) // then cut it to the clipboard

 mle->cut();
 return true;
...

 Creating Buttons

A button is a type of control window used to initiate an operation or to set the

attributes of an operation. A button can appear alone or with a group of other

buttons. When buttons are grouped, you can move from button to button within the

 Chapter 29. Creating and Using Text Controls 331

Buttons

group by pressing the Arrow keys. You can also move among groups by pressing

the Tab key.

A user can select a button by clicking it with the mouse or by pressing the spacebar

when the button has the keyboard focus. In most cases, a button changes its

appearance when selected.

A button is always owned by another window, usually a dialog window or an

application’s client window. It posts messages or sends notification messages to its

owner when a user selects the button. The owner window receives messages from a

button and can send messages to the button to alter its position, appearance, and

enabled or disabled state.

To use a button in a dialog window, your application specifies the control in a dialog

template in the application’s resource-definition file. The application processes button

messages in the dialog-window procedure.

Understanding Button Types

There are four main types of buttons, which determine how the button looks and

behaves:

 ¹ Push buttons

 ¹ Radio buttons

 ¹ Check boxes

¹ Three-state check boxes

A radio button, check box, or three-state check box control an operation; a push

button initiates an operation. For example, you might set printing options (such as

paper size, print quality, and printer type) in a print-command dialog window

containing an array of radio buttons and check boxes. After setting the options, you

select a push button to notify an application that printing should begin (or be

canceled). Then the application queries the state of each check box and radio button

to determine the printing parameters.

The following sections discuss the different types of buttons in more detail.

Creating a Push Button

A push button is a rectangular window that contains a text string. Typically, an

application uses a push button to let the user start or stop an operation. A push

button represents an action that is initiated when a user selects it. You can label it

with text, graphics, or both. When a user selects a push button, the action occurs

immediately if there is a handler for the generated command event.

332 VisualAge C++ Open Class Library User's Guide

Buttons

Use the IPushButton class to create and maintain the push button window. By

default, a push button generates an application ICommandEvent. You can change the

default style by changing the window style value to generate a help event or a system

command event. Using system command events is not recommended for portable

applications.

Refer to Open Class Library Reference for a list of the styles provided for

IPushButton and for the IPushButton derived class, IGraphicPushButton.

The Hello World version 4 application defines three push buttons (Left, Center, and

Right) in the AHELLOW4.CPP file.

The command events generated by pressing the Left, Center, and Right push buttons

are handled by the AHelloWindow::command member function. Note, the command

events are the same as those used for the corresponding menu items. Therefore, the

command function processing is the same whether you press the push button or select

the item on the menu bar.

Figure 32 shows the Hello World version 4 push buttons.

Figure 32. Hello World Version 4 Push Buttons

Creating a Radio Button

A radio button is a window with text displayed to the right of a small circular

indicator. Use radio buttons to display a set of choices from which the user can

select one. Each time the user selects a radio button, that button’s state toggles

 Chapter 29. Creating and Using Text Controls 333

Buttons

between selected and unselected. This state remains until the next time the user

selects the button. An application typically uses radio buttons in groups.

A group of radio buttons contains at least two radio buttons. Within a group, usually

one button is selected by default. The user can move the selection to another button

by using the cursor keys; however, only one button can be selected at a time. Radio

buttons are appropriate if an exclusive choice is required from a fixed list of options.

For example, applications often use radio buttons to let users select the screen

foreground and background colors.

The IRadioButton class lets you create and manage the radio button window. The

ISelectHandler class processes the selection of a radio button. You add the handler to

either the radio button or its owner window by calling the handler’s handleEventsFor

function.

 Refer to Chapter 38, “Adding Events and Event Handlers” on page 467 for

information about event handlers.

The following example creates a group of radio buttons.

The text associated with each radio button is defined in the resource file as string

text, as follows:
...
STRINGTABLE
 BEGIN
 STR_BLACK, "Black"
 STR_WHITE, "White"
 STR_BLUE, "Blue"
 STR_RED, "Red"
 STR_YELLOW, "Yellow"
 END
...

1. Declare the radio buttons in the .hpp file.

/***/
/* Command handler class declaration */
/***/
class MyCommandHandler : public ICommandHandler {

public:
 MyCommandHandler(AppWindow *mainWindow);

protected:
virtual Boolean command(ICommandEvent& cmdEvent);

private:
 AppWindow *appWindow;

};

334 VisualAge C++ Open Class Library User's Guide

Buttons

/***/
/* Select handler class declaration */
/***/
class MySelectHandler: public ISelectHandler
 {
 public:
 MySelectHandler(IStaticText *info);
 protected:
 selected(IControlEvent& evt);
 private:
 Boolean fProcess;
 IStaticText *staticText;
 };

/***/
/* AppWindow declaration */
/***/
class AppWindow : public IFrameWindow
 {
 public:

AppWindow(unsigned long windowId);
 ˜AppWindow();

AppWindow & enableButton();
AppWindow & disableButton();

 private:

 ITitle * title;
 ICanvas * canvas1;
 IGroupBox * groupBox;
 IStaticText * staticText;
 IRadioButton * white;
 IRadioButton * black;
 IRadioButton * blue;
 IRadioButton * red;
 IRadioButton * yellow;
 MySelectHandler * selectHandler;
 MyCommandHandler * commandHandler;

 };

2. Declare the buttons in the .cpp file.

AppWindow :: AppWindow(unsigned long windowId)
 : IFrameWindow(windowId,
 defaultStyle() |
 menuBar)
 {

 //***
// Create Title

 //***
title = new ITitle(this,ID_RADIO_TITLE);

 //***
// Create Canvas

 //***
canvas1 = new ICanvas(ID_CANVAS, this, this);

 moveSizeTo(IRectangle(10,10,650,540));

 Chapter 29. Creating and Using Text Controls 335

Buttons

 setClient(canvas1);

IWindow * pParent= canvas1;
IWindow * pOwner = canvas1;

 //***
// Create Status Area

 //***
staticText = new IStaticText(ID_TEXT,

 canvas1,
 canvas1,
 IRectangle(20,425,470,450));
 staticText->setText(ID_STAT_TITLE);

 //***
// Create Group Box

 //***
groupBox = new IGroupBox(ID_GROUPBOX,

 canvas1,
 canvas1,
 IRectangle(90,10,610,400));
 groupBox->setText("Color Selection");

 //***
// Create Radio Buttons

 //***
white = new IRadioButton(WND_WHITEBT, pParent, pOwner, IRectangle(100,300,250,360));

 white->setText(STR_WHITE);

black = new IRadioButton(WND_BLACKBT, pParent, pOwner, IRectangle(100,230,250,290));
 black->setText(STR_BLACK);

blue = new IRadioButton(WND_BLUEBT, pParent, pOwner, IRectangle(100,160,250,220));
 blue->setText(STR_BLUE);

red = new IRadioButton(WND_REDBT, pParent, pOwner, IRectangle(100,90,250,150));
 red->setText(STR_RED);

yellow = new IRadioButton(WND_YELLOWBT, pParent, pOwner, IRectangle(100,20,250,80));
 yellow->setText(STR_YELLOW);

 //***
// Set the group style of the controls

 //***
 white->enableGroup().enableTabStop();

 //***
// Select white as the default button

 //***
 white->select();

 //***
// Set the select handler to handle events

 //***
selectHandler = new MySelectHandler(staticText);

 selectHandler->handleEventsFor(white);

336 VisualAge C++ Open Class Library User's Guide

Buttons

 selectHandler->handleEventsFor(black);
 selectHandler->handleEventsFor(blue);
 selectHandler->handleEventsFor(red);
 selectHandler->handleEventsFor(yellow);

 //***
// Set the command handler to handle menu events

 //***
commandHandler = new MyCommandHandler(this);

 commandHandler->handleEventsFor(this);

 setFocus().show();
}

3. Process menu events in the command handler routines.
...
/***/
/* Construct the command handler */
/***/
MyCommandHandler::MyCommandHandler(AppWindow *mainWindow)
{
appWindow = mainWindow;

}

/***/
/* MyWindow command event handler */
/***/
IBase::Boolean MyCommandHandler :: command(ICommandEvent& cmdevt)
 {
 switch (cmdevt.commandId())
 {
 case ID_DISABLE_BLUE_BTN:
 appWindow->disableButton();
 break;
 case ID_ENABLE_BLUE_BTN:
 appWindow->enableButton();
 break;
 }
 return false;
}

/***/
/* Enable the radio button */
/***/
AppWindow & AppWindow::enableButton()
{
 blue->enable();
 return (*this);
}

/***/
/* Disable the radio button */
/***/
AppWindow & AppWindow::disableButton()
{

 blue->disable();

 Chapter 29. Creating and Using Text Controls 337

Buttons

 return (*this);
}
...

4. Process selection events in the select handler routines.
...
/***/
/* MyWindow Select Event Handler */
/***/
MySelectHandler::MySelectHandler(IStaticText *info)
 :ISelectHandler(),
 staticText(info)
{
}

/***/
/* Set static text when radio button selected. */
/***/
IBase::Boolean MySelectHandler::selected(IControlEvent& evt)
{

Boolean fprocess = false;
 switch(evt.controlId())
 {
 case WND_BLACKBT:

staticText->setText("Black is the currently selected color");
 fProcess=false;
 break;

 case WND_WHITEBT:
staticText->setText("White is the currently selected color");

 fProcess=false;
 break;

 case WND_REDBT:
staticText->setText("Red is the currently selected color");

 fProcess=false;
 break;

 case WND_BLUEBT:
staticText->setText("Blue is the currently selected color");

 fProcess=false;
 break;

 case WND_YELLOWBT:
staticText->setText("Yellow is the currently selected color");

 fProcess=false;
 break;
 }
return fProcess = false;

}

338 VisualAge C++ Open Class Library User's Guide

Buttons

Figure 33 shows the radio button created with the preceding code example.

Figure 33. Radio Buttons

Creating a Check Box

Check boxes are similar to radio buttons, except that they can offer multiple-choice

selection, as well as individual choice. When a user selects the choice, a check mark

symbol (√) appears in the check box to indicate that the choice is selected. By

selecting the choice again, the user deselects the check box. Use a check box to set a

choice in a group of choices that are not mutually exclusive.

Check boxes also toggle application features on or off. For example, a word

processing application might use a check box to let the user turn word wrapping on

or off.

The ICheckBox class lets you create and maintain a check box. The selection of a

check box is processed by using the ISelectHandler class. You add the handler to

either the check box or its owner window.

 Chapter 29. Creating and Using Text Controls 339

Buttons

 Refer to Chapter 38, “Adding Events and Event Handlers” on page 467 for

information about event handlers.

The following example shows you how to create a check box:

1. Create a check box by first making a declaration in the .hpp file, as follows:
...
/***/
/* Set canvas class declaration */
/***/
class MySet : public ISetCanvas
{
 public:

MySet(unsigned long winId, IWindow* pParent);

 private:
 ICheckBox check1;
 ICheckBox check2;
 ICheckBox check3;
};
...

/***/
/* Application Window declaration */
/***/
class AppWindow : public IFrameWindow
 {
 public:

AppWindow(unsigned long windowId);
 ˜AppWindow();

 private:
 ITitle title;
 MySet * pSetCv;
 IMultiCellCanvas canvas;
 };

2. Construct the frame window.
...
/***/
/* Window Constructor */
/***/

AppWindow :: AppWindow(unsigned long windowId)
 : IFrameWindow(windowId,
 defaultStyle()),
 title(this,PSZ_OBJECT,PSZ_VIEW),

canvas(ID_CANVAS, this, this)
{

setClient(&canvas);

//***
// Create Canvas
//***

340 VisualAge C++ Open Class Library User's Guide

Buttons

pSetCv = new MySet(ID_SET, &canvas);
canvas.addToCell(pSetCv, 2, 2);

}
...

...
/***/
/* MySet constructor */
/***/
MySet :: MySet(unsigned long winId, IWindow* pParent)
 : ISetCanvas(winId, pParent, pParent),

check1(ID_BOX1, this, this, IRectangle(),
 ICheckBox::classDefaultStyle |
 IControl::group),

check2(ID_BOX2, this, this),
check3(ID_BOX3, this, this)

{
 check1.setText(PSZ_BOX1);
 check2.setText(PSZ_BOX2);
 check3.setText(PSZ_BOX3);
 setText(PSZ_GROUP);
}
...

Figure 34 shows the check box created using the preceding example.

Figure 34. Check Box Example

Creating a Three-State Check Box

Three-state check boxes are similar to check boxes, except that they can be displayed

in halftone as well as selected and unselected. An application might use the halftone

state to indicate that, currently, the check box is not selectable. The selection of a

three-state check box is processed by using the ISelectHandler class and adding the

handler to either the three-state check box or its owner window.

 Chapter 29. Creating and Using Text Controls 341

Buttons

If a three-state check box is selected, it can be either checked or halftoned. You have

to use a combination of the isSelected and isHalftone member functions to determine

the state of a three-state check box. The following table shows the state of the

three-state check box and its relation to the isSelected and isHalftone member

functions.

The following example shows how to create a three-state check box:

I3StateCheckBox three(ID_THREE, &canvas, &canvas,
 IRectangle(100,220,250,280));
three.setText("3 State");
...
three.selectHalftone();
...
if (three.isSelected()) { //Determine state of the button
 if (three.isHalftone()) {

// is halftone
} else {

// is checked
} /* end if */

} else {
// is not selected

} /* end if */

Current State isSelected isHalftone

checked true false

halftone true true

not checked false false

342 VisualAge C++ Open Class Library User's Guide

List Boxes

30 Creating and Using List Controls

You can use lists in your User Interface Class Library application by including the

following controls:

 ¹ List boxes

 ¹ Combination boxes

 ¹ Sliders

 ¹ Spin buttons

Understanding List Box Controls

A list box is a control that displays several items at a time, one or more of which can

be selected by the user.

An application uses a list box when it requires a list of selectable fields that is too

large for the display area or a list of choices that can change dynamically. Each list

item contains a text string and an optional handle. The text string is displayed in the

list box window, but the handle is available to the application to reference other data

associated with each of the items in the list.

The IBaseListBox class creates and manages list box control windows. Two types of

list box controls are derived from IBaseListBox. They are IListBox and

ICollectionViewListBox. IListBox extends the IBaseListBox list box control creation

and management to include adding, removing, and replacing list box items.

ICollectionViewListBox<Element, Collection> template class extends the

IBaseListBox control to enabling viewing of an ordered collection as items in a list

box. The sequence of elements is the same between the ordered collection and the

list box.

You can attach an ISelectHandler to a list box or its owner window to process events

created when the user selects or double-clicks on an item in the list box. Typically,

the owner is a dialog window or the client window of an application frame window.

Using List Boxes

You can use a list box to display a list in a window. Notification messages are sent

from the list box to its owner window, enabling the application to respond to user

actions in the list. Events are routed first to the list box, then to its owner.

Once you create the list box, your application controls the inserting and deleting of

list items. Items can be inserted at the end of the list, automatically sorted into the

 Copyright IBM Corp. 1993, 1995 343

List Boxes

list, or inserted at a specified index or cursor position. You can add an array of items

at a specified index or cursor position.

For an ICollectionViewListBox list box, the inserting, sorting, and deleting actions

occur on the collection.

You can use cursors to manipulate the list box. Cursors can be filters to process all

items in the list box or only the selected ones.

Creating a List Box

This section shows you how to create an IListBox list box control. The sample

comes from Hello World version 5. It does the following:

¹ Creates a list box

¹ Uses the addAscending member function

¹ Uses a select handler

¹ Creates a list box cursor with the default filter, a selected items filter

This code comes from the AHELLOW5.CPP file:
...
 ,listBox(WND_LISTBOX, &clientWindow, &clientWindow, IRectangle(),
 IListBox::defaultStyle() |
 IControl::tabStop |
 IListBox::noAdjustPosition)
...
/**/
/* Add items to the list box */
/**/

for (int i=0;i<HI_COUNT;i++)
 listBox.addAscending(HI_WORLD+i);
selectHandler.handleEventsFor(&listBox);
...
/**/
/* Create a cursor */
/**/
IListBox::Cursor lbCursor(listBox);
lbCursor.setToFirst();
/***/
/* Set the text to the first item in the list box*/
/***/
hello.setText(listBox.elementAt(lbCursor));
...

Adding or Deleting a List Box Item

Your applications can add or delete an item in a list box. Items in a list are specified

with a 0-based index (beginning at the top of the list). A new list is created empty;

then, the application initializes the list by inserting items.

344 VisualAge C++ Open Class Library User's Guide

List Boxes

The application specifies the text and position for each new item. It can specify an

absolute-position index or use a list box cursor.

For an ICollectionViewListBox control, the list box control window reflects actions

on the associated collection. So an element removed from the collection, will be

visually reflected in the list box control.

The following example shows you how to create an IListBox list box control and

then add and delete items. This declaration shows a frame window that has a list

box.

1. Declare a frame window with the list box as a child in the .hpp file:
...
class Frame : public IFrameWindow
{
 public:

Frame(unsigned long windowId);
 ˜Frame();

void handleEvent(unsigned long int);

 private:
 ITitle title;
 ICanvas canvas;
 IEntryField ef;
 IListBox listbox;
 IStaticText stTxt1;
 IStaticText stTxt2;
 ACommandHandler * commandHandler;
};
...

2. Construct the frame window, initializing the child controls. The frame is made

owner of the canvas and title, and all other controls are children of the canvas.
...
/***/
/* Construct the frame window */
/***/
Frame::Frame(unsigned long windowId)
 : IFrameWindow(windowId,
 IFrameWindow::defaultStyle() |
 IFrameWindow::menuBar),

title(this,"List Box Example"),
 canvas(ID_CANVAS,this,this),

ef(ID_ENTRY, &canvas, &canvas, IRectangle(10, 355, 600, 400)),
listbox(ID_LISTBOX, &canvas, &canvas, IRectangle(10, 10, 600, 300)),

 stTxt1(ID_STTXT1, &canvas, &canvas, IRectangle(10, 420, 600, 400)),
 stTxt2(ID_STTXT2, &canvas, &canvas, IRectangle(10, 325, 600, 345))
 {

3. Handle commands from the menu bar using a customized command handler. In

the constructor for the ACommandHandler class (which is a subclass of

ICommandHandler), make a local copy of the Frame object so its handleEvent

function can be called. Then, in the ACommandHandler::command function,

 Chapter 30. Creating and Using List Controls 345

List Boxes

look for the specific items from the menu bar. When application-specific items

are found, route them to the Frame::handleEvent function for processing, as

follows:

ACommandHandler::ACommandHandler(Frame *listWindow)
{
list = listWindow;

}

void Frame :: handleEvent(unsigned long int eventtype)
 {
 switch (eventtype)
 {
// Add item to listbox
 case ID_ADD_ITEM:

if (!ef.isEmpty()) {
 listbox.addAsFirst(ef.text());
 ef.setText("");
 }
 break;
// Add item in ascending order to list box
 case ID_ASC_ITEM:

if (!ef.isEmpty()) {
 listbox.addAscending(ef.text());
 ef.setText("");
 }
 break;

// Add item in descending order to list box
 case ID_DESC_ITEM:

if (!ef.isEmpty()) {
 listbox.addDescending(ef.text());
 ef.setText("");
 }
 break;

// Delete selected item(s) from list box
 case ID_DEL_ITEM:
 {

IListBox::Cursor lbc(listbox, IListBox::Cursor::selectedItems);
for (lbc.setToFirst(); lbc.isValid(); lbc.setToFirst()) {

 listbox.removeAt(lbc);
 }
 }
 break;

// Delete all items from list box
 case ID_DELALL_ITEM:

if (!listbox.isEmpty()) {
 listbox.removeAll();
 }
 break;

// Allow only single selection in list box
 case ID_SINGLE_ITEM:
 listbox.disableMultipleSelect();
 listbox.disableExtendedSelect();

346 VisualAge C++ Open Class Library User's Guide

List Boxes

 break;

// Allow multiple selection in list box
 case ID_MULTI_ITEM:
 listbox.disableExtendedSelect();
 listbox.enableMultipleSelect();
 break;

...
IBase::Boolean ACommandHandler::command(ICommandEvent& cmdEvent)
{
 switch (cmdEvent.commandId())
 {
 case ID_ADD_ITEM:
 case ID_ASC_ITEM:
 case ID_DESC_ITEM:
 case ID_DEL_ITEM:
 case ID_DELALL_ITEM:
 case ID_SINGLE_ITEM:
 case ID_MULTI_ITEM:
 case ID_EXTEND_ITEM:
 list->handleEvent(cmdEvent.commandId());
 return true;
 } // end of switch
 return false;
}

Figure 35 shows the list box created with the preceding code example.

 Chapter 30. Creating and Using List Controls 347

Combination Boxes

Figure 35. A List Box

Understanding Combination Box Controls

A combination box is two controls in one: an entry field and a list box. There are

three types of combination box controls:

 ¹ Simple

 ¹ Drop-Down

 ¹ Drop-Down List

This section describes how to create combination box controls, also called

combination boxes and prompted entry fields, to let the user choose and edit items

from a list in a PM application.

Combination box controls enable the user to enter data by typing in the entry field or

by choosing an item in the list box, unless it is a drop-down list, in which case, you

cannot edit the entry field. Combination box controls manipulate the list box using

the following member functions:

 ¹ IComboBox::add

348 VisualAge C++ Open Class Library User's Guide

Combination Boxes

 ¹ IComboBox::remove

 ¹ IComboBox::replaceAt

A combination box control automatically manages the interaction between the entry

field and the list box. For example, when the user chooses an item in the list box,

the combination box control displays the text for that item in the entry field. Then,

the user can edit the text without affecting the item in the list box. When the user

types letters in the entry field, the combination box control scrolls the list box

contents so that items with those letters become visible.

Objects of the IBaseComboBox class create and manage combination box control

windows. There are two types of combination boxes derived from IBaseComboBox.

They are IComboBox and ICollectionViewComboBox.

Population of the combination box list box items is done by the derived classes.

IComboBox contains the add, remove, and replace functionality, while

ICollectionViewComboBox populates the combination box list box from collection

elements using the setItems member function.

Creating a Combination Box

This section shows you how to create a combination box control. The code comes

from the Hello World version 6 sample application. The ADIALOG6.CPP file does

the following:

¹ Creates a drop-down combination box using the following initializer in the

ATextDialog constructor:
...
,textField(DID_ENTRY,&clientCanvas,&clientCanvas
 ,IRectangle(), IWindow::visible|IComboBox::dropDownType)
...

¹ Uses a loop to load strings from the resource file into the combination box in

ascending order, as follows:
...
for (int i=0;i<HI_COUNT;i++)
 textField.addAscending(HI_WORLD+i);
...

¹ Loads the entry field portion of the combination box with the text string passed

into the constructor, using the following code:
...
textField.setText(saveText);
...

¹ Disables the entry field portion of the combination box for automatic scrolling,

adds a margin, and sets a tab stop.

 Chapter 30. Creating and Using List Controls 349

Sliders

...
textField.disableAutoScroll().enableMargin().enableTabStop();
...

¹ Retrieves the text that users leave in the entry field portion of the combination

box from the combination box object by using the text function, as follows:
...
saveText = textField.text();
...

Figure 36 shows the Hello World 6 combination box control.

Figure 36. A Combination Box

Understanding Slider Controls

A slider is a visual component that enables a user to set, display, or modify a value

by moving the slider arm along the slider shaft.

A slider consists of a slider arm, one or two slider scales and, optionally, detents, tick

marks, tick text, and slider buttons. Note that you can have two slider scales, but

only the primary one will be visible.

The following table lists the slider components and their descriptions:

Slider Component Description

Detent A user-selectable mark that can be placed anywhere along the slider scale.

350 VisualAge C++ Open Class Library User's Guide

Sliders

Typically, sliders let users set values that have familiar increments, such as feet,

degrees, or decibels. You can use sliders for other purposes when immediate

feedback is required, such as to blend colors or show a task’s percentage of

completion. For example, your application might let a user mix and match color

shades by moving a slider arm, or a progress indicator (with the ribbonStrip style)

could show how much of a task is complete by filling in the slider shaft as the task

progresses.

The slider’s appearance and user’s interaction with a slider is similar to that of a

scroll bar. However, these two controls are not interchangeable because each has a

unique purpose. A scroll bar scrolls information into view that is outside a window’s

work area, while the slider sets, displays, or modifies that information.

You can customize a slider to meet varying application requirements, while providing

a user interface component that can be used easily to develop applications that

conform to the Common User Access (CUA) user interface guidelines. Your

application can specify different scales, sizes, and orientations for its sliders, but the

underlying function of the control remains the same.

The ISlider class inherits from the IProgressIndicator class, which is a read-only

version of the slider control. Typically, you use a progress indicator to display the

percentage of a task that is complete by filling in its shaft as the task progresses. The

default for progress indicators is to use the ribbonStrip style to fill the shaft. If you

do not use this, there is a slider arm present to indicate the current value. Users

cannot move the slider arm in a progress indicator.

Attach a handler derived from IEditHandler to the slider to capture when a user

moves the slider arm.

Slider Component Description

Progress indicator A read-only version of a slider

Slider arm An arm that shows the current value by its position on the slider shaft and

can be changed programmatically, as well as by users. Users can move

the arm along the shaft to set slider values.

Slider buttons Buttons that move the slider arm incrementally in the indicated direction.

Slider shaft A track for the slider arm to move along.

Tick text A label indicating the value the tick mark represents.

Tick mark An incremental value in a slider scale.

 Chapter 30. Creating and Using List Controls 351

Sliders

Creating a Slider Control

The following example is comprised of three sliders used to set the red, green, and

blue colors in a color mixer. As the slider arm moves, the static text color will

change appropriately. program.

1. Define the main window. A multi-cell canvas is used as the client window. The

client canvas contains the sliders as well as a multi-cell canvas containing the

static text which represents the current color.

class ColorMixerWindow : public IFrameWindow
 {
 public:
 ColorMixerWindow();
 ˜ColorMixerWindow();
 ColorMixerWindow& displayNewColor();

 private:
 IMultiCellCanvas canvas;

ISlider redSlider, greenSlider, blueSlider;
 IMultiCellCanvas colorAreaCanvas;
 ISetCanvas colorAreaFrame;
 IStaticText colorArea;
 ColorMonitor colorMonitor;

ISetCanvas redTitleCanvas, greenTitleCanvas, blueTitleCanvas;
IStaticText redTitle, greenTitle, blueTitle;
IStaticText redValue, greenValue, blueValue;

 IStaticText mixerTitle;
 };

2. Define the ColorMonitor class. The ColorMonitor class is used to detect when a

slider is moved. The edit member function is overridden to detect when a new

color is to be displayed in the color area.

class ColorMonitor : public IEditHandler

 {
 public:

ColorMonitor(ColorMixerWindow *colorMixerWindow)
: _colorMixerWindow(colorMixerWindow)

 {;}

 protected:
Boolean edit(IControlEvent &event);

 private:
 ColorMixerWindow *_colorMixerWindow;
 };

3. Create the main window.

ColorMixerWindow::ColorMixerWindow()
: IFrameWindow("Slider Example")
, canvas(ID_MCCANVAS, this, this)
, mixerTitle(ID_MIXER_TITLE, &canvas, &canvas)
, redTitleCanvas(ID_RED_CANVAS, &canvas, &canvas)
, redValue(ID_RED_VALUE, &redTitleCanvas, &redTitleCanvas)

352 VisualAge C++ Open Class Library User's Guide

Sliders

, redTitle(ID_RED_TITLE, &redTitleCanvas, &redTitleCanvas)
, redSlider(ID_RED_SLIDER, &canvas, &canvas, IRectangle(), 256)
, greenTitleCanvas(ID_GREEN_CANVAS, &canvas, &canvas)
, greenValue(ID_GREEN_VALUE, &greenTitleCanvas, &greenTitleCanvas)
, greenTitle(ID_GREEN_TITLE, &greenTitleCanvas, &greenTitleCanvas)
, greenSlider(ID_GREEN_SLIDER, &canvas, &canvas, IRectangle(), 256)
, blueTitleCanvas(ID_BLUE_CANVAS, &canvas, &canvas)
, blueValue(ID_BLUE_VALUE, &blueTitleCanvas, &blueTitleCanvas)
, blueTitle(ID_BLUE_TITLE, &blueTitleCanvas, &blueTitleCanvas)
, blueSlider(ID_BLUE_SLIDER, &canvas, &canvas, IRectangle(), 256)
, colorAreaCanvas(ID_COLOR_CANVAS, &canvas, &canvas)
, colorAreaFrame(ID_COLOR_FRAME, &colorAreaCanvas, &colorAreaCanvas)
, colorArea(ID_COLOR_AREA, &colorAreaCanvas, &colorAreaCanvas)
, colorMonitor(this)

 {
...

4. Set up sliders and color area.

// Put a border of 10 around the sliders
 canvas

.setColumnWidth(1, 10)

.setColumnWidth(5, 10)

.setRowHeight(1, 10)

.setRowHeight(15, 10)
// Mark the column that contains the sliders as expandable.

 .setColumnWidth(2, 10,true);

 mixerTitle
.setText("Color Mixer")
.setAlignment(IStaticText::centerCenter);

// Set up the sliders to have a range of 0 to 255 for color selection
 redSlider
 .setTickText(0, "0")
 .setTickText(255, "255")

.moveArmToTick(0);
 redTitle.setText("Red");
 redValue
 .setText("0")

.setLimit(3);
 redTitleCanvas

.setDeckOrientation(ISetCanvas::horizontal)

.setPackType(ISetCanvas::tight);

 greenSlider
 .setTickText(0, "0")
 .setTickText(255, "255")

.moveArmToTick(0);
 greenTitle.setText("Green");
 greenValue
 .setText("0")

.setLimit(3);
 greenTitleCanvas

.setDeckOrientation(ISetCanvas::horizontal)

.setPackType(ISetCanvas::tight);

 blueSlider

 Chapter 30. Creating and Using List Controls 353

Sliders

 .setTickText(0, "0")
 .setTickText(255, "255")

.moveArmToTick(0)
 .setForegroundColor(IColor::white);
 blueTitle.setText("Blue");
 blueValue
 .setText("0")

.setLimit(3);
 blueTitleCanvas

.setDeckOrientation(ISetCanvas::horizontal)

.setPackType(ISetCanvas::tight);

// Set each slider's background to the color that the slider
 // represents.
redSlider.setBackgroundColor (IColor::red);
greenSlider.setBackgroundColor(IColor::green);

 blueSlider.setBackgroundColor (IColor::blue);

// Add a ISetCanvas to the multicell canvas and use its text feature to
// put a border around the colorArea. The IFont for the colorAreaFrame is
// used to figure out the size of the first row.
IFont colorAreaFont(&colorAreaFrame);

 colorAreaCanvas
.addToCell(&colorAreaFrame, 1, 1, 3, 3)
.addToCell(&colorArea, 2, 2)
.setColumnWidth(2, 10, true)
.setRowHeight(1, 5 + colorAreaFont.maxCharHeight())
.setRowHeight(2, 10, true);

 colorAreaFrame.setText("Color Area");

// Set the slider visible ticks to be every 5th one.
for (int i = 0; i <= 255; i=i+5)

 {
redSlider.setTickLength (i, 10);
greenSlider.setTickLength(i, 10);
blueSlider.setTickLength (i, 10);

 }

// Add the controls to the multicell canvas.
 canvas

.addToCell(&mixerTitle, 2, 2)

.addToCell(&redTitleCanvas, 2, 4)

.addToCell(&redSlider, 2, 6)

.setRowHeight(6, 10, true)

.addToCell(&greenTitleCanvas, 2, 8)
 .addToCell(&greenSlider, 2, 10)

.setRowHeight(10, 10, true)
 .addToCell(&blueTitleCanvas, 2, 12)
 .addToCell(&blueSlider, 2, 14)

.setRowHeight(14, 10, true)

.addToCell(&colorAreaCanvas, 4, 4, 1, 11);

// Add the colorMonitor to each slider so that we can detect when
// to update the colorArea.

 colorMonitor
.handleEventsFor(&redSlider)
.handleEventsFor(&blueSlider)

354 VisualAge C++ Open Class Library User's Guide

Sliders

.handleEventsFor(&greenSlider);

// Initialize the color areas color.
colorArea.setBackgroundColor(IColor(0, 0, 0));

 setClient(&canvas);
 }

5. Change color area to mix of colors specified by the sliders.

ColorMixerWindow& ColorMixerWindow::displayNewColor()

 {
// Use the armTickOffset of each of the sliders to create an IColor
// object to use to set the background color of the colorArea.
IColor newColor(redSlider.armTickOffset(),

 greenSlider.armTickOffset(),
 blueSlider.armTickOffset());
colorArea.setBackgroundColor(newColor);

// Display the value used to create the colorArea's background color.
 redValue.setText (IString(redSlider.armTickOffset()));
greenValue.setText(IString(greenSlider.armTickOffset()));
blueValue.setText (IString(blueSlider.armTickOffset()));

 return *this;
 }

6. Handle the events occuring when a slider's value changes.

IBase::Boolean ColorMonitor::edit(IControlEvent& event)

 {
// When the slider's value changes display a new background color in the

 // colorArea.
 _colorMixerWindow->displayNewColor();
 return true;
 }

 Chapter 30. Creating and Using List Controls 355

Spin Buttons

Figure 37 shows the slider created by the preceding example.

Figure 37. A Slider Example

Understanding Spin Buttons

A spin button control is a visual component that gives users quick access to a finite

set of data by letting them select from a scrollable ring of choices. Because the user

can see only one item at a time, a spin button should be used only with data that is

intuitively related, such as the months of the year, or an alphabetic list of cities or

states.

A spin button consists of at least one spin field and up and down arrows that are

stacked on top of one another. These arrows are positioned to the right of the spin

field.

Two types of spin buttons are derived from IBaseSpinButton. They are

INumericSpinButton and ITextSpinButton.

You can create multi-field spin buttons for those applications in which users must

select more than one value. For example, in setting a date, the spin button control

can provide individual fields for setting the month, day, and year. The first spin field

in the spin button could contain a list of months; the second, a list of numbers; and

the third, a list of years.

356 VisualAge C++ Open Class Library User's Guide

Spin Buttons

The application uses a multi-field spin button by creating one master component that

contains a spin field and the spin arrows, and servant components that contain only

spin fields. The spin buttons are created during the construction of the master. When

a servant spin field has the focus, it is spun by the arrows in the master component or

by the cursor keys.

The value in a spin button entry field can be an element in an array of data or within

a range of integers, defined by an upper and lower limit. Spin buttons which use

arrays of data are text spin buttons and those that use a range of integers are numeric

spin buttons.

Attach a handler derived from ISpinHandler to the spin button to capture spin events,

such as the user pressing the up or down arrow.

Creating a Spin Button

The following example shows you how to create three spin buttons to show the three

parts of a date (month, day, and year). It demonstrates how to initialize the data of

both a text spin button and a numeric spin button. It also shows how to retrieve the

value of the spin buttons and show the values in a message box. The spin buttons are

children of the client canvas. The frame also contains a status area and a push

button. The push button is added as an extension below the client canvas.

1. Define the main window in the .hpp file.

/***/
/* Declare the frame window */
/***/
class AppWindow : public IFrameWindow {
 public:

AppWindow(unsigned long windowId);
 ˜AppWindow();
 ITextSpinButton * spinbtn1;
 INumericSpinButton * spinbtn2,
 * spinbtn3;
 IStaticText statusarea;
 IPushButton pushbtn;
 void eventHandle();

 private:
 ITitle title;
 ICanvas canvas;

ACommandHandler * commandHandler

2. Create the spin buttons. Add the extensions and the command handler. in the

.cpp file, as follows:

/***/
/* Create the frame window */
/***/
AppWindow::AppWindow(unsigned long windowId)
 : IFrameWindow(windowId,

 Chapter 30. Creating and Using List Controls 357

Spin Buttons

 IFrameWindow::defaultStyle()),
title(this, "Spin Button Example"),
canvas(WID_CANVAS, this, this, IRectangle(5, 5, 410, 460)),
statusarea(WID_STATUS, this, this),
pushbtn(WID_BUTTON, this, this)

{
// Customize the push button with text
pushbtn.setText("OK");

//Create month spin button (text type spin button)
spinbtn1 = new ITextSpinButton(WID_MONTH,&canvas, &canvas,
 IRectangle(10,250,200,350));

//Create day spin button (numeric type spin button)
spinbtn2 = new INumericSpinButton(WID_DAY,&canvas, &canvas,
 IRectangle(10,150,200,240));

//Create year spin button (numeric type spin button)
spinbtn3 = new INumericSpinButton(WID_YEAR,&canvas, &canvas,
 IRectangle(10,50,200,140));
...

//Add the status area as an extension
statusarea.setText("Select a MONTH, DAY and YEAR:");

setClient(&canvas);

addExtension(&statusarea, IFrameWindow::aboveClient,
 .05, IFrameWindow::thickLine);

//Add the push button as an extension
addExtension(&pushbtn, IFrameWindow::belowClient,
 .05, IFrameWindow::thickLine);

//Add the command handler
commandHandler = new ACommandHandler(this);
commandHandler->handleEventsFor(this);
}

3. Add data to the spin buttons:

const int kArraySize = 12;
const int daySize = 31;
const int yearSize = 2000;

const char* textArray[kArraySize] = { "January", "February", "March",
"April", "May","June", "July", "August", "September", "October",
"November", "December" };

// Add month data to spin button
for (int i = 0; i < kArraySize; i++)
 spinbtn1->addAsLast(textArray[i]);

// Set range of days to day spin button
spinbtn2->setRange(IRange(1, daySize));

// Set range of years to year spin button (1990 - 2000)
spinbtn3->setRange(IRange(1990, yearSize));

358 VisualAge C++ Open Class Library User's Guide

Spin Buttons

4. Handle an event to show the data in the spin buttons, as follows:

// When OK push button is pressed - display the data inside the
// spin buttons
 switch (cmdEvent.commandId())
 {
 case WID_BUTTON:
 push->eventHandle();
 break;
...

void AppWindow :: eventHandle()
 {
IString month = spinbtn1->text() += " ";

 IString day = spinbtn2->value();
 IString year = spinbtn3->value();
IString text = "You have selected: ";
IString date = text += month;
date += day;
date += " ";
date += year;

// Display the data retrieved from the spin buttons
 IMessageBox msg(IWindow::desktopWindow());

msg.setTitle("Spin Buttons Selection Notifier");
msg.show(date, IMessageBox::informationIcon | IMessageBox::okButton)

Figure 38 shows the spin button created using the preceding example.

Figure 38. Spin Button Example

 Chapter 30. Creating and Using List Controls 359

Spin Buttons

360 VisualAge C++ Open Class Library User's Guide

Split Canvas

31 Creating and Using Canvas Controls

A canvas is a window that manages its child windows. Different canvases provide a

range of support, including the following:

¹ Managing the size and position of child windows

¹ Providing a movable split bars between windows

¹ Supporting the ability to scroll a window

With the canvas classes, you can build windows with multiple child controls that

contain fixed-size areas, user-sizeable areas, and scrollable areas. In addition, a

canvas control lets you control tabbing between child controls, providing an

alternative to using dialog boxes.

Generally, you build a complex window with a canvas control as the client area.

This canvas can contain other canvas controls to build the desired layout.

The canvas classes are:

 ¹ ICanvas

 ¹ ISplitCanvas

 ¹ ISetCanvas

 ¹ IToolBar

 ¹ IMultiCellCanvas

 ¹ IViewPort

The set and multiple-cell canvases automatically size and position their child windows

for you, based on the child window’s minimum size.

Understanding Split Canvases

A split canvas places its child controls into panes. The panes are separated by

moveable or fixed split bars. (The default is movable split bars.) A split canvas can

have its split bars oriented vertically or horizontally.

Note: In AIX, you can only move the split canvas using the small square buttons.

However, in OS/2, you can move a split canvas using any part of the split bar

line.

Use a split canvas to contain controls that can be resized to display more information,

such as list boxes, containers, MLEs, and notebooks.

 Copyright IBM Corp. 1993, 1995 361

Split Canvas

Note: Use the IListBox::noAdjustPosition style on a list box control in a split

canvas, because otherwise the OS/2 operating system may adjust the height of

the list box so it will not fill the height of the split canvas.

The order in which you create the child controls determines both their relative

position on the split canvas and the order in which tab and cursor keys switch focus

between them. For a canvas with vertical split bars, the child controls are arranged

with the control that was created first in the leftmost pane. For a canvas with

horizontal split bars, the control that was created first is placed in the top pane.

Creating a Split Canvas

The following example shows you how to create a split canvas.

1. Declare a split canvas in the .hpp file.

/***/
/* MySplit class - split canvas class and associated */
/* controls */
/***/
class MySplit : public ISplitCanvas
{
 public:

MySplit(unsigned long winId, IWindow* pParent);

 private:
 IStaticText statTxt1;
 IStaticText statTxt2;
 IStaticText statTxt3;
};

/***/
/* Command handler declaration */
/***/
class ACommandHandler : public ICommandHandler {

public:
 ACommandHandler(AppWindow *asplcan);

protected:
virtual Boolean command(ICommandEvent& cmdEvent);

private:
 AppWindow *splcan;
};

/***/
/* AppWindow class declaration */
/***/
class AppWindow : public IFrameWindow
 {
 public:

AppWindow(unsigned long windowId);
 ˜AppWindow();

AppWindow & updateCanvas(unsigned long eventtype);

362 VisualAge C++ Open Class Library User's Guide

Split Canvas

 private:

 ITitle * title;
 MySplit * splitCv;
 ACommandHandler * commandHandler;
 };

2. Create the window constructor in a .cpp file, as follows:

/***/
/* Window constructor */
/***/

AppWindow :: AppWindow(unsigned long windowId)
: IFrameWindow(windowId, // create Frame window

defaultStyle() | menuBar)
{

//**/
// Create title */
//**/
title = new ITitle(this,PSZ_OBJECT,PSZ_VIEW);

//**/
// Create split canvas */
//**/
splitCv = new MySplit(ID_SPLIT, this);
setClient(splitCv);

//***
// Create command handler
//***
commandHandler = new ACommandHandler(this);
commandHandler->handleEventsFor(this);
}

/***/
/* MySplit constructor */
/***/
MySplit :: MySplit(unsigned long winId, IWindow* pParent)
 : ISplitCanvas(winId, pParent, pParent),

statTxt1(ID_TEXT1, this, this),
statTxt2(ID_TEXT2, this, this),
statTxt3(ID_TEXT3, this, this)

{
 setSplitWindowPercentage(&statTxt1, 20);
 setSplitWindowPercentage(&statTxt2, 40);
 setSplitWindowPercentage(&statTxt3, 40);
 statTxt1.setText(PSZ_TEXT1);
 statTxt2.setText(PSZ_TEXT2);
 statTxt3.setText(PSZ_TEXT3);
 statTxt1.setBackgroundColor(IColor::red);
 statTxt2.setBackgroundColor(IColor::white);
 statTxt3.setBackgroundColor(IColor::blue);
 statTxt3.setForegroundColor(IColor::white);
}

 Chapter 31. Creating and Using Canvas Controls 363

Split Canvas

3. Handle command events:

/***/
/* Construct the command handler */
/***/
ACommandHandler::ACommandHandler(AppWindow *asplcnv)
{
splcan = asplcnv;

}

/***/
/* MyWindow command event handler */
/***/
IBase::Boolean ACommandHandler :: command(ICommandEvent& cmdEvent)
 {
 switch (cmdEvent.commandId())
 {
 case ID_VERT_ITEM:
 case ID_HORIZ_ITEM:
 case ID_DOUBLE_EDGE_ITEM:
 case ID_HALVE_EDGE_ITEM:
 case ID_DOUBLE_MIDDLE_ITEM:
 case ID_HALVE_MIDDLE_ITEM:
 splcan->updateCanvas(cmdEvent.commandId());
 return true;
 }
 return false;
}

Figure 39 shows a split canvas created by using the preceding example.

Figure 39. Split Canvas Example

The following examples show how to create a window containing two split canvases.

Each pane is occupied by a static text control.

1. This code from the header file declares the ASplitCanvas class as a subclass of

IFrameWindow.

364 VisualAge C++ Open Class Library User's Guide

Split Canvas

Note: Member functions are initialized in the order that they appear in the class

declaration.

#include <iframe.hpp> // IFrameWindow
#include <istattxt.hpp> // IStaticText
#include <isplitcv.hpp> // ISplitCanvas
class ASplitCanvas : public IFrameWindow
{
 public:

ASplitCanvas(unsigned long windowId); // Constructor

 private:
ISplitCanvas horzCanvas, // The canvases will be created

vertCanvas; // in the same order they
IStaticText lText, // are declared.

 rText,
 bText;
};

2. This code creates the window.

 1 ASplitCanvas :: ASplitCanvas(unsigned long windowId)
 2 : IFrameWindow(windowId)
 3 , horzCanvas(WND_CANVAS, this, this)
 4 , vertCanvas(WND_CANVAS2, &horzCanvas, &horzCanvas)
 5 , lText(WND_TXTL, &vertCanvas, &vertCanvas)
 6 , rText(WND_TXTR, &vertCanvas, &vertCanvas)
 7 , bText(WND_TXTB, &horzCanvas, &horzCanvas)
 8 {
 9
10 horzCanvas.setOrientation(ISplitCanvas::horizontalSplit); //Give the canvas
11 setClient(&horzCanvas); //a horizontal split bar
12 //and make it the client area
13
14 vertCanvas.setOrientation(ISplitCanvas::verticalSplit);//Give the canvas
15 //a vertical split bar
16 lText.setText(STR_TOPLEFT); //Set top left static text
17 lText.setAlignment(IStaticText::centerCenter);
18
19 rText.setText(STR_TOPRIGHT); //Set top right static text
20 rText.setAlignment(IStaticText::centerCenter);
21
22 bText.setText(STR_BOTTOM); //Set bottom static text
23 bText.setAlignment(IStaticText::centerCenter);
24
25 setFocus().show(); //Set focus and show window
26
27 } /* end ASplitCanvas :: ASplitCanvas(...) */

Lines 1 through 7 create a canvas with horizontal and vertical split bars. The

canvases are created in the same order they were declared in the header file. In line

4, the vertical canvas is defined as a child of the horizontal canvas.

Lines 10 and 11 make the horizontal canvas the client window.

Line 14 defines a canvas with vertical split bars.

 Chapter 31. Creating and Using Canvas Controls 365

Set Canvas

Lines 16 through 23 set the text for each static control and position the text in each

pane.

Figure 40 shows the completed split canvas.

Canvas Classes Example1 - Split Canvas

Top left text Top right text

Bottom text

First pane
of vertical
split canvas

Second pane
of vertical
split canvas

Vertical split bar

Horizontal
split bar

Figure 40. Split Canvas Example

Understanding Set Canvases

A set canvas arranges its child controls in either rows or columns. The User Interface

Class Library uses the term deck for either a row or column. You can arrange the

decks of a set canvas either horizontally or vertically. The set canvas attempts to

place the same number of controls in each deck.

Each deck is created large enough to contain the largest control in the deck. To do

this, the canvas calls the minimumSize member function for each child control. For

controls that have sizes defined by the text they contain, such as push buttons and

radio buttons, this default processing is normally sufficient. However, for a control

that does not have a well-defined size, such as a list box or multiple-line edit control,

you need to set its minimum size by overriding the calcMinimizeSize member

function or by calling its setMinimumSize member function before adding it to the set

canvas.

366 VisualAge C++ Open Class Library User's Guide

Set Canvas

Note: Your application can determine the best minimum size for list boxes,

multiple-line edit controls, containers, and frame windows.

The order in which you create the child controls determines their positions on the set

canvas and the order in which tab and cursor keys switch focus between the controls.

Several styles are available to control the orientation of the decks and the placement

of controls within the decks. You can also alter the spacing between controls and

between the decks and the edge of the canvas.

Creating a Set Canvas

The following example shows you how to create a set canvas.

1. Declare the classes that use a set canvas as follows:

/***/
/* Create the command handler */
/***/
class ACommandHandler : public ICommandHandler {

public:
 ACommandHandler(MyWindow *asetcan);

protected:
virtual Boolean command(ICommandEvent& cmdEvent);

private:
 MyWindow *setcan_type;
};
...
/***/
/* Create the frame window */
/***/
class MyWindow : public IFrameWindow

 {
 public:

MyWindow(unsigned long windowId);
 ˜MyWindow();

Boolean command(ICommandEvent& evt);
MyWindow & updateSetCan(unsigned long eventtype);

 private:
 void cleanUpMemory();
 ITitle myTitle;
 IMenuBar myMenu;

void statusBox(IString messageText);
 ISetCanvas *myCanvas;
 IRadioButton *rbt1;
 IRadioButton *rbt2;
 IRadioButton *rbt3;
 IPushButton *pbt1;
 IPushButton *pbt2;
 IPushButton *pbt3;
 IStaticText *st1;
 IScrollBar *sb1;

 Chapter 31. Creating and Using Canvas Controls 367

Set Canvas

 ICheckBox *chkbx1;
 ICheckBox *chkbx2;
 ICheckBox *chkbx3;

ACommandHandler * commandHandler;
 };

2. Define the class and its children in the .cpp file, as follows:

/***/
/* Window constructor */
/***/
MyWindow::MyWindow(unsigned long windowId) :
 IFrameWindow(windowId),

myTitle(this, "Set Canvas Example")

{
myCanvas = new ISetCanvas(ID_CANVAS, this, this);
rbt1 = new IRadioButton(ID_RB1, myCanvas, myCanvas, IRectangle(),

 IRadioButton::classDefaultStyle);
rbt2 = new IRadioButton(ID_RB2, myCanvas, myCanvas, IRectangle(),

 IRadioButton::classDefaultStyle);
rbt3 = new IRadioButton(ID_RB3, myCanvas, myCanvas, IRectangle(),

 IRadioButton::classDefaultStyle);
chkbx1 = new ICheckBox(ID_CB1, myCanvas, myCanvas, IRectangle(),

ICheckBox::classDefaultStyle | IControl::group);
chkbx2 = new ICheckBox(ID_CB2, myCanvas, myCanvas, IRectangle(),

 ICheckBox::classDefaultStyle);
chkbx3 = new ICheckBox(ID_CB3, myCanvas, myCanvas, IRectangle(),

 ICheckBox::classDefaultStyle);
pbt1 = new IPushButton(ID_PB1, myCanvas, myCanvas, IRectangle(),

IPushButton::classDefaultStyle | IPushButton::defaultButton);
pbt2 = new IPushButton(ID_PB2, myCanvas, myCanvas, IRectangle(),

IPushButton::classDefaultStyle | IPushButton::defaultButton);
pbt3 = new IPushButton(ID_PB3, myCanvas, myCanvas, IRectangle(),

IPushButton::classDefaultStyle | IPushButton::defaultButton);
 rbt1->setText("Button1");
 rbt2->setText("Button2");
 rbt3->setText("Button3");
 chkbx1->setText("CheckBox1");
 chkbx2->setText("CheckBox2");
 chkbx3->setText("CheckBox3");
 pbt1->setText("Pushbutton1");
 pbt2->setText("Pushbutton2");
 pbt3->setText("Pushbutton3");
 myCanvas->setDeckCount(3);
 myCanvas->setDeckOrientation(ISetCanvas::vertical);
 setClient(myCanvas);
 myCanvas->refresh();

//***
// Create Command Handler
//***
commandHandler = new ACommandHandler(this);
commandHandler->handleEventsFor(this);
}

Figure 41 shows a set canvas created by using the preceding example.

368 VisualAge C++ Open Class Library User's Guide

Set Canvas

Figure 41. Set Canvas Example

The following examples use a split canvas as a client area. Two set canvases, each

with seven radio buttons, are then added to the split canvas.

1. This code from the header file declares the ASetCanvas class as a subclass of

IFrameWindow.

#include <iframe.hpp> // IFrameWindow
#include <istattxt.hpp> // IStaticText
#include <iradiobt.hpp> // IRadioButton
#include <isetcv.hpp> // ISetCanvas
#include <isplitcv.hpp> // ISplitCanvas
#define NUMBER_OF_BUTTONS 14

class ASetCanvas : public IFrameWindow
{
public: //Define the public information
ASetCanvas(unsigned long windowId); //Constructor for this class
˜ASetCanvas(); //Destructor for this class

private: //Define private information
 ISplitCanvas clientCanvas;
 IStaticText status;
 ISetCanvas vSetCanvas,
 hSetCanvas;
 IRadioButton * radiobut[NUMBER_OF_BUTTONS];
 AButtonHandler buttonHandler;
};

2. This code from the .CPP creates the window.
...
 1 ASetCanvas::ASetCanvas(unsigned long windowId)
 2 : IFrameWindow(windowId)
 3 , clientCanvas(WND_SPLITCANVAS, this, this, IRectangle(),
 4 ISplitCanvas::horizontal | IWindow::visible)

 Chapter 31. Creating and Using Canvas Controls 369

Set Canvas

 5 , status(WND_STATUS, &clientCanvas, &clientCanvas)
 6 , vSetCanvas(WND_VSETCANVAS, &clientCanvas, &clientCanvas)
 7 , hSetCanvas(WND_HSETCANVAS, &clientCanvas, &clientCanvas)
 8 {
 9
10 setClient(&clientCanvas); //Make split canvas the client area
11
12 status.setAlignment(IStaticText::centerCenter);//Set alignment of status area text
13
14 vSetCanvas.setDeckOrientation(ISetCanvas::vertical);
15 vSetCanvas.setDeckCount(3); //Create 3 vertical decks in top canvas
16
17 hSetCanvas.setDeckOrientation(ISetCanvas::horizontal);
18 hSetCanvas.setDeckCount(3); //Create 3 horizontal decks in bottom canvas
19 hSetCanvas.setPad(ISize(10,10)); //Set some space around buttons
...

Lines 6 and 7 create the two set canvases.

Line 10 makes the split canvas the client area.

Line 12 sets the alignment of the static text control to be centered vertically and

horizontally.

Lines 14 and 15 set the deck orientation of the first canvas to vertical and the

deck count to 3.

Lines 17 through 19 set the deck orientation of the second canvas to horizontal

and the deck count to 3. They also set the padding around the second canvas to

10 pels.

Figure 42 shows the set canvas created using this code.

Canvas Classes Example 2 - Set Canvas

Button one

Button two

Button three

Button four

Button five

Button six

Button seven

Button eight Button nine Button ten

Button eleven Button twelve

Button thirteen Button fourteen

ISplitCanvas and ISetCanvas example

Vertical set canvas
with 3 decks

Horizontal set canvas
with 3 decks

Figure 42. Set Canvas Example

370 VisualAge C++ Open Class Library User's Guide

Multiple-Cell Canvas

Understanding Multiple-Cell Canvas

A multiple-cell canvas consists of a grid of rows and columns and looks like a

spreadsheet. You place child controls on the canvas by specifying the starting cell

and the number of contiguous rows and columns that they can span. You can refer to

cells in the grid by the column and row value. The top left cell coordinate is (1,1).

The default cell size is 10 pixels high by 10 pixels wide. The actual number of rows

and columns in the canvas is the highest row and column value used. For example, a

radio button is placed at (4,5) and a push button at (2,7). Therefore, the canvas has 4

columns and 7 rows. Columns and rows can also be referenced by setColumnWidth

and setRowHeight.

The initial size of a row or column is determined by the size of the largest control in

that row or column. By default, the row and column sizes are fixed. You can make

the rows and columns expandable by using setColumnWidth and setRowHeight

(setting the parameter expandable=true), in which case sizing the canvas also sizes

them.

Figure 43 shows a multiple-cell canvas. Notice that the small window’s location is at

column 4, row 5 (4,5), while the large window starts at column 9, row 2 (9,2). The

large window is 2 columns wide and 3 rows long.

Figure 43. A Multiple-Cell Canvas

Note: A child window in a fixed-sized row and column is automatically sized based

on its minimum size, which is typically based on the window’s content and

the available area within the window.

You can also leave rows and columns empty to provide spacing between child

controls. If you do not explicitly size the empty rows and columns using

setRowHeight and setRowWidth, they are sized to the default cell size.

 Chapter 31. Creating and Using Canvas Controls 371

Multiple-Cell Canvas

You cannot have more than one window occupy the same “starting cell”. (Starting

cell means the start row and column you specify when you call addToCell.)

However, you can have overlapping cells.

The size of a row or column is initially established by calculating the minimum size

needed to hold all the windows in the row or column. In practice, this means the

width of a column is set to the minimum width of the largest window in the column.

The width is determined by calling IWindow::minimumSize on all windows in the

column. The application can set the width or height of a column or row, respectively.

If an attempt is made to set a value less than the minimum size of the largest

window, the value is saved, but ignored since the minimum size is the larger of the

hard coded size for the cell and the minimum size of the window. In other words,

the application can reserve more space than the window needs but can not cause the

clipping of the window to occur.

 Refer to the Open Class Library Reference for more information about
IWindow::minimumSize.

A column or row never has a smaller width or height than the minimum size of the

largest window in the column or row. If the windows later calculate a smaller

minimum size, the width or height of the column or row is the larger of the

following:

¹ The new minimum size of the largest window in the column or row

¹ The column width or row height set by the application

The minimum size of the canvas is based on the minimum sizes of all the windows

on the canvas plus the size of empty rows and columns. If the area allotted to the

canvas is less than this size, the canvas is clipped at the lower right corner. You can

use the IViewPort class to add scroll bars to handle this situation.

See “Understanding View Ports” on page 377 and the Open Class Library Reference

for more information about the IViewPort class.

The multiple-cell canvas has two styles that can help you create layouts with a

multiple-cell canvas by providing a way to easily visualize the placement and size of

each child window. The gridLines style causes the multiple-cell canvas to have grid

lines between the rows and columns of the canvas. Grid lines are stationary. If you

want grid lines that you can move with the mouse, use the dragLines style, which

causes the multiple-cell canvas to have draggable grid lines between the rows and

columns of the canvas.

Here are some considerations when using grid lines and drag lines:

¹ Grid lines and drag lines are placed at the left and top edges of cells.

372 VisualAge C++ Open Class Library User's Guide

Multiple-Cell Canvas

¹ Child windows can overwrite grid lines and drag lines.

¹ The use of grid lines or drag lines does not change the initial placement or sizing

of child windows.

¹ Moving a drag line causes the child windows on each side of the drag line to be

resized in a manner similar to that of an ISplitCanvas.

 Refer to the Open Class Library Reference for more information about

ISplitCanvas.

Creating a Multiple-Cell Canvas

The following example shows you how to create a multiple-cell canvas.

1. Declare a class that uses a multiple-cell canvas control in the .hpp file with static

text and entry field controls.

/***/
/* MyWindow class declaration */
/***/
class MyWindow : public IFrameWindow

{
public:

MyWindow(unsigned long windowID);
 ˜MyWindow();

protected:
Boolean command(ICommandEvent& cmdEvent);

private:
 IMultiCellCanvas myClient;
 IStaticText stName,
 stAddress,
 stId,
 stBirthday,
 stPhone;
 IEntryField efName,
 efAddress,
 efId,
 efBirthday,
 efPhone;
 ACommandHandler * commandHandler;
};

2. Construct the multiple-cell canvas in the .cpp file.

MyWindow::MyWindow(unsigned long windowId)
: IFrameWindow("MultiCell Canvas Example",windowId,

 IFrameWindow::defaultStyle(),
myClient(ID_MCC, this, this),
stName(ID_ST_NAME, &myClient, &myClient),

 stAddress(ID_ST_ADDR, &myClient,&myClient),
stId(ID_ST_ID, &myClient, &myClient),
stBirthday(ID_ST_BD, &myClient, &myClient),
stPhone(ID_ST_PHONE, &myClient, &myClient),

 Chapter 31. Creating and Using Canvas Controls 373

Multiple-Cell Canvas

efName(ID_EF_NAME, &myClient, &myClient),
efAddress(ID_EF_ADDR, &myClient, &myClient),
efId(ID_EF_ID, &myClient, &myClient),
efBirthday(ID_EF_BD, &myClient, &myClient),
efPhone(ID_EF_PHONE, &myClient, &myClient)

 {

setClient(&myClient);

//***
// Build multiple-cell canvas with fields
//***
myClient.addToCell(&stName, 2, 2);
myClient.addToCell(&efName, 3, 2);
myClient.addToCell(&stAddress, 2, 3);
myClient.addToCell(&efAddress, 3, 3);
myClient.addToCell(&stId, 2, 4);
myClient.addToCell(&efId, 3, 4);
myClient.addToCell(&stBirthday, 2, 5);
myClient.addToCell(&efBirthday, 3, 5);
myClient.addToCell(&stPhone, 2, 6);
myClient.addToCell(&efPhone, 3, 6);

//***
// Load the static text fields
//***
stName.setText("Name:");

 stName.setForegroundColor(IColor::yellow);
stName.setAlignment(IStaticText::centerRight);
stAddress.setText("Address:");

 stAddress.setForegroundColor(IColor::yellow);
stAddress.setAlignment(IStaticText::centerRight);
stBirthday.setText("Birthdate:");

 stBirthday.setForegroundColor(IColor::yellow);
stBirthday.setAlignment(IStaticText::centerRight);

 stId.setText("ID:");
 stId.setForegroundColor(IColor::yellow);
stId.setAlignment(IStaticText::centerRight);

 stPhone.setText("Phone:");
 stPhone.setForegroundColor(IColor::yellow);
stPhone.setAlignment(IStaticText::centerRight);

}

The following examples show you how to create a window containing a multiple-cell

canvas. The canvas contains two check boxes, two radio buttons, three static text

controls, and one push button.

1. This code from the header file declares the AMultiCellCanvas class as a subclass

of IFrameWindow class.

#include <iframe.hpp> // IFrameWindow
#include <istattxt.hpp> // IStaticText
#include <ipushbut.hpp> // IPushButton
#include <iradiobt.hpp> // IRadioButton
#include <icheckbx.hpp> // ICheckBox
#include <imcelcv.hpp> // IMultiCellCanvas

374 VisualAge C++ Open Class Library User's Guide

Multiple-Cell Canvas

class AMultiCellCanvas : public IFrameWindow
{
 public:

AMultiCellCanvas(unsigned long windowId);

 private:
 IMultiCellCanvas clientCanvas;
 IStaticText status,
 title1,
 title2;
 ICheckBox check1,
 check2;
 IRadioButton radio1,
 radio2;
 IPushButton pushButton;
};

2. This code creates the window.

 1 AMultiCellCanvas::AMultiCellCanvas(unsigned long windowId)
 2 : IFrameWindow(windowId)
 3 , clientCanvas(WND_MCCANVAS, this, this)
 4 , status(WND_STATUS, &clientCanvas, &clientCanvas)
 5 , title1(WND_TITLE1, &clientCanvas, &clientCanvas)
 6 , title2(WND_TITLE2, &clientCanvas, &clientCanvas)
 7 , check1(WND_CHECK1, &clientCanvas, &clientCanvas)
 8 , check2(WND_CHECK2, &clientCanvas, &clientCanvas)
 9 , radio1(WND_RADIO1, &clientCanvas, &clientCanvas)
10 , radio2(WND_RADIO2, &clientCanvas, &clientCanvas)
11 , pushButton(WND_PUSHBUT, &clientCanvas, &clientCanvas)
12 {
13
14 setClient(&clientCanvas); // make multicell canvas the client area
15 status.setAlignment(IStaticText::centerCenter);// set status area text
16 status.setText(STR_STATUS);
17
18 title1.setAlignment(IStaticText::centerLeft); // set text and alignment
19 title1.setText(STR_TITLE1);
20
21 title2.setAlignment(IStaticText::centerLeft); // set text and alignment
22 title2.setText(STR_TITLE2);
23
24 check1.setText(STR_CHECK1); // set check box text
25 check2.setText(STR_CHECK2);
26 radio1.setText(STR_RADIO1); // set radio button text
27 radio2.setText(STR_RADIO2);
28
29 pushButton.setText(STR_PUSHBUT);
30
31 radio2.select(); // preselect one radio button
32 check1.enableGroup().enableTabStop();// set tabStop and group styles
33 radio1.enableGroup().enableTabStop();
34 pushButton.enableGroup().enableTabStop();
35
36 clientCanvas.addToCell(&status , 1, 1, 4, 1); // add controls to canvas.
37 clientCanvas.addToCell(&title1 , 1, 3, 2, 1); // the canvas runs from
38 clientCanvas.addToCell(&title2 , 3, 3, 2, 1); // 1,1 to 4,7
39 clientCanvas.addToCell(&check1 , 2, 4); // only one row and
40 clientCanvas.addToCell(&check2 , 2, 5); // one column are

 Chapter 31. Creating and Using Canvas Controls 375

Multiple-Cell Canvas

41 clientCanvas.addToCell(&radio1 , 4, 4); // expandable, as this
42 clientCanvas.addToCell(&radio2 , 4, 5); // allows the canvas to
43 clientCanvas.addToCell(&pushButton , 2, 7); // fill the client area.
44
45 clientCanvas.setRowHeight(2, 20, true); // make row 2 20 pixels high and expandable
46
47 clientCanvas.setRowHeight(6, 40); // make row 6 40 pixels high
48
49 clientCanvas.setColumnWidth(4, 40, true); // make column 4 40 pixels wide and expandable
50
51 check1.setFocus(); // set focus to first check box
52 show(); // show main window
53
54 } /* end AMultiCellCanvas :: AMultiCellCanvas(...) */

Note: There is not a 1:1 relationship between OS/2 and AIX pixels.

Line 3 creates a multiple-cell canvas.

Line 14 makes it the client area.

Lines 36 through 43 place the other controls on the canvas using the addToCell

member function.

Lines 45 through 49 set the sizes for rows 2 and 6 and column 4. Row 2 and column

4 are expandable.

Figure 44 shows the completed multiple-cell canvas.

Figure 44. Multiple-Cell Canvas Example with 4 Columns and 7 Rows

376 VisualAge C++ Open Class Library User's Guide

View Port

Understanding View Ports

A view port canvas provides a scrollable view area with horizontal and vertical scroll

bars. By default, the scroll bars display only when needed. A view port can have

only one child control. The size of the child control is fixed. If the view port is

smaller than the child control, the view port allows the user to scroll the child control.

If you need more than one control in a view port, place the controls into another type

of canvas, which you can then make the child of the view port.

Creating a View Port

The following example shows how to create a view port.

1. Declare a view port in the .hpp file.

/***/
/* AViewWindow declaration */
/***/
class AViewWindow : public IFrameWindow {

 public:
AViewWindow(unsigned long windowId);

 ˜AViewWindow();
AViewWindow & moveHoriz();
AViewWindow & moveVert();

 private:
 ITitle title;
 IViewPort viewPort;
 ICanvas canvas;
 IStaticText text;
 IMultiLineEdit mle1;
 IMultiLineEdit mle2;
 ACommandHandler *commandHandler;
};

2. Define the view port in the .cpp file as shown in the following code:

/***/
/* Window constructor */
/***/
AViewWindow::AViewWindow(unsigned long windowId)
 : IFrameWindow(windowId,
 IFrameWindow::defaultStyle() |
 IFrameWindow::menuBar),

title(this, "View Port Example"),
viewPort(WID_VIEWPORT, this,this, IRectangle()),
canvas(WID_CANVAS, &viewPort, &viewPort, IRectangle(5, 5, 410, 460)),
text(WID_TEXT, &canvas, &canvas, IRectangle(10, 360, 400, 410)),
mle1(WID_MLE1, &canvas, &canvas, IRectangle(10, 0, 400, 149)),
mle2(WID_MLE2, &canvas, &canvas, IRectangle(10, 160, 400, 349))

{

 viewPort.setColor(IViewPort::fillBackground, IColor::yellow);
 setClient(&viewPort);
text.setText("Enter some data into the MLE, please");

//***
// Command Handler
//***

 Chapter 31. Creating and Using Canvas Controls 377

View Port

commandHandler = new ACommandHandler(this);
 commandHandler->handleEventsFor(this);
 sizeTo(ISize(500,300));
 show();

}

AViewWindow::˜AViewWindow()
{
 commandHandler->stopHandlingEventsFor(this);
 delete commandHandler;
}

3. Handle events, as follows:

/***/
/* Horizontal move event handler */
/***/
AViewWindow & AViewWindow :: moveHoriz()
 {
 viewPort.scrollViewHorizontallyTo(200);
 return(*this);
 }

/***/
/* Vertical move event handler */
/***/
AViewWindow & AViewWindow :: moveVert()
 {
 viewPort.scrollViewVerticallyTo(200);
 return(*this);
 }

/***/
/* Command handler */
/***/
ACommandHandler::ACommandHandler(AViewWindow *viewWindow)
{
view = viewWindow;

}

/***/
/* Command handler */
/***/
IBase::Boolean ACommandHandler::command(ICommandEvent & cmdEvent)
{
 Boolean eventProcessed(true);

 switch (cmdEvent.commandId())
 {
 case ID_HORIZ:
 view->moveHoriz();
 break;
 case ID_VERT:
 view->moveVert();
 break;
 default:

eventProcessed = false;
 }
 return true;
}

Figure 45 shows the view port created with the preceding code.

378 VisualAge C++ Open Class Library User's Guide

View Port

Figure 45. A View Port

 Chapter 31. Creating and Using Canvas Controls 379

View Port

380 VisualAge C++ Open Class Library User's Guide

File Dialog

32 Creating and Using File and Font Dialogs

A dialog box is a special, short-lived window that you use to display information and

receive input from the user in a structured dialog format. The information is typically

related to a particular action being performed by the application.

If you develop portable applications, use a canvas for dialog windows.

 Refer to Chapter 49, “Adding Dialogs and Push Buttons” on page 621 for more

information about using canvases for dialogs.

This chapter covers file and font dialogs.

Specifying File Dialog Information

The file dialog enables a user to specify a file to be opened or a file name in which

current work is to be saved. It includes the function to switch directories and logical

drives. The IFileDialog class lets you define the dialog for files. To create a file

dialog, follow these steps:

1. Set the file dialog using the optional feature of the IFileDialog class to specify

initial settings for the dialog you create. To use this feature, create an instance of

the Settings class when you create the dialog, as shown in the following example:

IFileDialog::Settings fsettings;

The Settings class has several member functions, including:

 ¹ setFileName

 ¹ setOpenDialog

 ¹ setPosition

 ¹ setSaveAsDialog

Note: The setOpenDialog is the default. If you want a Save As dialog, use the

setSaveAsDialog member function.

To set the dialog, use the following statements:

fsettings.setTitle(STR_FILEDLGT); //Set open dialog title from resource
fsettings.setFileName("*.hlo"); //Set file names to *.hlo

2. Create an instance of the IFileDialog class after setting up the dialog. Use the

following statements:

IFileDialog * fd=new IFileDialog(//Create file open dialog
desktopWindow(), //Parent is desktop
this, //Owner is me

 fsettings); // with settings

 Copyright IBM Corp. 1993, 1995 381

File Dialog

 Refer to the Open Class Library Reference for other ways to define an

instance of the IFileDialog class.

3. Test the response from the file dialog using the pressedOK member function.

This member function returns true if the user ended the dialog by pressing OK.

4. Read the resulting file name from the file dialog. Use the fileName member

function to return the fully qualified name that the user selected.

For the complete sample code, see the openFile member function in the

AHELLOW6.CPP file (Hello World version 6). The Hello World samples, are in

the \ibmcpp\samples\ioc directory.

Creating a File Dialog

The following example demonstrates creating both an Open file dialog and a Save As

file dialog.

1. Define the main window and a command handler to handle menu command

events.

class MyCommandHandler : public ICommandHandler
{
 public:

MyCommandHandler(MyWindow* theOwner);
 virtual
 ˜MyCommandHandler();
 virtual Boolean

command(ICommandEvent& event);

 private:
 MyWindow
 *owner,
 *parent;
};

class MyWindow : public IFrameWindow
{
 public:
 MyWindow();

 private:
 ITitle title;
 IMenuBar menu;
 MyCommandHandler cmds;
};

2. Create the main window.

MyWindow::MyWindow() :
IFrameWindow(ID_MAIN),
title(this, "File Dialog Example"),
menu(ID_MENU, this),
cmds(this)

{
cmds.handleEventsFor(this);

382 VisualAge C++ Open Class Library User's Guide

File Dialog

 setFocus().show();
}

3. Create the file dialogs based on the menu command events.
...
IBase::Boolean MyCommandHandler::command(ICommandEvent& event)
{
 Boolean

rv = false;
 IMessageBox

msgbox(owner);

switch (event.commandId())
 {

case ID_FILE_OPEN :
 {
 IFileDialog::Settings fileSettings;

fileSettings.setTitle("Open the Specified File"); // Set open dialog title
fileSettings.setFileName("*.cpp"); // Set file names to *.cpp
IFileDialog filedlg(parent, owner, fileSettings);
if (filedlg.pressedOK())

 {
msgbox.show(IString("You selected the file '")

+ IString(filedlg.fileName())
+ IString("'."),

 IMessageBox::okButton);
 }
 break;
 }

case ID_FILE_SAVEAS :
 {
 IFileDialog::Settings fileSettings;

fileSettings.setTitle("Save to the Specified File"); // Set save-as dialog title
fileSettings.setFileName("noname.txt"); // Set file name to noname.txt

 fileSettings.setSaveAsDialog();
IFileDialog filedlg(parent, owner, fileSettings);
if (filedlg.pressedOK())

 {
msgbox.show(IString("You saved the file '")

+ IString(filedlg.fileName())
+ IString("'."),

 IMessageBox::okButton);
 }
 break;
 }
 }
 return rv;
}

Figure 46 shows the file dialog created using the preceding example.

 Chapter 32. Creating and Using File and Font Dialogs 383

Font Dialog

Figure 46. File Dialog Example

Specifying Font Dialog Information

The font dialog enables a user to specify a choice of font names, styles, and sizes

from the range of those available in a given application. Use the IFontDialog class to

handle fonts in your applications.

Figure 47 shows an example of a font dialog.

Figure 47. Example of a Font Dialog

384 VisualAge C++ Open Class Library User's Guide

Font Dialog

Creating a Font Dialog

The following section describes how to create a font dialog, using the Hello World

version 6 application. The following code comes from the AHELLOW6.CPP file.

AHelloWindow &
AHelloWindow :: setHelloFont()

{
...
 IFont tempFont(&hello);
 IFontDialog::Settings fontSettings(&tempFont);
 fontSettings.setTitle(IResourceId(STR_FONTDLGT));
IFontDialog fontDialog(desktopWindow(), this,

 IFontDialog::resetButton, fontSettings);
 if (fontDialog.pressedOK())
 {
 hello.setFont(tempFont);
 }
return (*this); //Return a reference to the frame

...
}; /* end AHelloWindow :: setHelloFont() */

In the preceding sample, the font in an IStaticText control is changed to the font the

user selects from an IFontDialog. This is done by:

1. Creating an IFont object called tempFont that represents the font currently being

used by the IStaticText control pointed to by hello.

2. Passing a pointer to the tempFont object on the constructor to an

IFontDialog::Settings object called fsettings.

3. Passing the fsettings object on the IFontDialog constructor.

Because fontSettings is constructed using tempFont, the IFontDialog initially displays

the name, style, size, and emphasis associated with tempFont (for example, the font

currently used by the IStaticText object). If the user dismisses the IFontDialog by

pressing OK, then tempFont automatically updates itself to reflect the font the user

chose via the IFontDialog. The setFont member function can be used to actually

change the font of the IStaticText control to tempFont.

 Refer to Chapter 39, “Understanding Fonts” on page 487 to see how to set a

font.

 Chapter 32. Creating and Using File and Font Dialogs 385

Font Dialog

386 VisualAge C++ Open Class Library User's Guide

Pop-Up Menus

33 Creating Menus

A menu is a window that contains a list of items—text strings, bit maps, or images

drawn by the application—that enables the user to choose from these predetermined

choices using a mouse or keyboard. The types of menus are the menu bar, pull-down

menu, cascaded menu, and pop-up menu.

A menu is always owned by another window, usually a frame window. When a user

makes a selection from a menu, the command handler gets the menu selection event.

Creating Menu Bars and Pull-Down Submenus

A typical application uses a menu bar and several pull-down submenus. The

pull-down submenus ordinarily are hidden, but they become visible when the user

makes selections from the menu bar. You can map pull-down submenus from the

menu bar, another pull-down menu, or a pop-up menu.

The menu bar is a child of the frame window; the menu bar window handle is the

key to communicating with the menu bar and its submenus.

PM CUA suggests that when you have more than three levels of submenus, you create a

dialog.

Motif Motif suggests that when you have more than three cascaded menus, you create a

dialog.

Understanding Pop-Up Menus

A pop-up menu is a menu that is displayed when a user presses the appropriate key or

mouse button. A pop-up menu contains choices that can be applied to an object at

the time the menu is displayed.

The User Interface Class Library provides the IPopUpMenu and IMenuHandler

classes to manipulate pop-up menus. To display a pop-up menu in your application,

subclass IMenuHandler, override the makePopUpMenu function, and construct an

IPopUpMenu object.

 Copyright IBM Corp. 1993, 1995 387

Pop-Up Menus

Creating Pop-Up Menus

This section shows you two ways to create a pop-up menu.

Version 6 of the Hello World application creates two pop-up menus: one for the

“Hello, World” static text control and one for the Earth window static text control.

The contents of the pop-up menus are defined in the AHELLOW6.RC resource file as

follows:
...
MENU WND_HELLOPOPUP
 BEGIN

MENUITEM "˜Left-align text", MI_LEFT
MENUITEM "˜Center text" , MI_CENTER
MENUITEM "˜Right-align text", MI_RIGHT

 END
MENU WND_EARTHPOPUP
 BEGIN

MENUITEM "˜Twinkling stars", MI_TWINKLE
 MENUITEM SEPARATOR

MENUITEM "˜Brighten stars", MI_BRIGHT
MENUITEM "˜Dim stars", MI_DIM

 END
...

In the AHELLOW6.HPP file, an APopUpHandler class is defined to process requests

for making the pop-up menus appear.
...
class APopUpHandler : public IMenuHandler {
protected:
virtual Boolean
 makePopUpMenu(IMenuEvent& menuEvent);
};
...

The makePopUpMenu member function is called whenever the user requests a pop-up

menu, usually by clicking mouse button 2, in a window for which menu requests are

being handled. This function shows the appropriate pop-up menu. You can also

dynamically create the pop-up menu in the makePopUpMenu function.

Hello World version 6 demonstrates how to create a pop-up menu as a data member

of the AHelloWindow class and how to dynamically create a pop-up menu.

Typically, you choose one of these approaches based on resource balancing. Static

pop-up menus are only created and deleted once, but take up storage whether they are

needed or not; dynamic pop-up menus are created and deleted on demand, which can

slow processing if you request them frequently.

388 VisualAge C++ Open Class Library User's Guide

Pop-Up Menus

The following sample is from the AHELLOW6.CPP file:

IBase::Boolean
 APopUpHandler::makePopUpMenu(IMenuEvent &menuEvent)
{
Boolean eventProcessed(true); //Assume event will be processed

 IPopUpMenu *popUpMenu;
/*--------------------- Create Pointer to Owner Window -------------------|
| The window pointer stored in the menu event points to the owner of |
| the menu to be popped up. |
|--*/
IWindow *popUpOwner = menuEvent.window();

 IStaticText *hello;
 AEarthWindow *earth;
/*--------------------- Select the Pop-up Menu ---------------------------|
| Determine which menu to pop up based on the window ID of the window |
| for which the menu event is being handled. |
|--*/
switch (popUpOwner->id()) {

 case WND_HELLO:
/*--------------------- Setup the Hello Window Pop-up --------------------|
| If the hello window pop-up is requested, then get a pointer to the |
| pop-up using windowWithId. This pop-up was created as a data member |
| of the class that contains the owner window to demonstrate how to |
| pop up previously-created, static, pop-up windows. |
| The pointer, hello, is created by casting the popUpOwner to the type |
| of the AHelloWindow::hello object. The pointer calls
| AHelloWindow::alignment is called to determine
| which pop-up meun item to disable. |
|--*/

popUpMenu = (IPopUpMenu *)
 IWindow::windowWithId(WND_HELLOPOPUP,popUpOwner);
 if (popUpMenu)
 {

hello = (IStaticText *)popUpOwner;
 popUpMenu->enableItem(MI_LEFT,
 hello->alignment()!=IStaticText::centerLeft);
 popUpMenu->enableItem(MI_CENTER,
 hello->alignment()!=IStaticText::centerCenter);
 popUpMenu->enableItem(MI_RIGHT,
 hello->alignment()!=IStaticText::centerRight);
 }

//If the pop-up wasn't found,
else eventProcessed=false; // the event wasn't processed

 break;
 case WND_EARTH:
/*--------------------- Setup the Earth Window Pop-up --------------------|
| If the earthWindow pop-up is requested, then create the pop-up menu |
| dynamically, with the earthWindow as the owner. This approach is |
| used to create pop-up menus on demand. The setAutoDeleteObject |
| function is used to automatically delete the menu after the user |
| has made a selection. |
| The pointer, earth, is created by casting the popUpOwner to the type |
| of the earthWindow object. The pointer is used to call the |
| AEarthWindow isTwinkling and isBright functions. |
| The Twinkling menu item contains a check mark when isTwinkling is true.|
| Either the Bright or Dim menu item is disabled, depending on the |
| result of isBright. |
|--*/

 Chapter 33. Creating Menus 389

Pop-Up Menus

popUpMenu = new IPopUpMenu(WND_EARTHPOPUP,popUpOwner);
 if (popUpMenu)
 {
 popUpMenu->setAutoDeleteObject();

earth = (AEarthWindow *)popUpOwner;
 popUpMenu->checkItem(MI_TWINKLE,earth->isTwinkling());
 if (earth->isBright())

{ popUpMenu->disableItem(MI_BRIGHT); }
 else

{ popUpMenu->disableItem(MI_DIM); }
 }

//If the pop-up wasn't created,
else eventProcessed=false; // the event wasn't processed

 break;
default: //If the owner wasn't hello or earth,
eventProcessed=false; // the event wasn't processed

} /* end switch */
/*----------------------- Show the Pop-up Menu ---------------------------|
| If the pop-up menus were setup successfully, use |
| IPopUpMenu::show to show the menu at the position |
| where the pointing device was when the menu event occurred. |
|--*/
 if (eventProcessed)
 popUpMenu->show(menuEvent.mousePosition());
 return(eventProcessed);
} /* end APopUpHandler :: makePopUpMenu(...) */

The case statement for WND_HELLO uses the IWindow::windowWithId function to

get a pointer to the static pop-up menu. The WND_EARTH case creates a pop-up

menu dynamically. Because Hello World version 6 creates the menu using the new

operator, it must also be deleted. The easiest way to delete a dynamic pop-up menu

is to use the setAutoDeleteObject function, which causes the menu to be

automatically deleted when the menu ends.

In either case, when the menu is found or created, the makePopUpMenu function

displays the menu by using IPopUpMenu::show. The mouse pointer position, which

is taken from the menu event, is passed as one argument to specify where the pop-up

menu will appear.

The makePopUpMenu function is only called for windows that are attached to the

pop-up menu handler. Hello World version 6 attaches a pop-up menu handler

directly to the IStaticText objects, hello and earthWindow. It attaches to the objects

instead of the frame because static text objects do not pass events up the owner chain.

Therefore, you should use this approach if you develop portable applications. For the

same reason, the command handler attaches to the static text objects so that the

command events that result from using the pop-up menus will be sent to the

command handler. In Hello World version 6, this is done using the following code

from the AHELLOW6.CPP file.

390 VisualAge C++ Open Class Library User's Guide

Pop-Up Menus

...
commandHandler.handleEventsFor(&hello);
commandHandler.handleEventsFor(&earthWindow);
popUpHandler.handleEventsFor(&hello);
popUpHandler.handleEventsFor(&earthWindow);
...

By reusing the existing command handler, commands such as MI_LEFT can have the

same processing whether they are generated by a menu bar item, a push button, an

accelerator key, or a pop-up menu.

The following example also shows you how to create a pop-up menu. To create a

pop-up menu for a list box, follow the steps in this section.

1. Declare a handler which is a subclass of both IMenuHandler and

ICommandHandler so that the same handler can be used for handling the pop-up

menu and the commands that originate from it. Make an instance of this handler

a child of the frame window. Make the pop-up menu itself a dynamic child of

the handler.

/***/
/* Define the frame window */
/***/
class AppWindow : public IFrameWindow {

 public:
AppWindow(unsigned long windowId);

 ˜AppWindow();

 private:
 ITitle title;
 IMenuBar menu;
 IMultiCellCanvas canvas;
 IStaticText sttxt;
 IListBox listbox;
 PopUpHandler * pLBPopUp;
 ACommandHandler * commandHandler;
};

/***/
/* Define the pop-up and command handler */
/***/
class PopUpHandler : public IMenuHandler,
 public ICommandHandler
{
 public:

PopUpHandler(IListBox & lbUpdate, IStaticText & stMsg);
 ˜PopUpHandler();

 protected:
virtual Boolean makePopUpMenu(IMenuEvent& menuEvent);
virtual Boolean command(ICommandEvent& cmdevt);

...

 Chapter 33. Creating Menus 391

Pop-Up Menus

 private:
void setLBColor(unsigned long ulNewColor);
void setLBText(unsigned long ulNewSize);
IListBox * pLB;
IStaticText * pST;

 IPopUpMenu * pPopUpMenu;
unsigned long ulColor;
unsigned long ulText;

};

2. Create an instance of the pop-up handler and start handling events in the frame

window constructor, as shown in the following code:

/***/
/* Construct the frame window with children */
/***/
AppWindow::AppWindow(unsigned long windowId)

: IFrameWindow(windowId, defaultStyle()),
 title(this, "PopUp","Example"),

canvas(ID_CANVAS, this, this),
listbox(ID_LISTBX, &canvas, &canvas),
sttxt(ID_TEXT, &canvas, &canvas),

 menu(ID_MENU, this),
 pLBPopUp(0)
{
 listbox.setForegroundColor(IColor::yellow);
 sttxt.setText("ListBox Set to Default Values");
 sttxt.setLimit(30);
//**
// Customize the multiple-cell canvas
//**
setClient(&canvas);
canvas.addToCell(&listbox, 2, 2);
canvas.setRowHeight(2, 20, true);
canvas.setColumnWidth(2, 20, true);
canvas.addToCell(&sttxt, 2, 6);
canvas.setRowHeight(1, 10);
canvas.setRowHeight(4, 25);
canvas.setRowHeight(7, 10);
canvas.setColumnWidth(1, 10);
canvas.setColumnWidth(3, 10);

// Attach the pop-up menu handler to the list box
pLBPopUp = new PopUpHandler(listbox, sttxt);

// Handle commands from the menu bar
commandHandler = new ACommandHandler(this);
commandHandler->handleEventsFor(this);

}

3. Create the pop-up menu and start event handling in the PopUpHandler

constructor. Show the pop-up menu in the makePopUpMenu function. Handle

the events generated from the pop-up menu in the command function, as follows:

392 VisualAge C++ Open Class Library User's Guide

Pop-Up Menus

/***/
/* Pop-up handler constructor */
/***/
PopUpHandler::PopUpHandler(IListBox & LBUpdate, IStaticText & stMsg)
 : pLB(0),
 pST(0),
 pPopUpMenu(0),
 ulColor(0),
 ulText(0)
{

unsigned long ulColor, ulText;
...

 // Need pointers to entry field and static text to update them
 // from the exit
 pLB= &LBUpdate;
 pST = &stMsg;

 // Create the pop-up menu
 pPopUpMenu = new IPopUpMenu(ID_POPUP2, pLB);

 // Default color and alignment values
 ulColor = ID_BLUE;
 ulText = ID_ADD_FIRST;

 // Check the default items
 pPopUpMenu->checkItem(ulColor);
 pPopUpMenu->checkItem(ulText);

 // Set default color and alignment
 setLBColor(ulColor);
 setLBText(ulText);

 // Handle menu events and pop-up menu requests
 ICommandHandler::handleEventsFor(pLB);
 IMenuHandler::handleEventsFor(pLB);
}

...

/***/
/* Handle the menu functions to change the list box color */
/***/
void PopUpHandler::setLBColor(unsigned long ulNewColor)
{

switch (ulNewColor) {
 case ID_RED:
 pLB->setBackgroundColor(IColor::red);

pST->setText("Changed color to Red");
 break;
 case ID_GREEN:
 pLB->setBackgroundColor(IColor::green);

pST->setText("Changed color to Green");
 break;
 case ID_BLUE:
 pLB->setBackgroundColor(IColor::blue);

pST->setText("Changed color to Blue");
 break;

 Chapter 33. Creating Menus 393

Pop-Up Menus

 default:
 break;

} /* endswitch */
}
...

/***/
/* Handle the menu functions to add text to the list box */
/***/
void PopUpHandler::setLBText(unsigned long ulNewText)
{

switch (ulNewText) {
 case ID_ADD_FIRST:

pLB->addAscending("I need to learn C++");
pST->setText("Added text to list box in ascending order");

 break;
 case ID_DELETE_TEXT:
 pLB->removeAll();

pST->setText("Deleted All Text from ListBox");
 break;
 case ID_ADD_LAST:

pLB->addDescending("I know C++");
pST->setText("Added text to list box in descending order");

 break;
 default:
 break;

} /* endswitch */
}

/***/
/* Show the pop-up menu created in the constructor */
/***/
IBase::Boolean PopUpHandler::makePopUpMenu(IMenuEvent& menuEvt)
{
 pPopUpMenu->show(menuEvt.mousePosition());
 return true;
}

...

/***/
/* Command handling for the pop-up menu */
/***/
IBase::Boolean PopUpHandler::command(ICommandEvent& cmdevt)
{
 switch (cmdevt.commandId())
 {
 case ID_RED:
 case ID_GREEN:
 case ID_BLUE:
 setLBColor(cmdevt.commandId());
 return true;

 case ID_ADD_FIRST:
 case ID_DELETE_TEXT:

394 VisualAge C++ Open Class Library User's Guide

System Menu

 case ID_ADD_LAST:
 setLBText(cmdevt.commandId());
 return true;
 }
 return false;
}

 System Menu

The system menu in the upper-left corner of a standard frame window is different

from the menus defined by the application. The system menu is controlled and

defined by the system. However, using User Interface Class Library, you can enable

and disable items on the system menu, add or delete items, or even decide not to

include the system menu on your frame window. The ISystemMenu class gives you

access to the system menu and allows you to manipulate its items. The

IFrameWindow::Style class provides the flag systemMenu which allows you to

specify the presence of the system menu on your frame window.

Refer to Open Class Library Reference for more information on these classes.

 Chapter 33. Creating Menus 395

System Menu

396 VisualAge C++ Open Class Library User's Guide

Default Notebook Styles

34 Creating and Using Notebooks

A notebook control is a visual component that organizes related information on

individual “pages” so that a user can find and display that information. It simulates a

real notebook and provides the user with a recognizable visual component. It consists

of a notebook client area, a binding, page buttons, optional tabs, and an optional

status area. Users select and display pages using a mouse or the keyboard.

You can customize a notebook to meet varying application requirements, while

providing a user-interface component that can be used easily to develop products that

conform to the Common User Access (CUA) user-interface guidelines. Your

application can specify different colors, sizes, and orientations for its notebooks, but

the underlying function of the control remains the same.

Use the INotebook class objects to create notebooks or wrapper existing notebooks.

These INotebook objects function like other control objects in the library. You can

use a notebook as the client of a frame window, outside the client area of a frame

extension, or within any canvas class. Typically, you create a notebook as the client

of a frame window.

Understanding the Default Notebook Styles

You can specify notebook styles during notebook creation to define the look and feel

of the notebook, or use the default notebook styles provided by the User Interface

Class Library. The default notebook styles are the following:

INotebook::backPagesBottomRight

Simulates recessed pages along the right and bottom edges of the

notebook.

INotebook::majorTabsRight

Places major tabs on the right side of the notebook.

INotebook::solidBinding

Binding is solid.

INotebook::squareTabs

Tabs are square-shaped.

INotebook::statusTextLeft

Status text is left-justified.

INotebook::tabTextCenter

Tab text is centered.

 Copyright IBM Corp. 1993, 1995 397

Default Notebook Styles

IWindow::visible

Notebook is visible.

Figure 48 shows the appearance of a notebook control created using the default

notebook styles. This notebook is a modified version of the notebook sample

contained in the \ibmcpp\samples\ioc\notebook directory

Figure 48. Notebook Control Created with Default Styles

The notebook control shown in Figure 48 resembles a real notebook in its general

appearance. For example, the notebook has a binding that, along with recessed pages

on the right and bottom edges, gives the notebook a three-dimensional appearance.

The binding is solid and placed on the left side, using the default INotebook styles

backPagesBottomRight and solidBinding.

In the bottom right corner of the notebook are the page buttons. These buttons are

for bringing one page of the notebook into view at a time. They are a standard

component provided with every notebook. Your application can change the default

width and height of the page buttons using INotebook::setPageButtonSize. However,

you cannot query the size of the page buttons.

Selecting the forward page button (the arrow pointing to the right) causes the next

page to be displayed; selecting the backward page button (the arrow pointing to the

left) causes the previous page to be displayed.

398 VisualAge C++ Open Class Library User's Guide

Default Notebook Styles

To the left of the page buttons when using the default notebook style is the status

line, which enables your application to provide information to the user about the page

currently displayed. The notebook does not supply any default text for the status line.

You are responsible for using INotebook::PageSettings::setStatusText or

INotebook::setStatusText to associate a text string with the status line of each page.

By default, the text in the status line is left-justified.

The page buttons are always located in the corner where the recessed edges of the

notebook intersect. These recessed edges are called the back pages. The default

notebook’s back pages intersect in the bottom right corner, which means the recessed

pages are on the bottom and right edges.

The back pages are important because their intersection determines where the major

tabs can be placed, which in turn determines the placement of the binding and the

minor tabs. You can use major and minor tabs to organize related pages into

sections; minor tabs define subsections within major tab sections. The content of

each section has a common theme, which is represented to the user by a tabbed

divider, similar to a tabbed page in a notebook.

The default style, INotebook::majorTabsRight, specifies that major tabs, if used, are

placed on the right side of the notebook. This is the default placement when the back

pages intersect at the bottom right corner of the notebook. The binding is located on

the left because it is always located on the opposite side of the notebook from the

major tabs.

Minor tabs are always placed perpendicular to the major tabs, based on the

intersection of the back pages and the major tab placement.

Note: You can only specify one major or minor tab attribute for each notebook page

in OS/2 Version 2.x This restriction is removed in OS/2 Warp Version 3.0.

Minor tabs are displayed only as the associated major tab page is selected or if the

notebook has no major tab pages.

The default shape of the tabs used on notebook divider pages is square. You can

change the default width and height of the major and minor tabs using

INotebook::setMajorTabSize and INotebook::setMinorTabSize, respectively.

A notebook tab may contain either text or a bitmap. You can place text on a tab

using INotebook::PageSettings::setTabText or INotebook::setTabText. Use

INotebook::PageSettings::setTabBitmap or INotebook::setTabBitmap to place a bitmap

on a tab. You cannot position a bitmap on a tab using the default support because

the bitmap stretches to fill the rectangular area of the tab. However, you may use the

owner draw support to control the positioning and drawing of the bitmap on a tab.

 Chapter 34. Creating and Using Notebooks 399

Creating a Notebook

Creating a Notebook

Use the INotebook class to create and manage the notebook control window. You

can create an object of this class using one of the following constructors:

INotebook(unsigned long windowId,
 IWindow* parent,
 IWindow* owner,

const IRectangle& initial = IRectangle(),
const Style& style = defaultStyle());

INotebook(unsigned long windowId,
 IWindow* parentAndOwner);

INotebook(const IWindowHandle& handle);

Only the first of the three constructors creates a new notebook control. This

constructor accepts a numeric identifier for the notebook, a pointer to a window

object for its parent window, and a pointer to a window object for its owner window.

You can optionally specify the position, size, and styles of the notebook.

The next two constructors wrapper an existing notebook control. The first of these

two constructors is designed to wrapper a notebook control that is loaded as a dialog

resource. It accepts a numeric identifier for the notebook, and a pointer to a window

object for its parent and owner window. The last of these two constructors is

designed to wrapper an existing notebook control. It accepts the existing notebook's

window handle.

Version 6 of the Hello World application, hello6, creates a notebook as a private data

member, helloSettingsNotebook, from a derived IFrameWindow class, called

ANotebookWindow. The helloSettingsNotebook object is initialized on the

ANotebookWindow constructor using the following INotebook constructor from the

ANOTEBW6.CPP file:
...
,helloSettingsNotebook(WND_NOTEBOOK, this, this)
...

This constructor creates the notebook as a child window of the ANotebookWindow

object and uses the default style.

Figure 49 shows the Hello World version 6 notebook control.

400 VisualAge C++ Open Class Library User's Guide

Notebook Styles

Figure 49. Hello World Version 6 Settings Notebook

Specifying Notebook Styles

You can specify notebook styles during notebook creation to define the look and feel

of the notebook. The User Interface Class Library provides notebook styles so that

your application can specify or change the notebook's styles.

See INotebook::Style in the Open Class Library Reference for a complete list of

available notebook styles.

Note: When you specify an INotebook::Style on the notebook constructor, ensure

that no conflicts occur. Many of the style choices are not independent from

one another.

If you specify more than one style bit, you must use a bitwise OR operator (|) to

combine them.

 Refer to “Combining Styles” on page 315 for more information about bitwise

operators.

 Chapter 34. Creating and Using Notebooks 401

Notebook Styles

If you want to specify notebook styles other than the default when you are creating a

notebook, create an object of the INotebook::Style class, initialize it, and pass a

reference to it on the constructor that accepts a style parameter. For example:

INotebook::Style
style = INotebook::spiralBinding |

 INotebook::roundedTabs;

The notebook created using the preceding statements has a spiral binding and tabs

with rounded corners.

A modified version of the Hello World notebook is shown in Figure 50.

Notebook Sample Program

Hello World Color

Select OK to change color

White
Black
Blue
Red

Pink
Green
Cyan
Yellow

Color

Text

OK Cancel

Figure 50. Notebook Control

ANOTEBW6.CPP file:
...
INotebook::PageSettings
 helloSettings(INotebook::PageSettings::majorTab|
 INotebook::PageSettings::autoPageSize);
helloSettings.setTabText(IResourceId(STR_EARTHTAB));
helloSettingsNotebook.addFirstPage(helloSettings,&earthPage);
helloSettings.setTabText(IResourceId(STR_DATETIMETAB));
helloSettingsNotebook.addLastPage(helloSettings,&dateTimePage);
#ifndef IC_MOTIF
helloSettingsNotebook.setMajorTabSize(ISize(100,30));
#endif
...

Each notebook page window, in this case, is a multiple-cell canvas. Hello World

version 6 creates a PageSettings object, helloSettings, to contain the specifications for

each notebook page. The object is created with the

INotebook::PageSettings::Attributes. that specify major tabs and automatic page

402 VisualAge C++ Open Class Library User's Guide

Notebook Styles

sizing. The tab text is set to the text used to label the earthPage using the resource

ID of the string to load from the resource file.

Hello World version 6 creates the first notebook page by specifying the

INotebook::PageSettings object and the page window object to be associated with this

page. To create the next page, load the notebook tab text for the dateTimePage from

the resource file into the page settings and use INotebook::addLastPage. If you

wanted to add more pages to Hello World version, you would use

INotebook::addLastPage to append pages to the end of the notebook.

Removing Notebook Pages

You can remove pages from the notebook by supplying the IPageHandle that was

returned when the page was created.

Use the following INotebook functions to remove notebook pages:

removePage

Accepts a handle directly or determines the handle from an instance of an

INotebook::Cursor.

removeAllPages

Removes multiple pages of a notebook.

removeTabSection

Removes the pages associated with a major or minor tab section.

See the Open Class Library Reference for more information about these INotebook

functions.

Changing Notebook Colors

Your application can tailor the color of almost any part of the notebook. Use the

various color functions to change the colors of a notebook.

When you change the color in a control area, Presentation Manager passes this color

change request to all the children of the control. This causes a child window with the

same color control area to change to the new specified color if its control area has not

been explicitly set. Therefore, changing colors in the notebook can cause changes to

the page windows on the notebook.

Use the following INotebook functions to change the notebook’s color:

 setPageBackgroundColor

 setMajorTabBackgroundColor

 setMinorTabBackgroundColor

 setMajorTabForegroundColor

 setMinorTabForegroundColor

 Chapter 34. Creating and Using Notebooks 403

Notebook Styles

 setBackgroundColor

 setForegroundColor

See the Open Class Library Reference for information about the supported color

functions in INotebook.

404 VisualAge C++ Open Class Library User's Guide

Containers

35 Creating and Using Containers

A container control holds objects. OS/2 provides a variety of containers, such as

folders, templates, and the Workplace Shell itself. Containers can display their

objects in different views: tree, icon, text, name, and details views. Using the User

Interface Class Library, you can also develop your own containers and change their

views, behaviors, and layouts.

Figure 51 shows an example of a container.

Figure 51. Example of a Container

 Understanding Containers

Containers are defined by the Common User Access (CUA) architecture.

Use the IContainerControl class to create an instance of a container object. With this

class, you can control, for example, the view of the objects inside the container. The

following example shows one way to create a container:

IContainerControl cnrCtl(CNR_RESID, this, this);

Several styles are available for containers that you can use to manage such activities

as multiple-selection and automatic positioning.

 Copyright IBM Corp. 1993, 1995 405

Container Objects

You can define the styles in the constructor, or you can use member functions to set

the style required after you create an instance of the container object. An example of

a style statement is highlighted in the following:

cnrCtl = new IContainerControl (CNR_RESID, this, this);
cnrCtl->setExtendedSelection();

Refer to the Open Class Library Reference to learn about other styles and related

member functions.

Creating Container Objects

Because a container has no meaning without its objects, use the IContainerObject

class to create objects to put into it. At a minimum, an IContainerObject has an icon

and a name.

The following is an example of an IContainerObject constructor:

IContainerObject (const IString& string,
const IPointerHandle& iconHandle = 0);

To design your own objects for your applications, create a class that is derived from

the IContainerObject class. If you use multiple inheritance, you must list the

IContainerObject class first. To create a container object with department names,

addresses, and zip codes for your company, define this class as follows:

class Department : public IContainerObject
{
 public:

Department(const IString& Name,
const IPointerHandle& Icon,
const IString& Code,
const IString& Address);

 IString Code()
const { return strCode; }

 IString Address()
const { return strAddress; }

void setCode (IString code)
{strCode = code;}

void setAddress (IString address)
{strAddress = address;}

virtual void handleOpen
 (IContainerControl* container);

 private:

 IString strAddress;
 IString strCode;
};

406 VisualAge C++ Open Class Library User's Guide

Container Objects

The statements for a constructor definition are:

Department :: Department(const IString& Name,
const IPointerHandle& Icon,
const IString& Code,
const IString& Address):

 IContainerObject(Name, Icon),
 strCode (Code),
 strAddress (Address),
 {}

After you define the class, create an instance of an object using the following

statement:

dept1 = new Department (
 "OS2 Development",
 IApplication::current().userResourceLibrary().loadIcon(IBMLOGO),
 "TWPD",
 "Building 71");

Adding and Removing Container Objects

After you create the objects and the container, add the objects to the container.

The following statements add objects to the container, cnrCtl. The first line adds an

object, dept1. The next three lines add dept2, dept3, and dept4 in a hierarchy under

dept1. The last line adds dept5.

cnrCtl->addObject(dept1); // Add Department 1 to container
cnrCtl->addObject(dept2,dept1); // Add Department 2 under Department 1
cnrCtl->addObject(dept3,dept1); // Add Department 3 under Department 1
cnrCtl->addObject(dept4,dept1); // Add Department 4 under Department 1
cnrCtl->addObject(dept5); // Add Department 5 to container
cnrCtl->addObject(dept6); // Add Department 6 to container

When you place the container in the client window and show the window and the

container, you see a window like the one in Figure 52.

 Chapter 35. Creating and Using Containers 407

Container Objects

Figure 52. Example of a Container Showing Objects in an Expanded Tree View

The window shows a tree view of the container’s objects. This view is discussed

later.

You can also use the ICnrAllocator class to allocate a list of container items to be

inserted into an IContainerControl. When you construct instances of this class, you

can allocate memory from the container control for a specified number of objects

with one call.

The IContainerControl::addObjects member function inserts all the initialized items of

the allocator with one call to the container.

The following example shows how to use the ICnrAllocator class and the

IContainerControl::addObjects member function:

/**/
/* Define your derived IContainerObject class */
/**/
class MyObject : public IContainerObject
{
public:
MyObject(const IString& name) : IContainerObject(name) {}

 ˜MyObject() {}
};

/**********************************/
/* Create a frame and a container */

408 VisualAge C++ Open Class Library User's Guide

Container Objects

/**********************************/
IFrameWindow frame(0x1300);
IContainerControl cnr(0x1400, &frame, &frame);
cnrCtl.showTextView();

/**/
/* Create an allocator and allocate 10000 objects */
/**/
ICnrAllocator allocator(10000, sizeof(MyObject));

/************************/
/* Initialize all 10000 */
/************************/
for(int i=0; i<10000; i++)
{
 new(allocator) MyObject("Peter");
}

/**/
/* Add all the objects to the container */
/**/
cnrCtl.addObjects(allocator);

By default, the container only removes objects when the container is deleted. It does

not delete them. However, you can delete all objects in the container when the

container is deleted by using the following code statement:

cnrCtl->setDeleteObjectsOnClose();

You can call IContainerControl::deleteAllObjects to delete all objects in a container.

Specify the style IContainerControl::noSharedObjects when you create a container

that does not share any objects with other containers. This increases the performance

of the IContainerControl::deleteAllObjects member function.

The following example shows how to create a container with the noSharedObjects

style:

/***/
/* Create a container with the noSharedObjects style */
/***/
IContainerControl* cnrCtl = new IContainerControl(0x1400, &frame,
 &frame, IRectangle(0,0,0,0),
 IContainerControl::defaultStyle() |
 IContainerControl::noSharedObjects);

Sharing Objects Among Containers

You can also create objects and place them in multiple containers. The same object

is then shared by two or more different containers.

In Figure 52 on page 408 we have a container with six departments. In the example,

dept2, dept3, and dept4 are in a hierarchy under dept1. We now want to create

another container with only the main departments. This new container will then share

dept1, dept5, and dept6 with the container displayed in Figure 51.

 Chapter 35. Creating and Using Containers 409

Container Objects

The following statements add three objects to a container, cnrCtl2, that already exist

in another container, cnrCtl.

/***/
/* Container with all departments */
/***/
cnrCtl->addObject(dept1); // Add Department 1 to container
cnrCtl->addObject(dept2,dept1); // Add Department 2 under Department 1
cnrCtl->addObject(dept3,dept1); // Add Department 3 under Department 1
cnrCtl->addObject(dept4,dept1); // Add Department 4 under Department 1
cnrCtl->addObject(dept5); // Add Department 5 to container
cnrCtl->addObject(dept6); // Add Department 6 to container
/***/
/* Container with main departments only */
/***/
cnrCtl2->addObject(dept1); // Add Department 1 to second container
cnrCtl2->addObject(dept5); // Add Department 5 to second container
cnrCtl2->addObject(dept6); // Add Department 6 to second container

Since the same object can exist in more than one container, the attributes of an object

also reflect the state of that object. For example, an object can be visible in one

container but hidden in another. You should consider the state of an object’s attribute

in each container and the state of the attribute in each place the object resides.

The following container attributes can be modified:

 ¹ Visibility

 ¹ Cursored emphasis

 ¹ Selection emphasis

 ¹ In-use emphasis

 ¹ Refresh status

 ¹ Open status

¹ Direct edit status

¹ Expanded or collapsed state in tree view

 ¹ Target emphasis

 ¹ Source emphasis

Use the base container handler, ICnrHandler, to capture the event notifications

provided by the container class. When the values of object attributes in the container

change, these series of notifications are captured by the handler and routed to virtual

functions within the handler.

For example, for both containers to reflect the same selection emphasis, you must

attach an ICnrHandler to keep the objects in the same state in each container. Once

both icons are selected, the same action is performed on both containers.

If you are performing multiple actions that cause the container to refresh, you can

manipulate the refresh state so that the container will not repaint:

410 VisualAge C++ Open Class Library User's Guide

Container Objects

cnrCntl.setRefreshOff();
...
cnrCntl.setRefreshOn();
cnrCntl.refresh();

Filtering Container Objects

You can filter objects in a container. The container uses the FilterFn nested class to

show a subset of the existing objects by filtering some of the objects.

To create a filter:

1. Define a class derived from the FilterFn class and override the member function

isMemberOf to code the conditions of a valid object.

The following example defines a FilterFn class:

class SelectedObjectsFilter : public IContainerControl::FilterFn
{
virtual Boolean
isMemberOf(IContainerObject* object,

IContainerControl* container) const
 {
 return container->isSelected(object);
 }
};

If true is returned by the FilterFn subclass, the container object remains displayed

in the container; if false, the object is hidden.

The isSelected member function returns true if the object has selection emphasis.

 Refer to the Open Class Library Reference for information about the types of

emphasis.

2. Call IContainerControl::filter. Use the following statements:

SelectedObjectsFilter selObjects;
cnrCtl->filter(selObjects);

Figure 53 shows how the container appears before you apply the filter.

 Chapter 35. Creating and Using Containers 411

Object Cursor

Figure 53. Before Filtering the Container Objects

Figure 54 shows how the container appears after you apply the filter.

Figure 54. After Filtering the Container Objects

Accessing Container Objects Using an Object Cursor

Use an object cursor to find all objects or find only those objects that meet a specific

criteria.

The following example creates an ObjectCursor and uses it to select all container

objects:

412 VisualAge C++ Open Class Library User's Guide

Object Cursor

IContainerControl::ObjectCursor CO1 (*cnrCtl);

for (CO1.setToFirst(); CO1.isValid(); CO1.setToNext())
 {
 cnrCtl->setSelected(cnrCtl->objectAt(CO1));
 }

Figure 55 shows the before and after result of setting the selection emphasis.

Figure 55. Example of Using an Object Cursor

 Chapter 35. Creating and Using Containers 413

Container Views

Changing Views in a Container

You can specify the view using a style on the constructor or set it with a member

function. For example, the following statement uses the member function that causes

a container to display the icon view:

cnrCtl->showIconView();

This statement provides the container view shown in Figure 56.

Figure 56. Example of the Icon View

The following statement provides the tree icon view:

cnrCtl->showTreeIconView();

Figure 57 shows a container with the tree icon view.

414 VisualAge C++ Open Class Library User's Guide

Details View

Figure 57. Example of a Tree Icon View

Defining the Details View Using Container Columns

The IContainerColumn class defines the information that is displayed for a given

object when the container is in the details view. Only the items that you added with

no parent display in the details view. You can use this class to set text in the heading

of the columns, add horizontal and vertical separators by column, and align the

column contents.

One way to create an instance of an IContainerColumn is for you to provide the

offset of the object data to be displayed in the column and, optionally, the styles to be

used for the heading and data.

The following shows the syntax for the IContainerColumn constructor:

IContainerColumn (unsigned long dataOffset,
const HeadingStyle& title = defaultHeadingStyle(),
const DataStyle& data = defaultDataStyle());

To create an instance of a container column, use the following statements:

colIcon = new IContainerColumn (IContainerColumn::isIcon);

colName = new IContainerColumn (IContainerColumn::isIconViewText);

colCode = new IContainerColumn (offsetof(Department, strCode));

colAddress = new IContainerColumn (offsetof(Department, strAddress));

 Chapter 35. Creating and Using Containers 415

Details View

In the previous example, colIcon, colName, colCode, and colAddress are defined as

members of an IFrameWindow. The statements look like this:

private: //Define private information
IContainerControl * cnrCtl;
Department *dept1, *dept2, *dept3, *dept4, *dept5, *dept6 ;
IContainerColumn *colIcon, *colName, *colCode, *colAddress;

 IMenuBar * menuBar;

After creating the container columns, you can add heading text to them using the

following statements:

colIcon->setHeadingText("Icon");
colName->setHeadingText("Department Name");
colCode->setHeadingText("Code");
colAddress->setHeadingText("Address");

Use showSeparators to add a vertical separator next to a column or a horizontal

separator under the heading text. The default adds both. To create only one of the

separators, specify it in the member function statement. The following statements

show examples of how to create separators:

//Only Horizontal Separator
colIcon->showSeparators(IContainerColumn::horizontalSeparator);
//Only Vertical Separator

colName->showSeparators(IContainerColumn::verticalSeparator);
colCode->showSeparators(); //both separator by default
colAddress->showSeparators(); //both separator by default

After you create the container columns, add them into the container using the

following statements:

cnrCtl->addColumn(colIcon);
cnrCtl->addColumn(colName);
cnrCtl->addColumn(colCode);
cnrCtl->addColumn(colAddress);

Figure 58 is an example of a details view of a container.

416 VisualAge C++ Open Class Library User's Guide

Container Pop-Up Menus

Figure 58. Example of the Details View

Use the following code statement to put a split bar in the details view by specifying

the last column to be viewed in the left window and the location of the split bar in

pixels.

cnrCtl->setDetailsViewSplit(colName, 350);

Creating a Pop-Up Menu in a Container

To create a pop-up menu in a container, create a subclass of ICnrMenuHandler and

override the makePopUpMenu. The following statements create the class:

class ACnrMenuHandler: public ICnrMenuHandler
{
 public:
 ACnrMenuHandler

&setCnr(IContainerControl * pcnr) { pcnrCtl = pcnr; return *this;};

 protected:
Boolean makePopUpMenu(IMenuEvent& cnEvt);

 private:
IContainerControl * pcnrCtl;

After overriding the makePopUpMenu member function, you can add your own

statements. The following statements create a pop-up menu displayed next to a

container object with source emphasis:

IBase::Boolean ACnrMenuHandler :: makePopUpMenu(IMenuEvent& cnEvt) //
{ //
IPopUpMenu * popUp; //Define pop-up variable
if (popupMenuObject()) {
popUp=new IPopUpMenu(ID_POPMENU, //Create pop-up Menu

 cnEvt.window()); //
if (!pcnrCtl->isDetailsView()) //Details View is only way to edit
{ // Name, Code and Address so

 Chapter 35. Creating and Using Containers 417

Container Pop-Up Menus

popUp->disableItem(MI_EDNAME); // Disable these items if not
 popUp->disableItem(MI_EDCODE); // details view.
 popUp->disableItem(MI_EDADDRESS); //
 }
 else
 {
 popUp->disableItem(MI_EDRECORD); //
 }
 popUp->setAutoDeleteObject(); //

popUp->show(cnEvt.mousePosition()); //Show Pop-up menu
 pcnrCtl->showSourceEmphasis(popupMenuObject());
 pcnrCtl->setCursor(popupMenuObject());

return true; //Return Pop-up menu
 }
 return false;
};

Figure 59 shows the pop-up menu in a container object.

Figure 59. Example of a Pop-Up Menu in a Container Object

418 VisualAge C++ Open Class Library User's Guide

Direct Manipulation

36 Supporting Direct Manipulation

Direct manipulation is a user interface technique that lets a user start application

functions by manipulating objects. The user begins an action by moving the mouse

pointer over an object and then pressing and holding down a mouse button (mouse

button 2 is the default) while dragging the selected object to a new location. The

user then drops the object onto the new location by releasing the mouse button. For

this reason, direct manipulation is also known as drag and drop.

Thus, the user can perform operations directly on objects that appear on the desktop

or within an application.

Direct manipulation is not limited to objects in containers, as the object can be a text

string in an entry field. Also, users can drag and drop an object onto a new location

in the current window, onto another object in a window, or onto a different window.

Direct manipulation is used to move, copy, and link objects. Generally, move is the

default operation and is accomplished through the use of the mouse button defined for

drag and drop. The other operations, copy and link, are initiated by a user through

the use of augmentation keys: the Ctrl (control) key or a combination of the Shift

and Ctrl keys. To initiate a copy the user presses and holds down the mouse button,

as well as the control key. The visual indication of this operation is the half toning

of the drag image. Likewise, users can accomplish a link operation by pressing and

holding down the mouse button, the Shift key, and the Ctrl key. The visual

indication of this operation is a line that is drawn that connects the drag image with

the object where the drag was initiated. Member functions that you use to override

and restrict the drag operation are described in “Setting and Querying the Drag

Operation” on page 453.

Users can request help during a direct manipulation operation by pressing F1, the help

key. This displays help for the object a user is dragging over.

To cancel a direct manipulation operation, press the Esc (escape) key.

The User Interface Class Library provides four main classifications of objects to

support direct manipulation:

¹ A drag item (IDMItem)

¹ A drag item provider (IDMItemProvider)

¹ A renderer (IDMSourceRenderer or IDMTargetRenderer)

¹ An event handler (IDMSourceHandler or IDMTargetHandler)

 Copyright IBM Corp. 1993, 1995 419

Direct Manipulation

The collaboration of these objects allows the rendering from a source to a target

location. Rendering is the process by which data is transferred from the source of a

direct manipulation operation to a target. The following is an overview of the

process:

1. A user initiates a drag request, which generates an event that is processed by the

source handler.

2. The source handler uses the source window’s attached drag item provider to

request generation of source drag items.

Drag items represent the objects that are the focus of the direct manipulation

operation and provide access to the object’s data. Drag item providers are

designed to assist in the generation of drag items and bridge the gap between the

drag items and the source and target handlers.

When you use the IDMItemProviderFor template to instantiate the provider, the

static function in the derived drag item class, generateSourceItems, is called.

Alternatively, if the provider is instantiated from a derived drag item provider

class, then the IDMItemProvider::provideSourceItems override is called.

3. Once the source drag items are generated, appropriate source renderers are

selected.

4. When you enter a potential target window, an event is generated that is processed

by the target handler.

5. The target handler uses the target window’s attached drag item provider to

request generation of target drag items.

When you use the IDMItemProviderFor template to instantiate the provider, the

target drag item constructor is called:

IDMItem (const Handle& item);

Alternatively, if the provider is instantiated from a derived drag item provider

class, then the IDMItemProvider::provideTargetItemFor override is called.

6. The target handler also uses the drag item provider to request additional

verification support via the virtual function,

IDMItemProvider::provideEnterSupport.

7. Once the target drag items are generated and verified, the appropriate target

renderer is selected.

8. The drop is processed based upon the rendering mechanism and format, which is

stored in the target renderer, and the data is subsequently transferred. The virtual

function, IDMItem::targetDrop, is used to process the drop event.

Renderers encapsulate the various mechanisms and formats that are used for rendering

and implement the logic that supports the mechanisms and formats (RMFs).

420 VisualAge C++ Open Class Library User's Guide

Default Support

Generally, a mechanism defines the method of data transfer, whereas the format

identifies the format of the data. The User Interface Class Library’s implementation

groups the mechanisms and formats under one mechanism.

 See “Using Rendering Mechanisms and Formats” on page 426 for more

information. The two different types of rendering are described below.

 Target rendering transfers data from the source to the target. Because the source can

package all the required transfer information when the drag operation begins, the

target can complete the drop operation without further assistance from the source.

A good example of target rendering involves the use of the User Interface Class

Library’s process RMF. If the source and target are in the same process, the target

directly accesses the source’s data and subsequently renders the information as

required.

On the other hand, source rendering occurs when the target requires additional

information from the source in order to complete processing of the drop. The target

issues the appropriate events to request the information from the source. A good

example of source rendering involves the use of the User Interface Class Library’s

shared memory RMF. When the source and the target are in separate processes, the

target can select this RMF that generates a shared memory buffer that, in turn,

transfers the data between the source and target.

Using Default Direct Manipulation Support

User Interface Class Library provides default direct manipulation support for:

 ¹ Entry fields

¹ Multiple-line edit (MLE) fields

 ¹ Intra-process containers

¹ Tool bars (including menu bars and tool bar buttons)

Using Defaults for Entry Fields and MLEs

The default direct manipulation support for entry fields and MLEs is almost identical.

When you create source items, selected text (or all of the text if none is selected) is

stored within the item using the IDMItem::setContents function. Afterwards, the

optimal rendering mechanisms and formats are determined using the length of the text

characters plus any embedded characters. If the text length is fewer than or equal to

255 characters, and does not contain any embedded nulls, the text rendering format,

IDM::rfText, is used. Otherwise, the shared rendering format, IDM::rfSharedMem is

used. To further optimize performance, the process rendering format, IDM::rfProcess,

is added to the prior selection to handle it when the source and target entry fields or

 Chapter 36. Supporting Direct Manipulation 421

Default Support

MLEs are located within the same process. If they are located within separate

processes, one of the other rendering formats, is used.

The default rendering support for IDM::rfSharedMem automatically allocates the

shared memory buffer and transfers the data, stored in the source item using

IDMItem::setContents, from one process to another when its use is required.

Therefore, the data is accessible to IDMItem::contents in the target item after the drop

has occurred.

The default drag image style for the entry field and MLE support is IDM::allStacked.

The default implementation of the IDMItemProvider::provideEnterSupport function

for the entry field and MLE items prevents a user from dropping text within the same

window. The source and target window cannot be the same window.

When the entry field and MLE items differ, default target drop processing occurs.

The entry field item retrieves the text using the IDMItem::contents function and sets

the text into the entry field. The MLE item appends the text to the end of the MLE

field.

Using Defaults for Containers

The default direct manipulation for containers supports moving or copying container

objects within the same process. Also, all of the container views are supported.

When you construct a source item, the container object is stored within the source

item using the IDMItem::setObject function. Because a target can directly address a

container object in the same process, you can use IDMItem::object at the target to

access the container object after the drop has occurred. Therefore, the use of

IDMItem::setContents and IDMItem::contents is supported if you extend the default

support, but they are not used in the default implementation. Finally, the process

rendering format, IDM::rfProcess, is set. This is the only RMF used for the default

support.

If the user selects multiple container objects, a sequence collection is created. The

source items are then stored based upon the following order:

1. The object under the mouse pointer is stored first.

2. The other objects are stored in the order that IContainerControl::ObjectCursor

returns them.

The default drag image style for container support is IDM::allStacked.

The default implementation of the IDMItemProvider::provideEnterSupport function

for the container item prevents the user from dropping an object on a target container

object if drops have been disabled by the IContainerObject::disableDrop function.

422 VisualAge C++ Open Class Library User's Guide

Default Support

Also, the IContainerControl::isMoveValid function is called to ensure that a move

operation, the default, is valid.

Default target-drop processing handles both moving and copying. The default

positioning of the dropped items is based upon the view of the target container. If

multiple container objects are involved, IDMCnrItem::targetDrop is called once for

each container item, and the items are processed in the reverse order in which they

were added to the sequence collection.

When implementing container copy support, you must define an override for

IContainerObject::objectCopy in the derived IContainerObject class. Also, you must

define a copy constructor to be used by the override.

 These are illustrated in the drag3 sample discussed in “Enabling Direct

Manipulation for a Container” on page 431.

Enabling Default Support

You enable the default direct manipulation support for the container, entry field, and

MLE by calling the desired IDMHandler static function. A pointer to the control

object is supplied as the functional parameter to the static function, which performs

all the required setup to enable the default support. Two samples, drag1 and drag3,

are supplied to illustrate enabling default support.

The samples are described in “Enabling Direct Manipulation for an Entry Field or

MLE” on page 430 and “Enabling Direct Manipulation for a Container” on

page 431.

For a more general discussion of enablement, see “Enabling Drag and Drop” on

page 439 which discusses how to enable a control that is not covered by the default

support.

Containers and windows that support direct manipulation can be the source, target, or

source and target of a drag operation. This is determined by the use of the static

functions IDMHandler::enableDragFrom, IDMHandler::enableDropOn, or

IDMHandler::enableDragDropFor, respectively. However, notice the differences in

the support for the menu bar, tool bar, and tool bar buttons.

Using Defaults for Tool Bars

The default direct manipulation for tool bars supports the dropping of menu item

objects from a menu bar within the same process to create a new tool bar button.

Also, moving tool bar buttons within the same process is supported: you can move

and arrange tool bar buttons within the same tool bar or you can move them from

another tool bar. Deleting tool bar buttons is also supported, as you can drop the

buttons on a Workplace Shell shredder object.

 Chapter 36. Supporting Direct Manipulation 423

Default Support

When a source item is constructed from a menu item, the menu item resource

identifier is stored within the source item using the IDMItem::setObject function, and

the menu item text is stored using the IDMItem::setContents function. The process

rendering format, IDM::rfProcess, is set as it is the only RMF used for the default

support.

Afterwards, the IDMMenuItem constructor attempts to set the drag image based upon

a stored image referenced by the resource identifier. The image can be one of the

supplied IBM User Interface Class Library defaults or the user can define it. If one is

unavailable, a default image is used. The default drag image style for menu bar

support is IDM::allStacked. The default operation is IDMOperation::link, and the

drag item type is IDM::menuItem.

Because the menu bar is only supported from a source perspective, the

IDMItemProvider::provideEnterSupport and IDMItem::targetDrop functions are not

implemented.

When a source item is constructed from a tool bar button, a pointer to the button

window is stored within the source item. The process rendering format,

IDM::rfProcess, is set, as well the shredder RMF, IDM::rmDiscard, and

IDM::rfUnknown. Then, the IDMTBarButtonItem constructor sets the drag image

based upon the button’s stored image. The image can be one of the supplied IBM

User Interface Class Library defaults or the user can define it. If the image is

unavailable, a default image is used. The default drag image style for tool bar button

support is IDM::allStacked. The default operation is IDMOperation::move, and the

drag item type is IDM::toolBarButton.

The default implementation of the IDMItemProvider::provideEnterSupport function

for the tool bar button item prevents the user from dropping a button on itself. It also

filters the drag item types to only allow drops for the following types:

IDM::toolBarButton, IDM::menuItem, and IDM::bitmap. IDM::bitmap is included to

allow system bitmaps to be dropped on a button. The special case of a system

bitmap with a type of IDM::plainText, is also handled.

Default tool bar button drop processing handles both moving and linking. The default

positioning of the dropped item is based upon the position of the object over the tool

bar button when it was added to the tool bar. If the new button is dropped on the left

half of a tool bar button, the button is moved before the button where the drop

occurred. If the new button is dropped on the right half, or at the center of the tool

bar button, the button is moved after the button where the drop occurred. This rule

applies to every source of a drag operation, including tool bar buttons created from a

menu bar, buttons within the same tool bar, and buttons from another tool bar. If the

tool bar is vertical, a similar rule applies. If the new button is dropped on the lower

half of a tool bar button, the new tool bar button is moved below the button where

424 VisualAge C++ Open Class Library User's Guide

Default Support

the drop occurred. If the new button is dropped on the upper half, or at the center of

the tool bar button, the button is moved above the tool bar button where the drop

occurred. Finally, if the item that was dropped was a system bitmap, the current tool

bar button image is replaced using the system bitmap.

The tool bar only supports drop processing. The default positioning adds the tool bar

button to the end of the tool bar and places it within its own group. If the source of

the drag was a menu bar, a new button is created and added to the end of the tool

bar. If the source of the drag was a tool bar button within the same tool bar, the

button is moved to the end of the tool bar. When the source of the drag was a tool

bar button in another tool bar, the button is removed from the source tool bar, and

added to the end of the target tool bar.

Note: Tool bar support only works upon menu bars, tool bar buttons, and tool bars

that are within the same process.

Understanding Drag Items

The first type of objects are the drag items, represented by objects of class IDMItem.

Drag items encapsulate the logic that serves as the bridge between the

context-insensitive handlers and renderers and the application-specific behavior of

particular source and target windows. Thus, the drag items provide the

application-specific semantics of the direct manipulation operation.

IDMItem is the base class that defines the general behavior of all direct manipulation

items. The three derived classes provided by the User Interface Class Library provide

specializations of the base class that represent the objects being dragged and dropped

on specific controls.

The following classes are derived from IDMItem:

 ¹ IDMCnrItem

 ¹ IDMMLEItem

 ¹ IDMEFItem

Understanding Drag Item Provider

The IDMItemProvider class is an extension of the IWindow class that provides direct

manipulation functions. Objects of the IDMItemProvider class allow generic controls,

such as an entry field, to generate context-sensitive drag items. For example, a

container that contains customer objects can generate a “customer” item; a bitmap can

provide an item that can extract the picture from a .BMP file.

The IDMItemProvider class also provides functions that deal with target entry and

exit, as well as help. With IDMItemProvider::provideEnterSupport you can verify

objects, using different schemes, when the object is over a potential target.

 Chapter 36. Supporting Direct Manipulation 425

Default Support

For example, if you want to restrict drops in an icon view container to the white

space area of the container, you can use the provideEnterSupport function to

determine if the pointing device is over either white space or an actual container

object:

IBase::Boolean CnrProvider::provideEnterSupport
(IDMTargetEnterEvent &event)

{
 /***/
/* Allow default verification to occur */

 /***/
if (Inherited::provideEnterSupport(event))

 {
 /***/

/* Prevent the drop if we're over a container object (icon view) */
 /***/
 if (event.object())
 {

event.setDropIndicator(IDM::notOk);
 return(false);
 }
 return(true);
 }
 return(false);
}

Note: The return value is currently not used to determine if a drop is allowed. Only

the drop indicator is used to set the drop disposition.

Refer to the drag2 sample for a more detailed example of creating and attaching a

provider. See “Enabling a Control as a Drop Target” on page 439 for more

information about providers.

Using Rendering Mechanisms and Formats

Rendering is the process by which data is transferred from the source of a direct

manipulation operation to the target. If the source and target objects are within the

same process, both objects have access to the same memory address space, and the

target can readily access the source data to complete the transfer. If the source and

target are in separate processes, the data transfer is facilitated using a shared memory

buffer and an operation that involves the dispatching and processing of rendering

messages.

Renderers transfer the representation of the object being manipulated from the source

object to the target object. Direct manipulation renderers manage and maintain

rendering mechanisms and formats (RMFs) whose characteristics are defined by the

RMF pairs that represent the data transfer method. The rendering mechanisms and

formats identify the set of protocols that your items support. These renderers are

objects of classes IDMSourceRenderer and IDMTargetRenderer and are derived from

IDMRenderer.

426 VisualAge C++ Open Class Library User's Guide

Default Support

When you create an IDMSourceHandler object, the User Interface Class Library

creates a default IDMSourceRenderer. Table 6 displays the source RMF pairs and

the corresponding drag item type. IDM::any represents any drag item type. Any

object that you manipulate must have an explicit attribute that identifies the type of

the item. These objects are often passed by Presentation Manager mechanisms that

need to identify the attributes of an item.

When an IDMTargetHandler object is created, the User Interface Class Library

creates a default IDMTargetRenderer. The default target renderer RMF pairs are

shown in Table 7.

The User Interface Class Library provides IDM::rmLibrary as the rendering

mechanism used for efficient drag and drop operations. Table 8 displays other

rendering messages defined as part of the default renderers.

Table 6. Default Source Renderer

Rendering Mechanism Rendering Format Item Type

IDM::rmLibrary IDM::rfProcess IDM::any

IDM::rmLibrary IDM::rfText IDM::any

IDM::rmLibrary IDM::rfSharedMem IDM::any

IDM::rmPrint IDM::rfUnknown IDM::any

IDM::rmDiscard IDM::rfUnknown IDM::any

IDM::rmFile IDM::rfUnknown IDM::any

IDM::rmObject IDM::rfObject IDM::any

Table 7. Default Target Renderer

Rendering Mechanism Rendering Format Item Type

IDM::rmLibrary IDM::rfProcess IDM::any

IDM::rmLibrary IDM::rfText IDM::any

IDM::rmLibrary IDM::rfSharedMem IDM::any

IDM::rmFile IDM::rfUnknown IDM::any

IDM::rmObject IDM::rfObject IDM::any

 Chapter 36. Supporting Direct Manipulation 427

Default Support

Several default rendering formats are defined to assist you, the application developer,

in using the direct manipulation classes. Table 9 displays these default rendering

formats..

Note: You can use IDM::any type to represent any drag item type.

The native renderer is the first rendering mechanism and format defined when you

create the item. For example, in the declaration of the default source renderer, the

native renderer supports the library rendering mechanism, the process rendering

format, and any item type. In the declaration of the default target renderer, the native

renderer supports the library rendering mechanism, the process rendering format, and

any item type.

Table 8. Other Default Rendering Mechanisms

Rendering

Mechanism

Used When...

IDM::rmPrint An User Interface Class Library object is dropped on a printer

IDM::rmDiscard An User Interface Class Library object is dropped on the shredder

IDM::rmFile An OS/2 file is dragged from the source and dragged over or

dropped on a target

IDM::rmObject A Workplace Shell object is processed. Your application may be

required to run under Workplace Shell process to use this rendering

mechanism.

Table 9. Default Rendering Formats

Format Used When...

IDM::rfProcess Determining if the source of the direct manipulation operation and

the target are in the same process. This format must be constructed

by calling the static member function IDMItem::rfForThisProcess.

IDM::rfText Dragging text that has a length of 255 or fewer characters with no

embedded null characters.

IDM::rfSharedMem A shared memory buffer is required to transfer the data from the

source to the target. This format should be used when transferring

data between two separate processes and IDM::rfText cannot be used.

IDM::rfUnknown The format is unknown.

IDM::rfObject A Workplace Shell object is processed. Your application may be

required to run under Workplace Shell process to use this rendering

format.

428 VisualAge C++ Open Class Library User's Guide

Drag Item Types

Table 10 displays the default User Interface Class Library RMF pairs that support

target rendering. Table 11 displays the default User Interface Class Library RMF

pairs that support source rendering.

To create renderers for controls not supported by User Interface Class Library, you

can create your own source or target renderer. To do this, derive from the

IDMSourceRenderer or IDMTargetRenderer, create instances, and then add them to

the handler using setDefaultTargetRenderer and setDefaultSourceRenderer.

Table 10. Target RMFs

Mechanism Format

IDM::rmLibrary IDM::rfProcess

IDM::rmLibrary IDM::rfText

IDM::rmFile IDM::rfUnknown

IDM::rmFile IDM::rfText

IDM::rmObject IDM::rfObject

Table 11. Source RMFs

Mechanism Format

IDM::rmLibrary IDM::rfSharedMem

IDM::rmPrint IDM::rfUnknown

IDM::rmDiscard IDM::rfUnknown

Using Drag Item Types

Drag item types are useful in distinguishing drag items. Normally, the type is defined

when the drag item object is constructed. IDMItem functions, such as

IDMItem::setTypes and IDMItem::types, are defined to allow the setting and querying

of the types, respectively.

The User Interface Class Library defines the following default types that you can use

in your application:

IDM::any Any type

IDM::binary Generic binary item type

IDM::binaryData Binary data item type

IDM::bitmap Bitmap item type

IDM::container Container item type

 Chapter 36. Supporting Direct Manipulation 429

Enabling Direct Manipulation

IDM::containerObject Container object item type

IDM::file File item type

IDM::icon Icon item type

IDM::menuItem Menu item drag item type

IDM::plainText Plain text drag item type

IDM::text Generic text drag item type

IDM::toolBarButton Tool bar button drag item type

IDM::unknown Unknown drag item type

You can define new types as required by your application if the above list does not

have the types you need.

Enabling Direct Manipulation for an Entry Field or MLE

The following sample shows you how to enable direct manipulation for an entry field

or an MLE control and how to use the static function,

IDMHandler::enableDragDropFor. This static function creates the following:

¹ Source and target handlers

¹ Source and target default renderers

¹ An entry field item provider

In the following sample, the highlighted lines enable direct manipulation of text

between two entry fields in the same process. Direct manipulation is enabled the

same way for an MLE. The complete sample is located in the

\ibmcpp\samples\ioc\drag1 directory.

 1 #include <iframe.hpp>
 2 #include <ientryfd.hpp>
 3 #include <idmefit.hpp>
 4 #include <idmhndlr.hpp>
 5
 6 /*--
 7 | main |
 8 --*/
 9 int main()
10 {
11
12 /***/
13 /* Create a generic frame window. */
14 /***/
15 IFrameWindow
16 frame("ICLUI Direct Manipulation Sample 1");
17
18 /***/
19 /* Create 2 entry fields for the client area. */
20 /***/

430 VisualAge C++ Open Class Library User's Guide

Enabling Direct Manipulation

21 IEntryField
22 client(1000, &frame, &frame),
23 ext (1001, &frame, &frame);
24
25 /***/
26 /* Enable source and target direct manipulation support for both */
27 /* entry fields. */
28 /***/
29 IDMHandler::enableDragDropFor(&client);
30 IDMHandler::enableDragDropFor(&ext);
31
32 /***/
33 /* Frame setup - Put both entry fields in the client area, with one */
34 /* added as an extension. */
35 /***/
36 frame
37 .setClient(&client)
38 .addExtension(&ext, IFrameWindow::belowClient, 0.5)
39 .setFocus()
40 .show();
41
42 /***/
43 /* Run Direct Manipulation Sample 1 */
44 /***/
45 IApplication::current().run();
46
47 }
...

The preceding sample illustrates how you can enable direct manipulation if you only

need default entry field support. If you substitute IMultiLineEdit for IEntryField in

line 21, the above sample then demonstrates the default MLE support.

Enabling Direct Manipulation for a Container

This section shows you how to enable direct manipulation for a container and how to

use the IDMHandler static functions enableDragFrom and enableDropOn.

In the following example, the dmsamp3.hpp file defines a container control object.

The .CPP file creates the container and container objects and, in the highlighted lines,

calls IDMHandler::enableDragFrom and IDMHandler::enableDropOn.

1 #include "dmsamp3.hpp"
 2
 3 /*--
4 | main |

 5 --*/
6 int main()

 7 {
8 MySourceWin sourceWin (WND_SOURCE);
9 MyTargetWin targetWin (WND_TARGET);

 10 IApplication::current().run();
 11 }

..

 Chapter 36. Supporting Direct Manipulation 431

Enabling Direct Manipulation

.
 81 MySourceWin :: MySourceWin (unsigned long windowId) :
 82 MyWindow (windowId)
 83 {
 84 ITitle title (this, "C Set ++ Direct Manipulation - Source Container");
 85
 86 /***/
 87 /* Enable the source for dragging from (only). */
 88 /***/
 89 IDMHandler::enableDragFrom(cnrCtl);
 90 };
 91
 92 /*---
 93 | MyTargetWin::MyTargetWin |
 94 | |
 95 | Constructor. |
 96 ---*/
 97 MyTargetWin :: MyTargetWin (unsigned long windowId) :
 98 MyWindow (windowId)
 99 {
100 ITitle title (this, "C Set ++ Direct Manipulation - Target Container");
101
102 /***/
103 /* Enable the target for dropping on (only). */
104 /***/
105 IDMHandler::enableDropOn(cnrCtl);
106 }
...
108 /*--
109 | Customer::Customer |
110 | |
111 | Copy constructor. |
112 --*/
113 Customer :: Customer (const Customer &cnrobj) :
114 IContainerObject ((const IContainerObject &)cnrobj),
115 strName (cnrobj.name()),
116 strAddress (cnrobj.address()),
117 strPhone (cnrobj.phone()),
118 myWin (cnrobj.myWin)
119 {
120 }
...
141 /*--
142 | Customer::objectCopy |
143 | |
144 | Make a copy of the Customer object. Called by |
145 | IContainerObject::copyObjectTo(). |
146 --*/
147 IContainerObject* Customer :: objectCopy()
148 {
149 /***/
150 /* Use Customer copy constructor to make a copy of the object. */
151 /***/
152 Customer *copy = new Customer(*this);
153 return((IContainerObject *)copy);
154 }
...

432 VisualAge C++ Open Class Library User's Guide

Enabling Direct Manipulation

Lines 81 through 84 create a source window.

Line 89 enables the window as a drag source.

Lines 97 through 100 create a target window.

Line 105 enables the window as a drop target.

Lines 113 through 120 implement the copy constructor that is used by the

Customer::objectCopy function.

Lines 147 through 154 implement the IContainerObject::objectCopy override function,

Customer::objectCopy.

The preceding sample illustrates how you can enable direct manipulation if you only

need default container support. The complete sample is located in the

\ibmcpp\samples\ioc\drag3 directory.

The previous container example only illustrates intraprocess (source and target

containers are in the same process) container support. The following sample shows

inter process (source and target containers are in separate processes) container

support. The module dmsamp4.cpp contains the key logic for the drag4 sample.

Note: You must start two copies of the drag4 sample to view the interprocess

support.
...
 3 /*---
4 | main |

 5 ---*/
6 int main(int argc, char* argvffl“)

 7 {
 8 /***/
9 /* Permit debugging during the drag */

 10 /***/
 11 IDM::debugSupport = true;
 12
 13 /***/
 14 /* Create window */
 15 /***/
 16 DMSample4Window
 17 frame(argvffl1“);
 18
 19 /***/
 20 /* Show it */
 21 /***/
 22 frame.showModally();
 23 }
 24
 25 /*---
 26 | CustomerItem::CustomerItem |
 27 | |

 Chapter 36. Supporting Direct Manipulation 433

Enabling Direct Manipulation

 28 | Constructor. |
 29 ---*/
 30 CustomerItem :: CustomerItem (const IDMItem::Handle& item) :
 31 IDMCnrItem (item)
 32 {
 33 IString
 34 rmf1 = IDMItem::rmfFrom(IDM::rmLibrary, IDM::rfSharedMem),
 35 rmf2 = IDMItem::rmfFrom(IDM::rmDiscard, IDM::rfUnknown);
 36
 37 /***/
 38 /* Get pointer to the associated Customer container object */
 39 /***/
 40 Customer *pCustomer = (Customer *)object();
 41
 42 /***/
 43 /* Build and set contents. We can only do this on the source */
 44 /* side. Note that since we call this constructor on both source */
 45 /* and target sides, we must distinguish them. That is done */
 46 /* here by checking the "object" pointer. If this constructor was */
 47 /* called from within our generateSourceItems, then this value */
 48 /* will be nonzero. If called from with the template provider's */
 49 /* provideTargetItemFor, then it will be 0. */
 50 /***/
 51 if (pCustomer)
 52 {
 53 IString
 54 contents,
 55 delim = '\x01';
 56
 57 contents += pCustomer->iconText() + delim;
 58 contents += pCustomer->name() + delim;
 59 contents += pCustomer->address() + delim;
 60 contents += pCustomer->phone() + delim;
 61 contents += pCustomer->iconId();
 62
 63 setContents(contents);
 64
 65 /***/
 66 /* Add RMFs supported by this class (IDMCnrItem will have */
 67 /* already specified the other RMFs we use). */
 68 /***/
 69 addRMF(rmf1);
 70 addRMF(rmf2);
 71 }
 72 else
 73 {
 74 /***/
 75 /* On target side, add in <rmLibrary,rfSharedMem> if source concurs */
 76 /* (and it's not already in there). */
 77 /***/
 78 if ((item->supportsRMF(rmf1)) &&
 79 !(supportsRMF(rmf1)))
 80 {
 81 addRMF(rmf1);
 82 }
 83 }
 84 }
 85

434 VisualAge C++ Open Class Library User's Guide

Enabling Direct Manipulation

 86 /*---
 87 | CustomerItem::generateSourceItems |
 88 | |
 89 | Called to give CustomerItem opportunity to attach new CustomerItem's to |
 90 | the argument IDMSourceOperation object. |
 91 ---*/
 92 IBase::Boolean CustomerItem :: generateSourceItems (IDMSourceOperation* pSrcOp)
 93 {
 94 /***/
 95 /* Get generic container items. Note that we call the inherited */
 96 /* function since it already has logic to deal with multiselection, */
 97 /* etc. */
 98 /***/
 99 Boolean result = Inherited::generateSourceItems(pSrcOp);
100
101 /***/
102 /* Now, replace each IDMCnrItem with a CustomerItem. */
103 /***/
104 for (unsigned i = 1; i <= pSrcOp->numberOfItems(); i++)
105 {
106 pSrcOp->replaceItem(i, new CustomerItem(pSrcOp->item(i)));
107 }
108
109 /***/
110 /* Set stack3AndFade as the default image style and set the stacking */
111 /* percentage that is used to set the stacking offset as a percentage */
112 /* of the image size. */
113 /***/
114 pSrcOp->setImageStyle(IDM::stack3AndFade);
115 pSrcOp->setStackingPercentage(IPair(25, 25));
116 return(result);
117 }
118
119 /*---
120 | CustomerItem::supportedOperationsFor |
121 | |
122 | Called when a CustomerItem is dropped on a target container. |
123 ---*/
124 unsigned long CustomerItem ::
125 supportedOperationsFor (const IString& rmf) const
126 {
127 if (rmf == IDMItem::rmfFrom(IDM::rmLibrary, IDM::rfSharedMem))
128 {
129 /***/
130 /* If using <rmLibrary,rfSharedMem> then only copy is supported */
131 /***/
132 return(IDMItem::copyable & supportedOperations());
133 }
134
135 /***/
136 /* Otherwise, whatever base class supports */
137 /***/
138 return(Inherited::supportedOperationsFor(rmf));
139 }
140
141 /*---
142 | CustomerItem::sourceDiscard |
143 | |

 Chapter 36. Supporting Direct Manipulation 435

Enabling Direct Manipulation

144 | Called when a CustomerItem is dropped on a Workplace Shell shredder. |
145 ---*/
146 IBase::Boolean CustomerItem :: sourceDiscard (IDMSourceDiscardEvent& event)
147 {
148 /***/
149 /* Remove the object from the container. */
150 /***/
151 IContainerControl
152 *pCnr = (IContainerControl *)(event.sourceOperation()->sourceWindow());
153 IContainerObject
154 *pCnrObj = (IContainerObject *)(object());
155
156 pCnr->removeObject(pCnrObj);
157 return(true);
158 }
159
160 /*---
161 | CustomerItem::targetDrop |
162 | |
163 | Called when a CustomerItem is dropped on a target container. |
164 ---*/
165 IBase::Boolean CustomerItem :: targetDrop (IDMTargetDropEvent& event)
166 {
167 Boolean result = true;
168
169 /***/
170 /* Check if using ICLUI shared memory rendering format */
171 /***/
172 IString myRMF = IDMItem::rmfFrom(IDM::rmLibrary, IDM::rfSharedMem);
173 if (selectedRMF() == myRMF)
174 {
175 /***/
176 /* Yes, construct new Customer object from passed data. */
177 /***/
178 IString
179 contents = this->contents(),
180 delim = '\x01',
181 text = contents.subString(1, contents.indexOf(delim) - 1);
182
183 contents = contents.subString(contents.indexOf(delim) + 1);
184 IString
185 name = contents.subString(1, contents.indexOf(delim) - 1);
186
187 contents = contents.subString(contents.indexOf(delim) + 1);
188 IString
189 addr = contents.subString(1, contents.indexOf(delim) - 1);
190
191 contents = contents.subString(contents.indexOf(delim) + 1);
192 IString
193 phone = contents.subString(1, contents.indexOf(delim) - 1),
194 iconId = contents.subString(contents.indexOf(delim) + 1);
195
196 IContainerControl *pCnr = event.container();
197 Customer *pNewCustomer = new Customer(text,
198 iconId.asUnsigned(),
199 name,
200 addr,
201 phone,

436 VisualAge C++ Open Class Library User's Guide

Enabling Direct Manipulation

202 (MyWindow *)(pCnr->parent()));
203
204 /***/
205 /* Insert the new Customer object into the container. */
206 /***/
207 pCnr->addObject(pNewCustomer);
208
209 /***/
210 /* Create an IDMItem::Handle */
211 /* */
212 /* We must break this into 2 statements due to a bug in the */
213 /* IRefCounted class. If we use an initializer to create */
214 /* the handle, this sample will eventually trap due to the */
215 /* inability of the initializer to properly increment the */
216 /* drag item object use count: */
217 /* IDMItem::Handle thisHandle = this; //initializer form */
218 /* */
219 /* When we break the create into 2 statements, it takes the */
220 /* form of an assignment which does not have the problem. */
221 /***/
222 IDMItem::Handle thisHandle;
223 thisHandle = this;
224
225 /***/
226 /* Position the object within the container. */
227 /***/
228 IPoint pos = targetOperation()->dropPosition(thisHandle, event);
229 pCnr->moveObjectTo(pNewCustomer,
230 0,
231 pCnr,
232 0,
233 pos);
234 }
235 else
236 {
237 /***/
238 /* Some other RMF, base class must support it. */
239 /***/
240 result = Inherited::targetDrop(event);
241 }
242
243 return(result);
244 }
245
246 /*---
247 | DMSample4Window::DMSample4Window |
248 | |
249 | Constructor. |
250 ---*/
251 DMSample4Window :: DMSample4Window (const char* aTitle) :
252 MyWindow(0),
253 title(this)
254 {
255 /***/
256 /* Set the title. */
257 /***/
258 if (aTitle)
259 title.setTitleText(aTitle);

 Chapter 36. Supporting Direct Manipulation 437

Enabling Direct Manipulation

260 else
261 title.setTitleText("Direct Manipulation Sample 4");
262
263 /***/
264 /* Tailor the container. */
265 /***/
266 this->cnrCtl->hideTitle();
267 this->cnrCtl->showIconView();
268 this->cnrCtl->arrangeIconView();
269 this->cnrCtl->setExtendedSelection();
270
271 /***/
272 /* Set the item provider. */
273 /***/
274 this->cnrCtl->setItemProvider(&this->provider);
275
276 /***/
277 /* Enable drag/drop. */
278 /***/
279 IString sTitle = aTitle;
280 if (sTitle.includes("source only"))
281 IDMHandler::enableDragFrom(this->cnrCtl);
282 else
283 {
284 if (sTitle.includes("target only"))
285 IDMHandler::enableDropOn(this->cnrCtl);
286 else
287 IDMHandler::enableDragDropFor(this->cnrCtl);
288 }
289
290 /***/
291 /* Resize the container. */
292 /***/
293 this->sizeTo(ISize(250, 275));
294 }
...

The User Interface Class Library’s shared memory rendering format provides the

interprocess support. The shared memory format uses a shared memory buffer to

transfer the container object data that is stored in the source item (using

IDMItem::setContents) to the target item where the data can be retrieved (using

IDMItem::contents). Remember that the source item and target items are in separate

processes.

Two of the functions used in the previous example, CustomerItem::sourceDiscard on

lines 146 through 158 and CustomerItem::supportedOperationsFor on lines 124

through 139, need more explanation. The sourceDiscard function demonstrates

container object removal after the user drops the object on the Workplace Shell

shredder. The supportedOperationsFor function lets you determine which operation or

operations a drag item supports based upon the selected rendering mechanism and

format. For example, you could make the item IDMItem::copyable, as shown in the

preceding example, if the selected RMF is the User Interface Class Library shared

438 VisualAge C++ Open Class Library User's Guide

Enabling Direct Manipulation

memory RMF. For other RMFs, you could let the drag item default to

IDMItem::moveable.

The CustomerItem constructor shown in lines 30 through 84 is generally used to

construct target items because it is automatically called for target item construction

when using the IDMItemProviderFor template. However, this sample shows how to

use it to construct source items as well. The CustomerItem constructor uses the

IDMItem::object function to determine if a source or a target item is being

constructed. Line 106 in the CustomerItem::generateSourceItems function is the key,

as it calls the constructor to create the source item.

Samples are provided with the User Interface Class Library product. Complete

listings of the samples used in this chapter are included in the \ibmcpp\samples\ioc

directory unless otherwise noted. This sample is found in \ibmcpp\samples\ioc\drag4

directory.

Enabling Drag and Drop

OS/2 Presentation Manager (PM) implements direct manipulation using a set of

window events specific to that task. If your User Interface Class Library applications

support drag and drop, you must attach handlers to your windows to process those

events. The direct manipulation handlers implement each of the handler virtual

functions to compose a functional framework you can use as provided or you can

extend. You do not derive from these classes but you derive from the other classes in

the direct manipulation framework.

IDMSourceHandler and IDMTargetHandler are derived from IDMHandler. They

handle the Presentation Manager direct manipulation window messages. Objects from

these classes pick up the WM_* and DM_* messages for the source and target

objects and translate them into virtual function calls to the handler.

In addition to translating messages to virtual function calls, these handlers also

manage renderers.

The following sections discuss how to add direct manipulation to your applications.

Enabling a Control as a Drop Target

To enable other controls as drop targets, you must specifically create the drag items

and item providers that the User Interface Class Library generates automatically for

entry field, MLE, and container controls. Do the following:

1. Derive a class from the base class IDMItem and override the targetDrop member

function and the following IDMItem constructor:

 Chapter 36. Supporting Direct Manipulation 439

Enabling Direct Manipulation

IDMItem (const Handle& item);

2. Write a drag item provider class for the customized item class using the

IDMItemProviderFor template class, overriding provider functions when

necessary:

provideEnterSupport

Override to provide drag item and target verification that is not supplied by

default and provide target emphasis.

provideLeaveSupport

Override to provide additional cleanup not supplied by default and remove

target emphasis.

provideHelpFor

Override to provide help support.

3. Use the default target handler and renderer for the customized object.

4. Use the static function, IDMHandler::enableDropOn to enable the control as a

drag target as shown in line 35 of the .CPP sample file that follows.

5. Instantiate and set the drag item provider for for the control as shown in lines 40,

41, and 46 of the .CPP sample file below.

Note: When implementing a specialized drop target for a container, entry field, or

MLE control, you should derive from that control specific class instead of

IDMItem.

The following example adds drop support to a bitmap control. The header file

dmsamp2.hpp defines two classes, ABitmapItem and ABitmapProvider, and overrides

the IDMItem::targetDrop and IDMItem::provideEnterSupport member functions in

both classes, respectively.

 1 #include <idmprov.hpp>
 2 #include <idmitem.hpp>
 3 #include <idmevent.hpp>
 4
 5 class ABitmapItem : public IDMItem {
 6 /**
 7 * Objects of this class provide "bitmap control" drop behavior when a *
 8 * source bitmap file is dropped on a bitmap control properly configured *
 9 * with a target handler and an ABitmapProvider. *
10 **/
11 public:
12 /*------------------------------- Constructor -------------------------------
13 | Objects of this class are constructed from a generic item handle. |
14 ---*/
15 ABitmapItem (const IDMItem::Handle &item);
16
17 /*------------------------------ Drop Behavior ------------------------------
18 | targetDrop - Take the dropped file, create a PM bitmap object, |
19 | and set it into the target window. |
20 ---*/

440 VisualAge C++ Open Class Library User's Guide

Enabling Direct Manipulation

21 virtual Boolean
22 targetDrop (IDMTargetDropEvent &);
23 };
24
25 class ABitmapProvider : public IDMItemProviderFor< ABitmapItem > {
26 /**
27 * Objects of this class are attached to bitmap controls in order to have *
28 * ABitmapItem objects created when a bitmap file is dropped on such a *
29 * control. *
30 **/
31 public:
32 /*------------------------------- Target Support ----------------------------
33 |provideEnterSupport - Verify that we're dealing with a bitmap object before|
34 | allowing a drop, as well as draw the target emphasis.|
35 |provideLeaveSupport - Remove the target emphasis. |
36 |drawEmphasis - Draw or remove the target emphasis. |
37 ---*/
38 virtual Boolean
39 provideEnterSupport (IDMTargetEnterEvent& event),
40 provideLeaveSupport (IDMTargetLeaveEvent& event);
41
42 virtual ABitmapProvider
43 &drawEmphasis (IBitmapControl* bitmapControl,
44 IDMTargetEvent& event,
45 Boolean draw = true);
46 private:
47 static Boolean
48 bAlreadyDrawn;
49
50 };

Lines 5 through 23 declare IDMItem as the base class for objects of a specialized

class named ABitmapItem. Objects of this class provide bitmap control drop

behavior when a source bitmap file is dropped on a bitmap control that is properly

configured with a target handler and an ABitmapProvider.

Lines 25 through 50 define a drag item provider for a bitmap control and override

IDMItemProvider::provideEnterSupport so that it verifies that the dragged object is a

bitmap.

The .CPP file adds the drag item provider and the target handler, and it uses the

default target renderer.

The following code continues this same example:
...
 17 int main()
 18 {
 19 /***/
 20 /* Create a generic frame window. */
 21 /***/
 22 IFrameWindow
 23 frame ("C Set ++ Direct Manipulation - Sample 2");
 24

 Chapter 36. Supporting Direct Manipulation 441

Enabling Direct Manipulation

 25 /***/
 26 /* Create an empty bitmap control. */
 27 /***/
 28 IBitmapControl
 29 bmpControl (0, &frame, &frame);
 30
 31 /***/
 32 /* Create a target handler for the bitmap control and use default */
 33 /* C Set++ UI renderers. */
 34 /***/
 35 IDMHandler::enableDropOn(&bmpControl);
 36
 37 /***/
 38 /* Create bitmap drag item provider. */
 39 /***/
 40 ABitmapProvider
 41 itemProvider;
 42
 43 /***/
 44 /* Attach provider to the bitmap control. */
 45 /***/
 46 bmpControl.setItemProvider(&itemProvider);
 47
 48 /***/
 49 /* Set the bitmap's control as the frame's client */
 50 /* and display the frame. */
 51 /***/
 52 bmpControl.setText("Drop .bmp files here.");
 53 bmpControl.setFocus();
 54
 55 frame.sizeTo(ISize(400, 350));
 56 frame.setClient(&bmpControl)
 57 .showModally();
 58 }
 59
 60 /*---
 61 | ABitmapItem::ABitmapItem |
 62 | |
 63 | Constructor. |
 64 ---*/
 65 ABitmapItem :: ABitmapItem (const IDMItem::Handle& item)
 66 : IDMItem(item)
 67 {
 68 }
 69
 70 /*---
 71 | ABitmapItem::targetDrop |
 72 | |
 73 | Take the dropped file, create a PM bitmap object, |
 74 | and set it into the target window. |
 75 ---*/
 76 IBase::Boolean ABitmapItem :: targetDrop (IDMTargetDropEvent& event)
 77 {
 78 /***/
 79 /* Get pointer to the target bitmap control. */
 80 /***/
 81 IBitmapControl
 82 *bmpControl = (IBitmapControl *)targetOperation()->targetWindow();

442 VisualAge C++ Open Class Library User's Guide

Enabling Direct Manipulation

 83
 84 /***/
 85 /* Turn off target emphasis. */
 86 /***/
 87 ABitmapProvider
 88 *provider = (ABitmapProvider *)bmpControl->itemProvider();
 89 provider->drawEmphasis(bmpControl, event, false);
 90
 91 /***/
 92 /* Construct dropped .BMP file name from this drag item and attempt to */
 93 /* load the bitmap from a system file */
 94 /***/
 95 IString
 96 fname = containerName() + sourceName();
 97 IGBitmap
 98 bitMap(fname);
 99
100 /***/
101 /* If bitmap was successfully loaded, then set it. Note that the old */
102 /* one will be automatically deleted. */
103 /***/
104 if (bitMap.handle())
105 {
106 bmpControl->setBitmap(bitMap.handle());
107
108 /**/
109 /* Indicate name of dropped file. */
110 /**/
111 bmpControl->setText(fname);
112 }
113 else
114 {
115 bmpControl->setText("Couldn't create bitmap!");
116 }
117
118 return(true);
119 }
120
121 /*---
122 | ABitmapProvider::provideEnterSupport |
123 | |
124 | Verify that we're dealing with a bitmap object before |
125 | allowing a drop, as well as draw the target emphasis. |
126 ---*/
127 IBase::Boolean ABitmapProvider :: provideEnterSupport (IDMTargetEnterEvent& event)
128 {
129 /***/
130 /* Get handle to the drag target operation */
131 /***/
132 IDMTargetOperation::Handle targetOp = IDMTargetOperation::targetOperation();
133
134 /***/
135 /* Get pointer to the target bitmap control. */
136 /***/
137 IBitmapControl
138 *bmpControl = (IBitmapControl *)event.window();
139
140 /***/

 Chapter 36. Supporting Direct Manipulation 443

Enabling Direct Manipulation

141 /* Draw the target emphasis. */
142 /***/
143 drawEmphasis(bmpControl, event);
144
145 /***/
146 /* Filter the types of items that we allow to be dropped. */
147 /***/
148 IDMItem::Handle pTgtDIH = targetOp->item(1);
149 IString strTypes = pTgtDIH->types();
150
151 /***/
152 /* If type is either "Bitmap" or "Plain Text" (used by WPS), we can */
153 /* display the drag item. If type is "Plain Text", then filter based */
154 /* upon the ".bmp" extension. */
155 /***/
156 if (strTypes.indexOf(IDM::bitmap))
157 {
158 return(true);
159 }
160 else
161 {
162 if ((strTypes.includes(IDM::plainText)) &&
163 (pTgtDIH->sourceName().lowerCase().includes(".bmp")))
164 {
165 return(true);
166 }
167 }
168
169 /***/
170 /* Type is not recognized - set the drop indicator to prevent a drop! */
171 /***/
172 event.setDropIndicator(IDM::neverOk);
173 return(false);
174 }
175
176 /*---
177 | ABitmapProvider::provideLeaveSupport |
178 | |
179 | Remove the target emphasis. |
180 ---*/
181 IBase::Boolean ABitmapProvider :: provideLeaveSupport (IDMTargetLeaveEvent& event)
182 {
183 /***/
184 /* Get pointer to the target bitmap control. */
185 /***/
186 IBitmapControl
187 *bmpControl = (IBitmapControl *)event.window();
188
189 /***/
190 /* Remove the target emphasis. */
191 /***/
192 drawEmphasis(bmpControl, event, false);
193 return(true);
194 }
195
196 /*---
197 | ABitmapProvider::drawEmphasis |
198 | |

444 VisualAge C++ Open Class Library User's Guide

Enabling Direct Manipulation

199 | Draw/remove the target emphasis |
200 ---*/
201 ABitmapProvider& ABitmapProvider::drawEmphasis (IBitmapControl* bmpControl,
202 IDMTargetEvent& event,
203 Boolean bDraw)
204 {
205 /***/
206 /* Return if the request is to draw the emphasis, and its already */
207 /* drawn. */
208 /***/
209 if (bDraw && bAlreadyDrawn)
210 return(*this);
211
212 if (bDraw)
213 bAlreadyDrawn = true;
214 else
215 bAlreadyDrawn = false;
216
217 /***/
218 /* Create the graphic context and set the mix mode to cause the pen */
219 /* color to be the inverse of the drawing surface. Also, set the draw */
220 /* operation, so that only the frame of the rectangle is drawn. */
221 /***/
222 IGraphicContext
223 graphicContext(event.presSpace());
224
225 graphicContext.setMixMode(IGraphicBundle::invert)
226 .setDrawOperation(IGraphicBundle::frame);
227
228 /***/
229 /* Define the points for the emphasis rectangle and adjust their */
230 /* position so the rectangle will fit within the control window. */
231 /***/
232 IPoint
233 origin (bmpControl->rect().left(), bmpControl->rect().bottom()),
234 topRight(bmpControl->rect().width(), bmpControl->rect().height());
235
236 origin -= 2;
237 topRight -= 4;
238
239 /***/
240 /* Create an IRectangle object based upon the points defined and use */
241 /* it to construct a 2-Dimensional rectangle object: IGRectangle. */
242 /* Draw the emphasis rectangle using the IGRectangle object. */
243 /***/
244 IGRectangle
245 graphicRectangle(IRectangle(origin, topRight));
246
247 graphicRectangle.drawOn(graphicContext);
248
249 /***/
250 /* Release presentation space and return. */
251 /***/
252 event.releasePresSpace();
253 return(*this);
254 }
...

 Chapter 36. Supporting Direct Manipulation 445

Enabling Direct Manipulation

First, the .CPP file creates an empty bitmap control object, bmpControl, and then

creates and attaches the handler, provider, and renderer.

Lines 28 and 29 create the bitmap control object.

Line 35 constructs a target handler, which creates a default target renderer.

Lines 40 and 41 construct a drag item provider, itemProvider.

Line 46 attaches the drag item provider to bmpControl window.

The rest of the .CPP file defines the overridden member functions,

IDMItem::targetDrop and IDMItemProvider::provideEnterSupport, for the classes

declared in the .HPP file.

Lines 76 through 119 define AbitmapItem::targetDrop. This member function gets

the dropped file, creates the bitmap, and displays the bitmap in the target window.

Lines 127 through 174 define ABitmapProvider::provideEnterSupport. This member

function verifies that the object over the target is a bitmap.

Note: This data type verification is in addition to the RMF checking that is done by

the User Interface Class Library default target renderer. IDM::plainText is

also verified. This data type is used by the Workplace Shell for its

background bitmaps.

If it is not a bitmap, the drop is not allowed.

Also, on line 143, provideEnterSupport requests the drawing of the target emphasis,

which is a rectangle that is drawn just inside the outer edge of the target window.

This member function is called when a target enter event (IDMTargetEnterEvent)

occurs on a target window.

Lines 181 through 194 define ABitmapProvider::provideLeaveSupport. This member

function requests removal of the target emphasis since the object is no longer over the

target window. This member function is called when a target leave event

(IDMTargetLeaveEvent) occurs on a target window.

Lines 201 through 254 define drawEmphasis. This member function has been added

to the derived item provider class, ABitmapProvider, to draw and remove the target

emphasis from the target window.

Note: When creating a graphic context, as shown on lines 222 and 223, you must

use the presentation space obtained by calling IDMTargetEvent::presSpace.

You cannot use the presentation space returned by IWindow::presSpace.

446 VisualAge C++ Open Class Library User's Guide

Enabling Direct Manipulation

The rest of this function illustrates how to draw and remove the target emphasis using

the graphic support classes.

A complete listing of this sample is included in the \ibmcpp\samples\ioc\drag2

directory.

Enabling a Control as a Drag Source

To enable other controls as drag sources, you must specifically create the drag items

and item providers that the User Interface Class Library generates automatically for

entry field, MLE, and container controls. You should do the following:

1. Derive a class from the base class IDMItem, implement the generateSourceItems

static member function, and override the following IDMItem constructors:

IDMItem (IDMSourceOperation* sourceOperation,
 const IString& types,

const unsigned long supportedOperations = unknown,
const unsigned long attributes = none);

IDMItem (const Handle& item);

The second constructor, the target item constructor, is required by the

IDMItemProviderFor template whether it is used or not.

2. Write a drag item provider class for the customized item class using the

IDMItemProviderFor template class.

3. Use the default source handler and renderer for the customized object.

4. Use the static function, IDMHandler::enableDragFrom to enable the control as a

drag source as shown in line 17 of the sample that follows.

5. Instantiate and set the drag item provider for the control as shown in lines 21 and

22 of the sample that follows.

Note: When implementing a specialized drag source for a container, entry field, or

MLE control, you should derive from that control specific class instead of

IDMItem.

The following example enables the user to drag objects from a static text control.

This example is not included in the \ibmcpp\samples\ioc directory.

The header file defines two classes, STextItem and MyWindow, and implements the

IDMItem::generateSourceItems static member function.
...
 9 #include "static.h"
10
11 class STextItem : public IDMItem {
12 public:
13

 Chapter 36. Supporting Direct Manipulation 447

Enabling Direct Manipulation

14 STextItem (IDMSourceOperation *pSrcOp);
15 STextItem (const IDMItem::Handle &item);
16
17 static Boolean
18 generateSourceItems (IDMSourceOperation *pSrcOp);
19 };
20
21 class MyWindow : public IFrameWindow {
22 public:
23
24 MyWindow();
25 ˜MyWindow();
26
27 private:
28 ITitle title;
29 ISetCanvas canvas;
30 IStaticText staticText;
31 };

The .CPP file adds the drag item provider and the source handler, and it uses the

default source renderer.
...
 3 int main()
 4 {
 5 MyWindow myWin;
 6 IApplication::current().run();
 7 }
 8
 9 MyWindow :: MyWindow() :
10 IFrameWindow(ID_MYWINDOW),
11 title(this, "Static Control"),
12 canvas(ID_CANVAS, this, this),
13 staticText(ID_STEXT, &canvas, &canvas)
14 {
15 setClient (&canvas); //Set the canvas as the frame client.
16
17 IDMHandler::enableDragFrom (&staticText); //Enable the static text for dragging from
18
19 // Use the IDMItemProviderFor template class to create a template
20 // for the static text item, and set it into the window.
21 IDMItemProvider *pSTProvider = new IDMItemProviderFor< STextItem >;
22 staticText.setItemProvider (pSTProvider);
23
24 staticText.setText ("Static Text"); //Put text into the static text control.
25 setFocus (); // Set the keyboard focus and show it.
26 show ();
27 }
28
29 MyWindow :: ˜MyWindow() {};
30 STextItem :: STextItem (IDMSourceOperation *pSrcOp) :
31 IDMItem (pSrcOp,
32 IDM::text,
33 (IDMItem::moveable | IDMItem::copyable),
34 none)
35 {
36 IStaticText *pSText = (IStaticText *)pSrcOp->sourceWindow(); //Get a pointer to the static text
37 // control from the source operation

448 VisualAge C++ Open Class Library User's Guide

Enabling Direct Manipulation

38 setContents(pSText->text()); // Store the static text within the item
39 setRMFs(rmfFrom(IDM::rmLibrary, IDM::rfText));//Use the default RMF for text
40 }
41
42 STextItem :: STextItem (const IDMItem::Handle &item) :
43 IDMItem (item) {};
44
45 IBase::Boolean STextItem :: generateSourceItems(IDMSourceOperation *pSrcOp)
46 {
47 STextItem *pSTItem = new STextItem (pSrcOp); //Create the static text drag item
48 pSrcOp->addItem (pSTItem); //and add it to the source operation.
49
50 return(true);
51 }

First, the .CPP file creates a canvas and a static text control object, staticText, and

then creates and attaches the handler, provider, and renderer. The renderer is

automatically created and attached by the handler.

Line 13 creates the static text control object.

Line 17 constructs a target handler, which creates a default target renderer.

Lines 21 and 22 construct a drag item provider, pSTProvider, and attach the drag item

provider to the static text window.

The rest of the .CPP file implements the static member function,

STextItem::generateSourceItems, and the source and target item constructors.

Lines 30 through 40 define the source item constructor.

Lines 42 and 43 define the target item constructor, which is required by the

IDMItemProviderFor template whether it is used or not. Note that this constructor

can also be used to construct source items but requires additional work as shown in

the drag4 sample.

Lines 45 through 51 define generateSourceItems. This member function is used to

generate the source item.

Note: This sample is not included in the \ibmcpp\samples\ directory.

Enabling a Control as a Drag Source and a Drop Object

To enable other controls as a drag source and a drop target, you must specifically

create the drag items and item providers that the User Interface Class Library

generates automatically for entry field, MLE, and container controls.

 Chapter 36. Supporting Direct Manipulation 449

Enabling Direct Manipulation

To enable a control as both a drag source and a drop object, follow the requirements

in the following sections:

¹ “Enabling a Control as a Drop Target” on page 439

¹ “Enabling a Control as a Drag Source” on page 447

Note: Enable your control as a drag source and a drop target using the static

function, IDMHandler::enableDragDropFor.

Enabling a Control to Support a Workplace Shell Shredder Object

When a user drop an object on a Workplace Shell shredder, two events are issued: a

discard event and an end event. Do the following to enable your control to support a

Workplace Shell shredder:

1. Add the shredder RMF, IDM::discard, IDM::rfUnknown to the control’s derived

drag item. This normally occurs within the derived class’s source item

constructor.

2. Override the IDMItem::sourceDiscard member function in the control’s derived

drag item to remove the object from the source window.

3. Override the IDMItem::sourceEnd member function in the control’s derived drag

item, if needed, to perform any additional clean-up.

The Workplace Shell shredder will set the drag operation to a value of

IDMOperation::move. To prevent confusion with an actual move operation, you can

set a flag in the control’s derived drag item, from within the sourceDiscard override,

to clearly identify the discard operation.

Note: If a user drops multiple items on a shredder, the Workplace Shell issues a

discard and an end event for each item.

Enabling a Control to Support a Workplace Shell Printer Object

When an object is dropped on a Workplace Shell printer object, it issues two events:

a print event, and an end event. Do the following to enable any control to support a

Workplace Shell printer object:

1. Add the print RMF, IDM::print, IDM::rfUnknown, to the control’s derived drag

item. This normally occurs within the derived class’s source item constructor.

2. Override the IDMItem::sourcePrint member function in the control’s derived drag

item to print the object.

3. Override the IDMItem::sourceEnd member function in the control’s derived drag

item, if needed, to perform any additional clean-up.

450 VisualAge C++ Open Class Library User's Guide

Enabling Direct Manipulation

The Workplace Shell print object does not modify the default drag operation.

However, you can set a flag in the control’s derived drag item, from within the

sourcePrint override, to clearly identify the print operation.

You need to implement the rest of the print logic.

Note: If a user drops multiple items on a print object, the Workplace Shell issues a

print and an end event for each item.

Enabling a Control for Workplace Shell File Support

Target Support

When a drag is started on an OS/2 Workplace Shell object that represents a text file,

the Workplace Shell places information in the following underlying drag items:

¹ The drag item types

¹ The RMFs, one of which is IDM::rmFile,IDM::rfText, the file rendering

mechanism and text format

¹ A container name, which will contain the drive and path

¹ A source name, which will contain the file name

The default target renderer provides support for the file rendering mechanism and text

format. To enable a control for Workplace Shell file support, do the following:

1. Override IDMItemProvider::provideEnterSupport in the derived drag item

provider class to perform drag item type verification if required.

2. Override IDMItem::targetDrop in the derived drag item class.

3. Obtain the file’s drive and path information in the IDMItem::targetDrop override

by calling the IDMItem::containerName member function.

4. Obtain the file name in the IDMItem::targetDrop override by calling the

IDMItem::sourceName member function.

5. Perform desired processing on the file.

An example of Workplace Shell file support is shown in the drag2 sample that is

discussed in “Enabling a Control as a Drop Target” on page 439.

Source Support - Target File Rendering

To enable a control as a file source, the Workplace Shell places the following

requirements upon the drag item objects:

¹ A drag item type

 Chapter 36. Supporting Direct Manipulation 451

Enabling Direct Manipulation

¹ The file rendering mechanism and text format

¹ A container name, which will contain the source drive and path

¹ A source file name

¹ A suggested target file name

Do the following to implement source file support to allow the Workplace Shell to do

target rendering:

1. In the source drag item constructor of the derived drag item class, either add or

set an item type of IDM::plainText, using IDMItem::addType or

IDMItem::setTypes, respectively.

2. Also, either add or set the file rendering mechanism and text format,

<IDM::rmFile,IDM::rfText>, using IDMItem::addRMF or IDMItem::setRMFs,

respectively.

3. Set the source drive and path using IDMItem::setContainerName.

4. Set the source file name using IDMItem::setSourceName.

5. Set the suggested target file name using IDMItem::setTargetName.

These steps build the information that the Workplace Shell requires to do target

rendering: create the file without further intervention from the source of the drag

operation.

Source Support - Delayed or Source File Rendering

If it is not desirable to use target rendering to create the file, you can use what is

known as delayed or source file rendering.

For example, you could use delayed file rendering when the file you are dragging

requires dynamic modifications. By delaying the file’s creation at the target, you

have the opportunity to make the dynamic modifications.

Do the following to implement source file support for delayed file rendering:

Note: When the container name is set to 0, which is the default, the Workplace

Shell selects the delayed file rendering mechanism.

1. In the source drag item constructor of the derived drag item class, either add or

set an item type of IDM::plainText, using IDMItem::addType or

IDMItem::setTypes, respectively.

2. Also, either add or set the file rendering mechanism and text format,

<IDM::rmFile,IDM::rfText>, using IDMItem::addRMF or IDMItem::setRMFs,

respectively.

3. Set the source file name using IDMItem::setSourceName.

452 VisualAge C++ Open Class Library User's Guide

Enabling Direct Manipulation

4. Set the suggested target file name using IDMItem::setTargetName.

5. Override IDMItem::sourceRender in the derived drag item class.

a. Perform desired processing on the file in the override.

b. Call IDMRenderEvent::setCompletion to set the render completion code in

the override.

c. Return from the override.

Setting and Querying the Drag Operation

The default operation for direct manipulation is IDMOperation::drag. The direct

manipulation target determines the type of operation (for example, move, copy, or

link) based upon the allowable operations defined by the item. However, you can

override this setting in a derived item’s IDMItem::generateSourceItems function using

IDMOperation::setOperation.

Note: The target continually updates this setting, which can be dynamically

manipulated using the keyboard augmentation keys. It can be queried using

the IDMOperation::operation function.

If the direct manipulation source needs to determine which operation occurred at the

target, the operation can be queried using the IDMSourceOperation::operation

function. This is sometimes required in a derived item’s IDMItem::sourceEnd

function override.

For example, you could distinguish a move from a copy operation so you remove the

object from the source if you were performing a move operation.

Adding Images to Drag Items

When you drag an object, a visual image is displayed for that object. The User

Interface Class Library provides default system images, or you can change the image

style and provide your own images.

To change the drag image style, use the IDMSourceOperation::setImageStyle member

function. We recommend that you call setImageStyle from the

IDMItem::generateSourceItems member function of the application’s derived item

class.

The following table describes the IDMImage styles and the steps you must take to

use them:

 Chapter 36. Supporting Direct Manipulation 453

Enabling Direct Manipulation

You can use the IDMSourceOperation::setStackingPercentage member function to

define the stacking percentage used to calculate the placement of the next stacked

image when the image style, IDM::stack3AndFade or IDM::allStacked, is specified.

By default, the percentage for both the x and y axis is defined as 50 percent of the

current image’s size, which results in the placement of the origin, bottom left-hand

corner, of the next image in the center of the current image. The placement of the

first image is determined by the position of the mouse pointer. The default direction

of stacking is toward the upper right. Increase the stacking percentage to expand the

stacking of images, and conversely, decrease the stacking percentage to compress the

stacking of images. Also, you can alter the direction of stacking using negative

percentages as shown below:

IDMSourceOperation::setStackingPercentage(IPair(x, y)); //stacking direction is upper right
IDMSourceOperation::setStackingPercentage(IPair(-x, y)); //stacking direction is upper left
IDMSourceOperation::setStackingPercentage(IPair(-x, -y)); //stacking direction is lower left
IDMSourceOperation::setStackingPercentage(IPair(x, -y)); //stacking direction is lower right

Here, x is the stacking percentage for the x-axis and y is the stacking percentage for

the y-axis.

You can set this function only once per each drag operation.

The drag4 sample contains a simple illustration of the use of the

IDMSourceOperation::setStackingPercentage function.

You can attach IDMImage objects to IDMItem objects by using the

IDMItem::setImage member function in:

IDMImage

Style

Description What to Code

systemImages If one item is dragged, the

ISystemPointerHandle::singleFile icon is used.

For more than one item, the

ISystemPointerHandle::multipleFile icon is

used. Any images supplied with drag items are

ignored.

Default

allStacked Shows each image provided in each drag item.

If no images are specified, system images are

used.

Attach IDMImage

objects to each

IDMItem object

stack3AndFade Shows the first three images provided in the

drag items and then shows a special icon that

looks like the rest of the images fading out.

This is optimal when the user can drag more

than three items. If no images are specified,

system images are used.

Attach IDMImage

objects to three

IDMItem objects.

454 VisualAge C++ Open Class Library User's Guide

Enabling Direct Manipulation

¹ The constructor of the derived item object

¹ The implementation of the IDMItem::generateSourceItems member function

The following example adds the text I-beam pointer as an image to a derived

IDMItem in its constructor:

MyItem::MyItem (IDMSourceOperation* pIDMSrcOp)
{
...
 IDMImage image = IDMImage(ISystemPointerHandle(
 ISystemPointerHandle::text));
 setImage(image);
 }

Drag Image Resources for stack3AndFade

When you use the IDMItem::stack3AndFade style, the User Interface Class Library

uses a fade icon that looks like the images are fading out. If your application is

shipped as a product and uses the stack3AndFade option, you need to ensure its

availability to your application.

The fade icon is stored in the User Interface Class Library resource dynamic link

library CPPOOR3U.DLL.

If your application is dynamically linked to the User Interface Class Library, follow

these steps to use the fade icon:

1. Rename the resource DLL with the DLLRNAME tool shipped with the IBM

VisualAge C++ compiler.

For more information about DDLRNAME, see the IBM VisualAge C++ Compiler

Utilities Reference.

2. Call ICurrentApplication::setResourceLibrary with the new DLL name as its

argument.

 See ICurrentApplication in the Open Class Library Reference for more

information about setResourceLibrary.

If your application is linked to User Interface Class Library static libraries, follow

these steps to use the fade icon:

1. Bind the fade icon to your application .EXE file. The fade icon, fade.ico, and its

resource file, DDE4U001.RC, are in the \ibmcpp\ibmclass directory on the drive

you installed the product on.

2. Call ICurrentApplication::setResourceLibrary with 0 as its argument. The

parameter 0 indicates that the fade icon is in the application .EXE file.

See ICurrentApplication in the Open Class Library Reference for more

information about setResourceLibrary.

 Chapter 36. Supporting Direct Manipulation 455

Debugging Direct Manipulation

Setting the Target Emphasis

The IDMTargetEvent::presSpace and IDMTargetEvent::releasePresSpace functions are

defined to assist IDMTargetEnterEvent, IDMTargetLeaveEvent, and

IDMTargetDropEvent events in the drawing and removal of target emphasis. You

must use these functions to acquire and release the presentation space that is used to

draw target emphasis. IWindow::presSpace and IWindow::releasePresSpace do not

work. The drag2 sample contains a simple implementation of target emphasis

support.

Debugging Direct Manipulation within an Application

Use the following tips to assist you in using the IBM VisualAge Debugger

(ICSDEBUG.EXE) to debug direct-manipulation-enabled applications:

1. Ensure that you are using the proper level of the OS/2 Kernel. The following

version of the Kernel must be installed if you are using OS/2 V2.1:

 OS2KRNL 738648 10-22-93 12:37p

This prevents the internal resource interlock problem from occurring. OS/2

V2.11 already includes the fix for this problem.

2. Set the PM debugging mode to Asynchronous and do the following:

¹ Install the CSD CTU0002 for Debugger updates if you are using OS/2 V2.1

¹ Install the CSD CTU0003 for Debugger updates if you are using OS/2 Warp

V3.0

3. Enable the static debug support flag, defined within IDMCOMM.HPP, in your

application:

IBase::Boolean IDM::debugSupport = true;

4. The system makes the mouse pointer invisible at certain stages during its

processing of the direct manipulation request. To make the mouse visible, use

the keyboard to display an OS/2 command prompt and run a utility, such as

Petzold’s SHOWPTR.EXE. This utility is available from various electronic

media.

You can also use the following tracing options to debug direct-manipulation-enabled

applications:

1. Use IMODTRACE_DEVELOP to log the entry and exit of a member function.

For example:

IMODTRACE_DEVELOP("CustomerItem::targetDrop");

2. Use ITRACE_DEVELOP to log messages, conditions, and variable values. For

example:

456 VisualAge C++ Open Class Library User's Guide

Debugging Direct Manipulation

ITRACE_DEVELOP("Drop failed because xyz function failed; return code was "
+ IString(ulRc));

Note: Beware of the use of IDMItem::Handle, IDMTargetOperation::Handle, and

IDMSourceOperation::Handle with constructor initializers. There is a bug in

the IRefCounted class in regard to constructor initializers that makes an

application trap, not where the bug occurs, but later in another location.

Avoid the following constructor initializer:

IDMTargetOperation::Handle TargetOp = IDMTargetOperation::targetOperation();

To prevent a trap, break the preceding statement into a declaration and an

assignment. The following code effectively bypasses the bug:

/***/
/* Using IDMItem version of the targetOperation function */
/***/
 IDMTargetOperation::Handle TargetOp;

TargetOp = targetOperation();

 Chapter 36. Supporting Direct Manipulation 457

Debugging Direct Manipulation

458 VisualAge C++ Open Class Library User's Guide

Window Resources

37 Defining Application Resources

Motif The User Interface Class Library for AIX provides a tool, ipmrc2X, to help you

convert OS/2 resource (.RC) files to X Toolkit resource files.

 For more information about the tool, refer to “Converting Resource Files” on

page 463.

Motif AIX does not support OS/2 Presentation Manager (PM) dialog templates. If you

write portable applications, use canvases instead of dialog templates. The Hello

World version 4 sample application shows you how to do this.

 Refer to Chapter 49, “Adding Dialogs and Push Buttons” on page 621 for more

information.

PM You define resources in a resource file. A resource file is a file that contains data

that your application uses, such as text strings and icons. For example, you can

define a menu, string table, or dialog template menu or string table in the resource

file. You also define the string ID, corresponding to each static string you use in a

window, in the resource file.

The resource compiler produces a compiled version of the resources, which is then

incorporated into the application’s executable code or stored in a dynamic link library

(DLL) for use by one or more applications.

A benefit of defining resources in a resource file is that you can make changes to

resource definitions without affecting the application code itself.

You can also provide national language versions by storing the resources for each

language in a separate resource file. You can then build your application as separate

executable versions for each language (each with a different resource file bound to it)

or as a single executable with a separate .DLL for each language.

Refer to “Supporting Double-Byte Character Set and Multiple Languages” on
page 464 for more information about multiple language versions.

Using Window Resources

Window resources are read-only data segments stored in an application’s .EXE file or

in the dynamic link library’s .DLL file. Predefined User Interface Class Library

window resources include keyboard accelerator tables, icons, menus, and bitmaps.

 Copyright IBM Corp. 1993, 1995 459

Bit-Map and Icon Resources

Most window resources are stored in a format that is unique to each resource type.

The system translates the formats, as necessary, for use in PM functions.

To access window resources, you must prepare a resource file (ASCII file with the

extension .RC). Then the ASCII resource file must be compiled into binary images

using the resource compiler. The compiled resource extension is .RES; it can be

linked to your application’s .EXE file or to a dynamic link library’s .DLL file.

Understanding Dialog Templates

A dialog template is an OS/2 PM data structure that describes a dialog window and

its control windows. PM uses the data in the dialog template to create the dialog

window and control windows. An application can create a dialog template at run

time, or it can use the system resource compiler to create a dialog-template resource.

Motif AIX does not support OS/2 PM dialog templates. If you write portable applications,

use canvases instead of dialog templates. The Hello World 4 sample application

show you how to do this.

 Refer to Chapter 49, “Adding Dialogs and Push Buttons” on page 621 for more

information.

Accessing Bitmap and Icon Resources

Motif The User Interface Class Library accesses bitmap and icon resources using an

IResourceID (an unsigned long). At run-time, IResourceLibrary::loadBitmap or

IResourceLibrary::loadIcon must be able to map the IResourceID to the XPM file

name. For example:

reslib.loadBitmap(42);

in Motif causes the User Interface Class Library to search the X resource database for

an application resource named *ICLPIXMAP_42. The value is the file name, as

follows:

*ICLPIXMAP_42: /user/X11/lib/bitmaps/mybitmap.xpm

In this case the IResourceId locates a fully qualified XPM file name. Once

IResourceId finds the resource that corresponds to a bit-map or icon file name, the

User Interface Class Library uses the following search order to locate the XPM file:

1. If the file name begins with a “/”, treat it as a fully qualified name. If this file

cannot be found, loadBitmap or loadIcon throws an exception.

2. If the name is not fully qualified, then the User Interface Class Library attempts

to load the file from the current directory.

460 VisualAge C++ Open Class Library User's Guide

Keyboard Accelerators

3. If the XPM file is not found in the current directory, then the User Interface

Class Library attempts to load it from the directory specified by the

XAPPLRESDIR environment variable. If the file still cannot be found,

loadBitmap or loadIcon throws an exception.

You can create an application resource, such as *ICLPIXMAP_42 in the previous

example by converting an existing PM .RC file using the ipmrc2X tool. If you do

not have an existing PM .RC file, create one with a text editor. The advantage here

is that you can use preprocessor defines to give the IResourceID’s symbolic names

and you use the same defines in both your resource files and application.

When ipmrc2X encounters an icon or bit-map resource in the input .RC file, it

converts a .BMP or .ICO file name extension to .xpm. Therefore, if your .RC file

contains the following lines:

ICON 21 test1.ico
BITMAP 22 test2.bmp

they convert to the following ipmrc2X output:

*ICLPIXMAP_21: test1.xpm
*ICLPIXMAP_22: test2.xpm

This allows the PM and Motif versions of the bit maps and icons to exist in the same

directory. Remember that ibmp2X converts test2.bmp to test2.xpm. Thus, ipmrc2X

and ibmp2X support the same naming scheme.

Note: If you have an User Interface Class Library application for OS/2 that contains

bit maps and an icons with the same name, rename one or the other so that

your files are not overlaid when you convert them to the AIX format.

Adding Keyboard Accelerators

A keyboard accelerator is a keystroke that generates a command message for an

application. Using a keyboard accelerator lets a user quickly access commands. It

has the same effect as choosing a menu item. While menus provide an easy way to

learn an application’s command set, accelerators provide quick access to those

commands.

The following example shows you how to define keyboard accelerators in a .RC file:

ACCELTABLE ID_MENU
{

"I", ID_ABOUT_ITEM, CONTROL, SHIFT, ALT
 "I", ID_ADD_ITEM, CONTROL, SHIFT
 "a", ID_ASC-ITEM, CONTROL

"d", ID_DESC_ITEM, CONTROL
}

 Chapter 37. Defining Application Resources 461

Accelerator-Table Resource

When a user presses a key sequence of Ctrl+Shift+Alt+I, this causes an

ID_ABOUT_ITEM event. A Ctrl+Shift+I key sequence causes an ID_ADD_ITEM

command event. Notice that the more restrictive accelerator is coded first in the

previous example.

Without accelerators, a user might generate commands by pressing the Alt or PF10

keys to access the menu bar, using the Arrow keys to select the item, and then

pressing the Enter key to choose the item. In contrast, accelerators let users generate

commands with fewer keystrokes.

Although, normally, accelerators are used to generate existing commands as menu

items, they also can send commands that have no menu-item equivalent.

Understanding Accelerator Tables

An accelerator table contains an array of accelerators. Accelerator tables exist at two

levels within the operating system: a single accelerator table for the system queue

and individual accelerator tables for application windows.

Accelerators in the system queue apply to all applications. For example, the F1 key

always generates a help message.

Having accelerators for individual application windows ensures that an application

can define its own accelerators without interfering with other applications. An

accelerator for an application window can override the accelerator in the system

queue.

An application can modify both its own accelerator table and the system’s accelerator

table.

Creating an Accelerator-Table Resource

You can use an accelerator in an application by creating an accelerator-table resource

in a resource-definition file. Then, when the application creates a standard frame

window, the application can associate that client menu bar with the resource.

As specified in a resource-definition file, an accelerator table consists of a list of

accelerator items, each defining the keystroke that triggers the accelerator, the

command the accelerator generates, and the accelerator’s style. The style specifies

whether the keystroke is a virtual key, a character, or a scan code, and whether the

generated message is the default.

462 VisualAge C++ Open Class Library User's Guide

Converting Resource Files

Converting Resource Files

Motif To use the ipmrc2X tool to convert OS/2 .RC files to Motif resource files, use the

following code:

ipmrc2X [-I<include path>] [-A<Application Class>] input [output]

include path

The directory or directories that the preprocessor looks in for the

include files. If you do not specify this, all include files you

reference in the input file must be in the current directory.

Application Class

The application class that is assigned to the created X resources. If

you do not supply this, a value of “*” is used.

input

A file containing PM style resources; for example, a .RC file.

output

The output file name. If you do not supply the output file name,

the output is written to the current directory without the .rc

extension and the first one or two characters of the file name

appear in uppercase letters. (The first two characters are capitalized

when the file name starts with an “x”.)

The following table shows an example of the input and output files:

The following example shows the ipmrc2X command to use to convert the myapp.rc

file:

ipmrc2X -I/usr/include/myapp -AMyapp myapp.rc /u/dev1/defaults/Myapp

Input Output

myapp.rc Myapp

xedit.rc XEdit

Working with the ipmrc2X Tool

As you work with ipmrc2X, keep in mind the following:

¹ It handles the following types of resources:

accelerator table (ACCELTABLE)

bit map (BITMAP)

help tables (HELPTABLE)

help subtable (HELPSUBTABLE)

 icon (ICON)

 menu (MENU)

 Chapter 37. Defining Application Resources 463

Multiple Language Support

menu item (MENUITEM)

string table (STRINGTABLE)

 submenu (SUBMENU)

¹ The accelerator table, menu, menu item, string table, and submenu definitions

cannot span multiple lines. For example, the ipmrc2X tool cannot handle the

following code; however, the resource compiler on OS/2 PM can.

STRINGTABLE
BEGIN
 STR_HELLO,
 "Hello World"
END

¹ ipmrc2X error checking does not flag the same errors as the OS/2 resource

compiler does. For example, incomplete lines and missing commas produce

erroneous output from ipmrc2X but no error message. When you use the

imprc2X check input files for errors using the OS/2 resource compiler.

¹ ipmrc2X, like the OS/2 resource compiler, processes only a single input file. For

this reason, do not use wildcard (*) characters in the input file name.

¹ Place the converted resource file in your $HOME directory or point to it by using

the XAPPLRESDIR environment variable.

Supporting Double-Byte Character Set and Multiple Languages

You can use one source file for your application code and then provide the

double-byte character set (DBCS) and support multiple languages by using separate

resource files for each of the languages you support. The User Interface Class

Library approach includes either of the following:

¹ Use a single executable file with a separate .DLL for each language.

¹ Use separate executable files for each language (each with a separate resource

file bound to it).

Creating DBCS-Enabled Applications

The following suggestions can assist you in creating DBCS-enabled applications:

¹ Use the canvas classes to build dialogs because you define message strings in

resource files, you can translate them easily to another language without changing

the source code.

¹ Use the IEditVerifyHandler class, which provides all the keyboard action event

information, for DBCS-enabled applications. To process both single- and

double-byte character key events, use the mixedCharacter member function. To

process only single-byte characters, use the character member function.

464 VisualAge C++ Open Class Library User's Guide

Multiple Language Support

¹ Use the IString class, which is DBCS-enabled and supports mixed strings that

contain both the single-byte character set (SBCS) and DBCS characters. Objects

of the IString class are essentially arrays of characters. The IString class

provides functions to test the characters that make up the string. These functions

help users determine whether a character is single byte or multiple byte, and

whether it is a valid DBCS first byte.

¹ Use the IDBCSBuffer class, which ensures that the search functions do not

inadvertently match the second byte of a DBCS character. The IDBCSBuffer

class is derived from the IBuffer class, which holds the IString contents. The

two bytes of a DBCS character will not be split.

¹ Use the following member functions in a DBCS-enabled application:

¹ Specify one of the following data type styles when you create and manage the

IEntryField and IComboBox classes:

¹ Specify the appDBCSStatus style when constructing an IFrameWindow to include

a DBCS status area when the frame appears in a DBCS environment. The User

Interface Class Library automatically shares DBCS status control between a

parent and child frame window.

Member Function Returns True If...

isCharValid The character at the given index is in the set of valid characters

isDBCS1 The byte at the given offset is the first byte of DBCS

isPrevDBCS The character preceding the one at the given offset is a DBCS

character

Data Type Styles Allows the Following Input...

anyData A mixture of SBCS and DBCS characters.

dbcsData DBCS-only data.

mixedData A mixture of SBCS and DBCS characters. Use this style if you

plan to convert data to an EBCDIC code page.

sbcsData SBCS-only data.

 Chapter 37. Defining Application Resources 465

Multiple Language Support

466 VisualAge C++ Open Class Library User's Guide

Events and Event Handlers

38 Adding Events and Event Handlers

The User Interface Class Library uses events and event handlers to encapsulate the

message architecture of OS/2 Presentation Manager (PM) in an object-oriented way.

The User Interface Class Library reserves message IDs beginning at 0xFFE0. If you

use the User Interface Class Library, define user messages only in the range of

WM_USER (0x1000) through 0xFFDF.

Figure 60 shows the relationships between window, event, and handler classes.

Presentation Manager

Event PM

Window

1

2

3

4

5

Handler

Figure 60. Relationship of Window, Event, and Handler Classes to

1. Handlers are registered with the window.

2. PM messages are encapsulated in event objects, which are passed to the window

or control that had the event.

3. The window then invokes the handlers attached to it, passing the event object as

a parameter.

4. The handlers are called sequentially with the most recently added handler

invoked first. A handler indicates when processing for the event is complete by

returning a Boolean value of true.

5. If none of the handlers process the event, it is passed up the owner chain.

 Copyright IBM Corp. 1993, 1995 467

Processing Events

The distinction between window classes and handler classes lets you separate the

event-handling logic from the rest of the application. This enables reuse of this logic.

For example, you can reuse a handler to verify telephone numbers wherever an entry

field accepts telephone numbers.

Processing Events Using Handlers

Each handler class has one or more virtual functions that are called to process the

event. When an application processes events, it normally subclasses a handler class

and overrides the virtual function to provide its own application-specific logic.

When you are within a handler member function, do not delete the IWindow object to

which the handler is attached.

The order in which you attach handlers can cause one not to receive events, because

handlers are called in the reverse order that they are attached.

Ensure that handlers return from virtual functions within 1/10 second to avoid locking

up the system by delaying the PM message processing.

Figure 61 shows how the ICommandHandler works. All handler classes contain a

dispatchHandlerEvent function to determine whether the handler needs to process the

event or return it. If the event needs processing, it creates the appropriate event

object and calls the appropriate virtual function to process the event.

Event

IWindow

dispatch()

ICommandHandler

dispatchHandlerEvent()

command()

ICommandEvent

1

2

3a

3b

4

Figure 61. Processing within the ICommandHandler

The numbers in Figure 61 represent the following:

468 VisualAge C++ Open Class Library User's Guide

Processing Events

Table 12 on page 470 presents some common events for which you can provide

handlers.

Note: This is not a complete list of all events and their handlers.

It relates the type of event, the handler for that event, and the member function in the

handler class that the application must override to provide its own logic.

The Open Class Library Reference contains descriptions of all handler classes and

member functions.

Number Description

1 Window creates an event.

2 IEvent is passed to ICommandHandler.

3a IEvent is not processed.

3b ICommandEvent is generated.

4 ICommandEvent is processed by command().

 Chapter 38. Adding Events and Event Handlers 469

P
ro

cessin
g
 E

v
en

ts

PM Message

WM_COMMAND

WM_SYSCOMMAND

WM_CONTROL

WM_CONTROL

WM_CHAR

WM_PAINT

WM_WINDOWPOSCHANGED

WM_CONTROL

WM_CONTROL

WM_CONTEXTMENU

WM_INITMENU

Member

Function

command

systemCommand

edit

getFocus,

lostFocus

keyPress, key,

scanCodeKeyPress,

virtualKeyPress,

characterKeyPress

paintWindow

windowResize

selected

enter

makePopUpMenu

menuShowing

Handler Class

ICommandHandler

ICommandHandler

IEditHandler

IFocusHandler

IKeyboardHandler

IPaintHandler

IResizeHandler

ISelectHandler

ISelectHandler

IMenuHandler

IMenuHandler

Event Class

ICommandEvent

ICommandEvent

IControlEvent

IControlEvent

IKeyboardEvent

IPaintEvent

IResizeEvent

IControlEvent

IControlEvent

IMenuEvent

IMenuEvent

Table 12 (Page 1 of 2). Common Events and Their Handlers

Event Generated by

Command event by menu selection,

push button, or accelerator key

System command event by menu

selection, push button, or accelerator

key

Edit event by entry field, combination

box, MLE, or slider

Gain focus or lose focus by entry

field, combination box, MLE, slider,

container, or spin button

Keyboard entry by entry field,

combination box, MLE, or other input

focus control

Paint area event by all controls

Resize event by all controls

Item selected by list box, combination

box, container, check box, or radio

button

Enter pressed when item selected, or

double-click on item by list box,

combination box, or container

Pop-up menu requested by mouse

button or keyboard

Menu about to be shown by pull-down

menu or pop-up menu

4
7
0

V
isu

alA
g
e C

++
 O

p
en

 C
lass L

ib
rary

 U
ser's G

u
id

e

P
ro

cessin
g
 E

v
en

ts

PM Message

WM_MENUSELECT

WM_MENUEND

WM_CONTROL

WM_BUTTON1DOWN,

WM_BUTTON1UP,

WM_BUTTON1DBLCLK,

WM_BUTTON2DOWN,

WM_BUTTON2UP,

WM_BUTTON2DBLCLK,

WM_BUTTON3DOWN,

WM_BUTTON3UP,

WM_BUTTON3DBLCLK,

WM_BUTTON1CLICK,

WM_BUTTON2CLICK,

WM_BUTTON3CLICK,

WM_CHORD,

WM_MOUSEMOVE,

WM_CONTROLPOINTER

Member

Function

menuSelected

menuEnded

makePopupMenu

mouseClicked,

mouseMoved,

mousePointerChange

Handler Class

IMenuHandler

IMenuHandler

ICnrMenuHandler

IMouseHandler

Event Class

IMenuEvent

IMenuEvent

IMenuEvent

IMouseEvent

Table 12 (Page 2 of 2). Common Events and Their Handlers

Event Generated by

Menu item highlighted and ready to

be selected by mouse or keyboard

Menu removed by mouse or Esc key

Container item context menu

requested by container

Process Mouse Events

C

h
ap

ter 3
8
.

A
d
d
in

g
 E

v
en

ts an
d
 E

v
en

t H
an

d
lers

4
7
1

Extracting Information

Extracting Information from Events

The IEvent class acts as the base class for the more specialized event classes. It

provides general member functions to extract the message ID and message

parameters. The subclasses of IEvent generally add more specialized functions for

extracting information specific to that type of event.

Table 13 shows some common event classes and some of the functions they contain

to extract event information.

Table 13. Event Classes and Accessor Functions

Event Class Accessor Function Description of Return Value

IEvent window The IWindow object pointer

IEvent handle IWindowHandle of the window

IEvent eventId ID of the event

IEvent parameter1 IEventData containing first event parameter

IEvent parameter2 IEventData containing second event parameter

ICommandEvent source An enumeration type that gives the type of control

ICommandEvent commandId The ID of the command that caused the event

IControlEvent controlId The ID of the control that caused the event

IControlEvent control Pointer to the control that caused the event

IKeyboardEvent character Single-byte character code (exception thrown if DBCS)

IKeyboardEvent mixedCharacter IString containing character (can be DBCS)

IKeyboardEvent virtualKey An enumeration type that gives the virtual key event

IMenuEvent menuItemId The ID of the selected menu Item

IMenuEvent mousePosition Position of mouse at the time the event occurred

IPaintEvent presSpaceHandle The handle of the presentation space to use for any drawing

IPaintEvent rect The screen rectangle that needs updating

The IEvent class provides a member function, setResult, for those events that require

a value to be returned.

 Refer to the Open Class Library Reference for a complete list of event classes and

member functions.

472 VisualAge C++ Open Class Library User's Guide

Event Handlers

Writing an Event Handler

In general, writing an event handler can be divided into the following steps:

1. Determine which handler class processes the event.

2. Subclass the handler class and override the event handling functions.

3. Create an instance of your subclass.

4. Start processing events for the window.

5. Stop processing events for the window.

The Hello World application has several event handlers. The following example

illustrates how to use the above steps to process user menu selections. The code

shown is from Hello World version 3.

1. Determine which handler class processes the event.

When you select a menu item, an ICommandEvent is generated. The handler

class for this type of event is ICommandHandler.

2. Subclass the handler class and override the event-handling function.

The Hello World application creates a new class called ACommandHandler that

is derived from the ICommandHandler class. The virtual function,

ICommandHandler::command processes command events. The class

ACommandHandler overrides this function to provide its own command event

handling.

The following sample, taken from the AHELLOW3.HPP, file, shows the class

declaration of ACommandHandler.
...
class ACommandHandler : public ICommandHandler {
public:
 ACommandHandler(AHelloWindow *helloFrame);

protected:
...
virtual Boolean
 command(ICommandEvent& cmdEvent);

private:
 AHelloWindow *frame;
};
...

The public constructor and private data member frame save a pointer to the frame

window for which commands will be processed.

The ACommandHandler command function provides command processing for

AHelloWindow class objects. The definition of the command function is taken

from AHELLOW3.CPP. The ID of the menu item is extracted from the

command event object using the commandId member function.

 Chapter 38. Adding Events and Event Handlers 473

Event Handlers

...
IBase::Boolean
ACommandHandler :: command(ICommandEvent & cmdEvent)

{
Boolean eventProcessed(true); //Assume event will be processed

...
switch (cmdEvent.commandId()) {

 case MI_CENTER:
 frame->setAlignment(AHelloWindow::center);
 break;
 case MI_LEFT:
 frame->setAlignment(AHelloWindow::left);
 break;
 case MI_RIGHT:
 frame->setAlignment(AHelloWindow::right);
 break;

 default: //Otherwise,
eventProcessed=false; // the event wasn't processed

} /* end switch */

 return(eventProcessed);

3. Create an instance of your subclass.

Define a data member from your new handler class in your application window.

The following code comes from the AHELLOW3.HPP file.
...
 ACommandHandler commandHandler;
...

You should also add an initializer to the constructor for the application window.

This is shown in the AHELLOW3.CPP file.
...
AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow(IFrameWindow::defaultStyle() |

 IFrameWindow::minimizedIcon,
 windowId)
 ,menuBar(WND_MAIN, this)

,statusLine(WND_STATUS, this, this)
,hello(WND_HELLO, this, this)

 ,infoArea(this)
 ,commandHandler(this)
...

4. Start processing events for the window.

The base class IHandler provides a member function handleEventsFor to attach a

handler to a window. In the Hello World application, AHELLOW3.CPP, the

ACommandHandler begins processing command events for the AHelloWindow in

its constructor with the following statement:
...
commandHandler.handleEventsFor(this);
...

474 VisualAge C++ Open Class Library User's Guide

Event Handling

5. Stop processing events for the window.

The base class IHandler provides a member function stopHandlingEventsFor to

stop event processing for the window. In the Hello World application,

AHELLOW3.CPP, the ACommandHandler stops processing command events for

the AHelloWindow in its destructor with the following statement:
...
commandHandler.stopHandlingEventsFor(this);
...

Extending Event Handling

The User Interface Class Library provides handlers for common Presentation Manager

(PM) messages. However, you may find it necessary to process messages for which

there are no predefined handler classes. The User Interface Class Library makes it

easy to add new event and handler classes.

The IHandler class is designed to act as a base class for handlers. All event handlers

are derived from this class.

The following statements from the ATIMEHDR.CPP file of Hello World version 6

show a way to provide a new handler class derived from IHandler. This sample uses

timer functions to implement a timer event handler.

Note: The ATimeHandler class demonstrates IHandler derivation; the timer

functions might not handle all cases and might not work in a multithreaded

environment.

The steps for creating an IHandler class, ATimeHandler, follow.

Note that because the timer functions on the AIX and OS/2 operating systems are

different. You can use ifdef compiler directives to determine which functions to call.

This allows the application to be portable.

This is just an example of creating handlers. The User Interface Class Library

contains classes you can use to set time intervals.

 See “Setting Time Intervals” on page 591 for more information about the ITimer

class.

1. Subclass the IHandler class by creating a class declaration for ATimeHandler.

The class is derived from IHandler and provides a virtual function tick to process

the event. The following code comes from the ATIMEHDR.HPP file:

 Chapter 38. Adding Events and Event Handlers 475

Event Handling

class ATimeHandler : public IHandler
{
typedef IHandler
 Inherited;
public:
ATimeHandler() : timerId(0) { } //Initialize timerId data member

virtual ATimeHandler
 &handleEventsFor(IWindow *window),
&stopHandlingEventsFor(IWindow *window);

protected:
...
Boolean
 dispatchHandlerEvent(IEvent& event);
virtual Boolean
 tick(IEvent& event);
...
private:
unsigned long timerId;

};

2. Override the handleEventsFor member function.

This function starts the handler. In the Hello World version 6 ATIMEHDR.CPP

file, the first timer starts, using a constant time interval of 1 second, as follows:

ATimeHandler
&ATimeHandler :: handleEventsFor(IWindow *window)

{

#ifdef IC_MOTIF
...
timerId = XtAppAddTimeOut (

 XtWidgetToApplicationContext ((Widget)window->handle()),
 timeInterval,
 (XtTimerCallbackProc) postATimeHandlerEvent,
 window);
#endif

#ifdef IC_PM
...
timerId = TIMER_ID;

 WinStartTimer(IThread::current().anchorBlock(),
window->handle(), timerId, timeInterval);

#endif
...
 Inherited::handleEventsFor(window);
 return (*this);
} /* end ATimeHandler :: handleEventsFor(...) */

The “typedef IHandler Inherited” statement in the constructor lets you generically

call inherited functions that you have overridden. In this sample, the

handleEventsFor function from IHandler is called to complete the starting of the

handler.

3. Optionally, post the event.

476 VisualAge C++ Open Class Library User's Guide

Event Handling

The PM timer function automatically posts a WM_TIMER event to the window

specified as the second argument of the timer call. In this case, you do not have

to provide any additional processing to post the event.

In contrast, the AIX timer function uses a callback method for notifying the

application when the timer has expired, but it does not post an event. Therefore,

the callback routine must do the posting. The function to call back is specified

as the third argument in the add timer call. This function must be declared as an

extern void _System. The function posts the timer event to the window specified

in the last argument of the add time-out call. The postTimeHandlerEvent

function, from the ATIMEHDR.CPP file, as follows:
...
extern void _System //Forward declare for post function
postATimeHandlerEvent (IWindow *, XtIntervalId *);

...
IEventParameter2 newTimer = XtAppAddTimeOut (

 XtWidgetToApplicationContext((Widget)window->handle()),
 timeInterval,
 (XtTimerCallbackProc)postATimeHandlerEvent,
 window);
...

window->postEvent (WM_TIMER, IEventParameter1(*timerUp), newTimer);
 }
} /* end extern void _System postATimeHandlerEvent(...) */
#endif
...

4. Override the dispatchHandlerEvent member function.

This function determines the relevance of the message. If the message is not

relevant, the function returns false and passes the message to other handlers

attached to the window. If this event is relevant, then the handler’s function for

processing the event should be called. In the Hello World version 6

ATIMEHDR.CPP file, the tick function is called, as follows:
...
IBase::Boolean
ATimeHandler :: dispatchHandlerEvent(IEvent& event)

{
Boolean eventProcessed(false); //Assume event will not be proccessed

...
if ((event.eventId() == WM_TIMER) && (event.parameter1() == timerId))

 {
#ifdef IC_MOTIF
...

timerId = event.parameter2();
#endif
...

eventProcessed = tick(event);
 }
 return (eventProcessed);
} /* end ATimeHandler :: dispatchHandlerEvent(...) */
...

 Chapter 38. Adding Events and Event Handlers 477

Event Handling

Because the OS/2 timer is continuous, the timer ID can be a constant number.

However, for AIX, a new timer is created every second. Therefore, when the

expired timer ID is relevant, for example, dispatched, the new timer ID replaces

the old one.

5. Create the member function for processing the event.

Normally, the event processing function of a general handler class does nothing

but return false. It is the specific handler class, AHelloTimeHandler, in Hello

World version 6 ATIMEHDR.CPP file that overrides the event processing

function and returns true.
...
IBase::Boolean
ATimeHandler :: tick(IEvent& event)

{
return (false); //The timer event is not processed

} /* end ATimeHandler :: tick(...) */
...

The ATimeHandler::tick member function, in the AHELLOW6.CPP file,

overrides the event handling, as follows:
...
IBase::Boolean
 AHelloTimeHandler::tick(IEvent& evt)
{
 ((AHelloWindow *)evt.window())->tickTime();
return (true); //Event is always processed

} /* end AHelloTimeHandler :: tick(...) */
...

6. Override the stopHandlingEventsFor member function.

In Hello World version 6, the timer is removed or stopped, depending on the

system, and the inherited stopHandlingEventsFor function completely stops the

timer. The following code comes from the ATIMEHDR.CPP file:

ATimeHandler
&ATimeHandler :: stopHandlingEventsFor(IWindow *window)

{

#ifdef IC_MOTIF
...
 XtRemoveTimeOut (timerId);
timerId = 0;

#endif

#ifdef IC_PM
...
 WinStopTimer(IThread::current().anchorBlock(),
 window->handle(), timerId);
#endif
...
 Inherited::stopHandlingEventsFor(window);

478 VisualAge C++ Open Class Library User's Guide

Event Handling

 return (*this);
} /* end ATimeHandler :: stopHandlingEventsFor(...) */

Refer to Hello World version 6 sample applicaton (AHELLOW6.CPP,

AHELLOW6.HPP, AEARTHW6.CPP, and AEARTHW6.HPP files) to see how to

derive from ATimeHandler to provide a ticking clock and twinkling stars.

Understanding More About Writing Handlers

To prevent ATimeHandler users from having to understand how information is

encoded in the two message parameters inside the event, derive an event class from

IEvent to encapsulate this information. The following statements show an example of

how to do this:

class ATimerEvent : public IEvent
{
public:
ATimerEvent(IEvent &evt) : IEvent(evt) {;} // Define functions inline

 unsigned long
timerNumber() const { return parameter1().number1(); }

};

You can only construct objects of this class from an instance of IEvent. Because of

the small amount of code required, the example defines the code inline.

To use the new class, change the dispatchHandlerEvent member function to create an

instance of ATimerEvent. Also, change the ATimeHandler::tick member function to

accept an ATimerEvent object as a parameter, as shown in the ATIMEHDR.CPP file:
...
IBase::Boolean
ATimeHandler :: dispatchHandlerEvent(IEvent& event)

{
Boolean eventProcessed(false); // Assume event will not be processed

...
if ((event.eventId() == WM_TIMER) && (event.parameter1() == timerId))

 {
#ifdef IC_MOTIF
...

timerId = event.parameter2();
#endif
...

eventProcessed = tick(event);
 }
 return (eventProcessed);
} /* end ATimeHandler :: dispatchHandlerEvent(...) */
...
IBase::Boolean
ATimeHandler :: tick(IEvent& event)

{
return (false); //The timer event is not processed

} /* end ATimeHandler :: tick(...) */
...

 Chapter 38. Adding Events and Event Handlers 479

Event Handling

The two classes now completely encapsulate timer messages. Users of the classes do

not need to know which messages are generated or how the information is encoded in

the message parameters.

You can restrict the window classes to which a handler can be attached. The

following steps show you how to restrict the attachment of the ATimeHandler class to

the ITextControl class and its derived classes.

1. Write the class declaration following this example:

class ATimeHandler : public IHandler
{
public:
/* use default constructor */

Boolean
dispatchHandlerEvent(IEvent& evt);

virtual ATimeHandler
&handleEventsFor (ITextControl* textWindow),
&stopHandlingEventsFor (ITextControl* textWindow);

protected:
virtual Boolean

tick(ATimerEvent& evt);

private: //Make these functions private
virtual ATimeHandler // so they cannot be called

&handleEventsFor (IWindow* window),
&stopHandlingEventsFor (IWindow* window);

};

2. Override the handleEventsFor member function to accept only ITextControl

objects, as shown in the following example:
...
ATimeHandler
&ATimeHandler::handleEventsFor(ITextControl* textWindow)

{
...
 return (handleEventsFor(window));
}

3. Override stopHandlingEventsFor member function to accept only ITextControl

objects. For example:

ATimeHandler
&ATimeHandler::stopHandlingEventsFor(ITextControl* textWindow)

{
...
 return (stopHandlingEventsFor(window));
}

480 VisualAge C++ Open Class Library User's Guide

Mouse Events

Handling Mouse Events

Pointer devices give users the ability to perform actions directly. The User Interface

Class Library offers classes to handle the mouse pointer.

You can use IMouseHandler to process a variety of mouse events. These events

include button presses and releases, double-clicks, multiple button presses, and mouse

moves. You can also query keyboard state information at the time a mouse event is

generated.

Begin by creating an IMouseHandler object and then attach it to any kind of window

(for example, IMultiLineEdit or ISetCanvas). Although the window that the mouse is

over receives a mouse event first, events are sometimes passed on for additional

processing to their owner windows. A mouse event continues to travel up the owner

window chain until either a handler stops it or the event is processed by the window

itself. The mouse handler must return true to stop any additional processing of a

mouse event.

When an IMouseHandler object receives a mouse event, it creates either an

IMouseEvent, an IMouseClickEvent, or an IMousePointerEvent and routes it to a

mouse handler virtual function. The mouse handler virtual functions are as follows:

Function Purpose

mouseClicked Processes a mouse click event.

mouseMoved Processes a mouse move event.

changeMousePointer Changes the pointer when the mouse is over the handled

window. If you need to change the mouse pointer for a

frame window and all its children, use

IFrameWindow::setMousePointer.

Whenever a mouse button’s state changes, the IMouseHandler calls its mouseClicked

function. The IMouseClickEvent object identifies the button, its current keyboard

state, and the mouse pointer position. The IMouseClickEvent defines the following

virtual functions:

Function Purpose

mouseButton Returns the clicked mouse button (button1, button2,

button3).

mouseAction Returns the mouse action (clicked, double-clicked).

mouseNumber Returns the mouse button that changed state (button1,

button2).

 Chapter 38. Adding Events and Event Handlers 481

Mouse Events

windowUnderPointer Returns the handle of the window that the mouse pointer is

over.

Note: On a two-button mouse, button1 is the left mouse button on a right-handed

mouse and the right button on a left-handed mouse. Button2 is the right

mouse button on a right-handed mouse and the left button on a left-handed

mouse.

The IMouseEvent defines the following virtual functions:

Function Purpose

windowUnderPointer Returns the handle of the window that is under the mouse

pointer.

isAltKeyDown Returns true if the Alt or menu key is down when the

mouse is moved.

isCtrlKeyDown Returns true if the Ctrl key is down when the mouse is

moved.

isShiftKeyDown Returns true if the Shift key is down when the mouse is

moved.

You initiate a mouse pointer event when you enter and exit a window with a mouse

handler attached. The IMousePointerEvent defines the following virtual functions:

Function Purpose

defaultMousePointer Returns the default mouse pointer for the window that is

under the mouse.

setMousePointer Sets the pointer to use for the window that is under the

mouse.

windowId Returns the window ID of the control that the event applies

to.

Mouse

Handler

Example

The following code creates a multi-cell canvas as a client window with a view

port control and two bitmaps as its children. A mouse handler is attached to the

client canvas, the view port and the bitmaps. Code, in the overloaded

changeMousePointer member function, changes the mouse pointer when the mouse is

over the view port. The information area at the bottom of the frame is updated to

indicate when the mouse is over the view port and when it leaves the view port.

When the mouse is over the bitmaps, the program invokes the mouseClicked member

function. The code in the .hpp file is as follows:

482 VisualAge C++ Open Class Library User's Guide

Mouse Events

/***/
/* Define the Mouse Handler */
/***/
class AMouseHandler : public IMouseHandler
 {
public:
 AMouseHandler(MainWindow *aFrame);

protected:
virtual Boolean mouseClicked (IMouseClickEvent & event);
virtual Boolean mousePointerChange (IMousePointerEvent& event);

private:
MainWindow * frame;

};

/***/
/* Define the Main Window */
/***/
class MainWindow : public IFrameWindow {
public:
MainWindow(unsigned long windowId);
Boolean handleClickEvent(unsigned long id);
Boolean handleChangeEvent(IMousePointerEvent& event);

private:

 IMultiCellCanvas clientCanvas;
 IViewPort aviewport;
 IStaticText viewText;
 IStaticText bmpText;
 IStaticText infoText;
 IBitmapControl bmp1;
 IBitmapControl bmp2;
 IPointerHandle ptr_bmp;
 AMouseHandler mouseHandler;
 };

The code in the .cpp file is as follows:

/***/
/* Create the Main Window */
/***/
MainWindow::MainWindow(unsigned long windowId)

: IFrameWindow("Mouse Handler Example", windowId),
clientCanvas(REMOTECANVASID, this, this),
aviewport(VPID, &clientCanvas, &clientCanvas),
viewText(VTXT, &aviewport, &aviewport, IRectangle(),
IStaticText::defaultStyle() | IStaticText::center),

bmpText(BMPTXT, &clientCanvas, &clientCanvas, IRectangle(),
IStaticText::defaultStyle() | IStaticText::center

 | IStaticText::top),
infoText(INFOID, this, this, IRectangle(), IStaticText::defaultStyle()

 | IStaticText::top
 | IStaticText::left

| IStaticText::wordBreak),
 bmp1(BMP1ID,&clientCanvas,&clientCanvas,

 Chapter 38. Adding Events and Event Handlers 483

Mouse Events

 ISystemBitmapHandle::minimizeButton),
 bmp2(BMP2ID,&clientCanvas,&clientCanvas,
 ISystemBitmapHandle::maximizeButton),
 mouseHandler(this)

 {
 addExtension(&infoText, IFrameWindow::belowClient,
 IFont(&infoText).maxCharHeight(),
 IFrameWindow::thickLine);
 infoText.setText(ID_TEXT);

bmpText.setText("<==Click on bitmaps");
 bmpText.setForegroundColor(IColor::white);
 viewText.setText(VTXT);
 setClient(&clientCanvas);
 clientCanvas.setBackgroundColor(IColor::blue);
 aviewport.setBackgroundColor(IColor::pink);

clientCanvas.addToCell(&aviewport, 2, 6, 40, 1);
clientCanvas.addToCell(&bmp1, 2, 2, 4, 2);
clientCanvas.addToCell(&bmp2, 8, 2, 4, 2);
clientCanvas.addToCell(&bmpText, 12, 2, 5, 2);

ISize size = clientCanvas.minimumSize();
IPoint point = position();

 moveSizeToClient(IRectangle(point.x(),
 point.y(),

point.x() + size.width(),
point.y() + size.height()));

 /**/
/* Add the Mouse handler */

 /**/
 mouseHandler.handleEventsFor(&aviewport);
 mouseHandler.handleEventsFor(&bmp1);
 mouseHandler.handleEventsFor(&bmp2);
 mouseHandler.handleEventsFor(&clientCanvas);

 IResourceLibrary reslib;
ptr_bmp = reslib.loadPointer(PTR_BITMAP);

 show();
 setFocus();
}

/***/
/* Change the mouse pointer and update the info area */
/***/
IBase::Boolean MainWindow::handleChangeEvent(IMousePointerEvent& event)
{
if (event.windowId() == IC_VIEWPORT_VIEWRECTANGLE)

 {
 event.setMousePointer(ptr_bmp);

infoText.setText("Mouse is on top of the viewport");
 return true;
 }
 else
 {

infoText.setText("Mouse is not on top of the viewport");

484 VisualAge C++ Open Class Library User's Guide

Mouse Events

 return false;
 }

}

/***/
/* Change the button bitmaps and update the info area. */
/***/
IBase::Boolean MainWindow::handleClickEvent(unsigned long id)
{

 switch (id)
 {
 case BMP1ID:
 bmp1.setBitmap(BMPCD);

infoText.setText("minimize button pushed");
 break;
 case BMP2ID:
 bmp2.setBitmap(BMPMIDI);

infoText.setText("maximize button pushed");
 break;
 }
 return true;
}

AMouseHandler :: AMouseHandler(MainWindow *aFrame)
{
 frame=aFrame;
}

/***/
/* Hande the mouse click event */
/***/
IBase::Boolean AMouseHandler :: mouseClicked (IMouseClickEvent & event)
{

IWindow * pWindow =IWindow::windowWithHandle(event.windowUnderPointer());
unsigned long int winId = pWindow->id();

 frame->handleClickEvent(winId);
 return true;
}

/***/
/* Hande the mouse pointer change event */
/***/
IBase::Boolean AMouseHandler :: mousePointerChange (IMousePointerEvent& event)
{

 return (frame->handleChangeEvent(event));
}

Figure 62 shows the results of using the mouse handler.

 Chapter 38. Adding Events and Event Handlers 485

Mouse Events

Figure 62. Results of Using the Mouse Handler

486 VisualAge C++ Open Class Library User's Guide

Fonts

39 Understanding Fonts

The IFont class contains member functions to set and change the characteristics of the

fonts you use in your applications. You can set the font of IWindow objects using

the member function setFont, which is defined in the IWindow class.

 Constructing Fonts

There are two ways you can construct IFont objects in your application:

¹ Create IFont objects with a specific font face name

¹ Create IFont objects using a window’s font

Creating an IFont Object with a Specific Name

The highlighted lines in the following example show you how to create a font with a

specific name and point size, and then how to change the point size of the text

associated with visible User Interface Class Library objects.

For portable applications, consider using a font dialog. For more information about

font dialogs, refer to “Creating a Font Dialog” on page 385.

Note: Font names change depending on the system you use.

#include <ifont.hpp>
...
 IFont font("Helvetica",8);
...
title1.setAlignment(IStaticText::centerLeft);
title1.setText(STR_TITLE1);

 font.setPointSize(12);
 title1.setFont(font);
...
check1.setText(STR_CHECK1);

 font.setPointSize(20);
 check1.setFont(font);
...

To test the font statements, include the highlighted lines in the AMCELCV.CPP file.

The AMCELCV.CPP file is located in the \ibmcpp\samples\ioc directory.

Creating an IFont Object Using a Window’s Font

The second way to create an IFont object is to use an existing window’s font. This

constructs a font object with the same name that is used in the window. If no

window is specified, the system default font is used.

 Copyright IBM Corp. 1993, 1995 487

Fonts

The following example sets the height of an information area using the maximum

character height of the font used for the information area.

setExtensionSize(&infoArea, IFont(&infoArea).maxCharHeight());

 Refer to the Open Class Library Reference for more information on the IFont

class.

488 VisualAge C++ Open Class Library User's Guide

Clipboard Support

40 Adding Clipboard Support

A clipboard is a systemwide place for users to store data temporarily. The clipboard

enables your user to move data within a single application or to exchange data among

applications. Typically, a user selects data in the application using the mouse or

keyboard, then initiates a cut or copy operation on the selected data. The clipboard

can hold an entire object or part of that object, and it can hold any kind of object.

For example, the clipboard can hold a single line of text or an entire database, a

single line segment or an entire graphic.

When the user selects the paste operation, the data is transferred to the application

from the clipboard.

Note: Only a single item of data can be stored in the clipboard at a time. Therefore,

do not use the clipboard to store data unless a user requests it because you

can overlay the user’s data stored there. This is important: the user must

always control access to the clipboard.

While you can only store a single item of data in the clipboard, you can store this

item in multiple formats. This allows an application to choose the format it supports

that gives it the most information about the data. For example, a graphics application

might copy a picture into the clipboard as both a metafile and a bitmap. This allows

applications that support both metafiles and bitmaps to retrieve the picture as a

metafile if it needs to modify the picture or as a bitmap if it only needs to display the

picture.

IClipboard predefines several system clipboard formats. In addition, any application

can create and register additional private formats.

Before you can write any data to, or read any data from, the clipboard, you must first

open it. Only a single application at a time can open the clipboard. If an application

tries to open the clipboard but another application already has it open, it waits until

the clipboard is available. The default behavior of the clipboard classes minimizes

the time the clipboard is open.

If you use the default behavior of IClipboard, the clipboard functions that require an

open clipboard will open it when needed and close it when finished. You turn off the

default behavior of IClipboard when you explicitly open the clipboard by calling

IClipboard::open. If you open the clipboard in this manner, functions in IClipboard

will not close the clipboard when complete. If you explicitly open the clipboard, you

must close the clipboard by calling IClipboard::close. You can turn off the default

 Copyright IBM Corp. 1993, 1995 489

Clipboard Support

behavior of IClipboard to place different formats of your data on the clipboard

without opening and closing it to write each format.

All clipboard operations must be associated with a window. You provide this

window on the IClipboard constructor. If necessary, IClipboard makes this window

the owner of the clipboard. The clipboard owner is the window responsible for the

data put on the clipboard. It is also the window that the operating system sends

messages to for events relating to the clipboard. The IClipboard object establishes

this window as the system clipboard owner when you call IClipboard::empty. If you

call IClipboard::owner before calling empty, your window will not be returned

because it is not yet the system clipboard owner.

The clipboard classes support an advanced concept called delayed rendering. Delayed

rendering allows you to wait until another application requests the data before you put

the data on the clipboard. You activate delayed rendering by supplying 0 for the data

when you call the clipboard functions to place data on the clipboard.

For more information on delayed rendering, see Chapter 36, “Supporting Direct

Manipulation” on page 419.

You process clipboard events by creating and attaching an IClipboardHandler object

to your clipboard owner window. In particular, if you use delayed rendering, you

must attach an IClipboardHandler object to your clipboard’s window (the owner

window). The window dispatcher calls this handler when a request is made to the

clipboard for data that has not been placed there yet.

Because the clipboard should only be kept open for a short time, create IClipboard

objects as temporary objects with a short lifetime. This helps ensure that the

clipboard is only open for the time necessary.

The IClipboard destructor always closes the clipboard if it is still open.

Creating the Clipboard

You provide the clipboard owner on the IClipboard constructor and allow the

functions needing an open clipboard to open the clipboard and close it when finished.

The following example uses an IClipboard object to copy text from an MLE into the

clipboard and then to paste the data from the clipboard back into the MLE:

IBase::Boolean CommandHandler::command (ICommandEvent&
event)
{
 switch(event.commandId())
 {
 case MI_COPY :
 {

490 VisualAge C++ Open Class Library User's Guide

Clipboard Support

 IClipboard clipboard(event.window()->handle());
 clipboard.empty();
 clipboard.setText(edit.selectedText());
 return true;
 }

 case MI_PASTE :
 {
 IClipboard clipboard(event.window()->handle());
 if (clipboard.hasText())
 edit.add(clipboard.text());
 return true;
 }
 }
 return false;
}

Note: An application can put only one item of one format into the clipboard. You

can only put multiple items into the clipboard if each has a different format.

Adding multiple items with the same format results in replacing the data.

Use the classes described below to create and manage a clipboard for your

application:

IClipboard

Interface declaration class that creates a clipboard object.

IClipboard::Cursor

Nested class that iterates the available formats of data in the clipboard.

IClipboardHandler

Handler class to process the events that the clipboard sends to its owner. This

includes requests to render clipboard data for formats that are put on the clipboard

with delayed rendering.

 Refer to IClipboard in the Open Class Library Reference for more information

about these classes.

To clear the contents of the clipboard use the IClipboard::ions:empty member

function. This empties the contents of the clipboard and establishes the owner

provided on open as the real clipboard owner. This function opens the clipboard if it

is not already open and closes it after use unless the you have explicitly opened the

clipboard by calling open.

Use the IClipboard::isOpen function to query the clipboard status. It returns true if

the clipboard is open.

 Chapter 40. Adding Clipboard Support 491

Clipboard Support

Moving Data Using the Clipboard

You can use the following IClipboard class member functions to move data to and

from the clipboard:

setText Copies the passed text into shared memory and places it on the clipboard

with the format IClipboard::textFormat.

setBitmap Copies the passed bitmap and places the handle on the clipboard with the

format IClipboard::bitmapFormat.

setData Copies the passed data buffer and places it on the clipboard with the

format specified. Register any private formats first by calling

registerFormat. If “data” is 0, create an IClipboardHandler to process

requests to render the data.

setHandle Places the passed handle on the clipboard.

hasText Returns true if the clipboard has data with the format

IClipboard::textFormat.

hasBitmap Returns true if the clipboard has data with the format

IClipboard::bitmapFormat.

hasData Returns true if the clipboard has data of any format.

text Returns data of the format IClipboard::textFormat as an IString object.

bitmap Copies data of the format IClipboard::bitmapFormat and returns an

IBitmapHandle.

data Returns a void* value. This value can either be a pointer to the data

being rendered or a handle depending on the format of the data.

This function always leaves the clipboard open. The caller must copy the

data, if necessary, before closing the clipboard. Access to the data is lost

after the clipboard is closed.

You can request delayed rendering of data by using the setData member function with

the appropriate format and a 0 data pointer. Delayed rendering requires that you

create an IClipboard handler to process requests to render the data when needed.

IClipboardHandler processes the clipboard event by creating an IEvent object and

routing it to the appropriate virtual function. The virtual function allows you to

supply your own specialized processing of the event. The return values from the

virtual function specify whether the paint event is passed on to another handler object

to be processed.

The dispatchHandlerEvent member function evaluates the event to determine if it is

appropriate for this handler object to process. If it is, this function calls the virtual

function used to process the event.

492 VisualAge C++ Open Class Library User's Guide

Clipboard Support

 Clipboard Example

The following sample is taken from the CLIPBRD.HPP and CLIPBRD.CPP files

found in the sample directory \ibmcpp\samples\ioc\clipbrd. This sample

demonstrates how you can add clipboard support to a control, such as a container,

that does not have built-in clipboard support. It also demonstrates how to use delayed

rendering to put the data on the clipboard only when a user requests it during a paste

operation.

In the .HPP file we do the following:

1. Declare a Department container object with an interface for rendering the object

into a predefined format string and for initializing an existing object from a

format string. This enables us to save the state of a Department object on a copy

or cut operation so that we can create new Department objects during a paste

operation.

2. Declare a ContainerCutPasteHandler object that is responsible for:

¹ Creating and displaying a popup menu containing cut, copy, and paste

choices.

¹ Responding to user commands to cut, copy, and paste the content of

Department objects on the clipboard.

¹ Respond to clipboard handler requests to render the data to the clipboard.

...
 17 #include <icliphdr.hpp>
 18 #include <icmdhdr.hpp>
 19 #include <istring.hpp>
 20 #include <icnr.hpp>
 21
 22
 23 //**
 24 // Class: Department *
 25 // *
 26 // Purpose: Defines the data stored in the container for a Department. *
 27 // *
 28 //**
 29 class Department : public IContainerObject {
 30 public:
 31 Department (const IString& name=IString(),
 32 const IString& address=IString())
 33 : IContainerObject (name),
 34 strAddress(address) {}
 35
 36 // Add functions to query and set the data.
 37 virtual IString
 38 name () const,
 39 address () const;
 40
 41 virtual Department
 42 &setName (const IString& name),

 Chapter 40. Adding Clipboard Support 493

Clipboard Support

 43 &setAddress (const IString& address);
 44
 45 // Define the functions to render an object as both a
 46 // private format and a normal text string, and to
 47 // reconstruct the object from the private format.
 48 IString
 49 asString () const,
 50 text () const;
 51 Department
52 &initializeFromString (const IString& renderedString);
 53
 54 // Define the separator character (a tilde) that separates
 55 // the fields of the object in its string format.
 56 static const IString
 57 separator,
 58 renderedFormat;
 59
 60 // Define a function to return the offset of the Address field.
 61 static unsigned long
 62 offsetOfAddress () { return offsetof(Department, strAddress); }
 63
...

 73 //**
 74 // Class: ContainerCutPasteHandler *
 75 // *
 76 // Purpose: Adds Clipboard support to the container for a Department *
 77 // object. This includes: *
 78 // 1) A container menu handler to show a pop-up menu with *
 79 // cut, copy, and paste choices. *
 80 // 2) A command handler to process the cut, copy, and paste *
 81 // requests. *
 82 // 3) A clipboard handler to process requests from the clipboard *
 83 // to render data not yet placed on the clipboard. *
 84 //**
 85 class ContainerCutPasteHandler : public ICommandHandler,
 86 public ICnrMenuHandler,
 87 public IClipboardHandler {
 88 public:
 89 ContainerCutPasteHandler (IContainerControl& container);
 90
 91 IContainerControl
92 &container () { return cnr; }
 93
 94 protected:
 95 // Define the command handler callback.
 96 virtual Boolean
 97 command (ICommandEvent& event);
 98
 99 // Define the pop-up menu callback.
100 Boolean
101 makePopUpMenu(IMenuEvent& cnEvt);
102
103 // Define the callbacks to render data on the
104 // clipboard.
105 virtual Boolean
106 clipboardEmptied (IEvent& event),
107 renderFormat (IEvent& event,
108 const IString& format),

494 VisualAge C++ Open Class Library User's Guide

Clipboard Support

109 renderAllFormats (IEvent& event);
110
111 // Define a string object to use as a separator between fields
112 // for the private format.
113 static const IString
114 separator;
...

To support copying our Department object to the clipboard, we have devised a design

to render a Department object as a data string and to create and initialize a new

Developer object from data stored in such a data string. This data string contains

fields separated by a character that we know does not exist in the data of our

Department object. We define this separator character on line 57 and initialize it to a

tilde character later in CLIPBRD.CPP on line 37.

The ContainerCutPasteHandler utilizes a very similar design to store a series of

container objects on the clipboard. The ContainerCutPasteHandler must use a

different separator to distinguish the parts of its data. In CLIPBRD.CPP on line 38,

we define the caret (‸) character as the separator between objects on the clipboard.

When our handler receives a request to render the data to the clipboard in our private

format, it creates a string with the following layout:

The number of objects in the string is stored as a text number in the first separator

delimited field of the string. Also in the string, we put Department object1 through

objectn in their own separator delimited format with the following layout:

For example, if the name field of a Department object is "Accounting" and the

address field is "Building 4000," then the format string using the tilde character (˜) as

the separator is:

 "Accounting˜Building 4000"

If in addition to the Accounting department object above, we stored a "Sales"

Department object with an address of "Building 5000," they would collectively appear

on the clipboard as the string:

"2‸Accounting˜Building 4000‸Sales˜Building 5000"

Rather than copying our objects to the clipboard during the cut or copy operation, we

have added support for delayed rendering. The design entails maintaining a collection

of the objects cut or copied to the clipboard. When a user requests the data on the

clipboard, our ClipboardCutPasteHandler's renderFormat routine is called to put the

countn separator (‸) object1 separator (‸) objectn

Department name separator (˜) Department address

 Chapter 40. Adding Clipboard Support 495

Clipboard Support

data on the clipboard. It iterates the objects in the collection and writes their data to

the clipboard in the string format previously described.

A user that copies data to the clipboard and later pastes it into an application usually

expects that the data will be the same as it was when it was first copied. To ensure

this, any time the data of one of the objects in our collection changes or the object is

removed from the container, we must force the delayed rendering mechanism to put

the objects on the clipboard first. This support does not exist in our current clipboard

sample.

This demonstrates that while delayed rendering has the potential for improving the

performance of your application, it also increases its complexity. We therefore

recommend that you first determine that you need to improve performance before

deciding to add delayed rendering support to your application.

In the .CPP file we do the following:

1. Define our static Separator objects on line 36 and line 37.

2. Define the private format of our Department object on line 40.

3. Construct the ContainerCutPasteHandler on line 95, enable the event handlers on

lines 100-102, and register the private clipboard format on line 105.

4. Process the clipboard operations cut, copy, and paste from line 115 to line 237.

5. Create and display the popup menu from line 245 to line 265.

6. Iterate our collection of clipboard objects and put the data onto the clipboard

during the processing of the renderFormat function on line 306.

7. Initialize Department objects from our string format in the function

initializeFromString on line 415 and build the string format for an object in the

function asString on line 389.
...
 36 const IString Department::separator("˜");
 37 const IString ContainerCutPasteHandler::separator("‸");
 38
 39 // Define the private format of our Department object.
 40 const IString Department::renderedFormat("Department_rendered");
 89 /*--
 90 | ContainerCutPasteHandler::ContainerCutPasteHandler |
 91 | |
 92 | Construct the handlers, register our private clipboard format, and |
 93 | attach the handlers to the container. |
 94 --*/
 95 ContainerCutPasteHandler :: ContainerCutPasteHandler (IContainerControl& container)
 96 : cnr(container),
 97 objectList(new ICnrObjectSet())
 98 {
 99 // Enable the command, menu, and clipboard handlers.
100 ICommandHandler::handleEventsFor(&container);

496 VisualAge C++ Open Class Library User's Guide

Clipboard Support

101 ICnrMenuHandler::handleEventsFor(&container);
102 IClipboardHandler::handleEventsFor(&container);
103
104 // Register the Department object's private format.
105 IClipboard::registerFormat(Department::renderedFormat);
106 }
107
108
109 /*--
110 | ContainerCutPasteHandler::command |
111 | |
112 | Handle the command events associated with the clipboard (Cut, Copy, |
113 | and Paste). |
114 --*/
115 IBase::Boolean ContainerCutPasteHandler::command (ICommandEvent& event)
116 {
117 switch(event.commandId())
118 {
119 case MI_CUT :
120 case MI_COPY :
121 {
122 // Empty the clipboard to establish ownership
123 IClipboard clipboard(event.window()->handle());
124 clipboard.empty();
125
126 // Find the cursored object in the container.
127 Department* cursoredObject = (Department*)(container().cursoredObject());
128
129 // Utilize delayed rendering to put the data of the private
130 // format on the clipboard. Maintain an "objectList" collection
131 // to keep track of the objects cut or copied onto the clipboard.
132 // Then, use the collection to render objects in the private
133 // format. Store text data for the objects so that applications
134 // that don't support the private format can paste the data into a
135 // text editor.
136
137 // Clear the collection used to keep track of clipboard objects.
138 objectList->removeAll();
139
140 // If the cursored object is selected, loop through all other
141 // selected objects and store the objects in our set.
142 if (container().isSelected(cursoredObject))
143 {
144 unsigned long count = 0;
145 IString objectsAsText("");
146 IContainerControl::ObjectCursor cursor(container(), IContainerObject::selected);
147 for (cursor.setToFirst(); cursor.isValid(); cursor.setToNext())
148 {
149 count++;
150 Department* selectedObject = (Department*)(container().objectAt(cursor));
151 objectList->add(selectedObject);
152 objectsAsText = objectsAsText + selectedObject->text();
153 }
154
155 // Put the data on the clipboard. We put our private
156 // format first since it has the most information.
157 // We use 0 for the data pointer of our private format
158 // because we want to delay the rendering until

 Chapter 40. Adding Clipboard Support 497

Clipboard Support

159 // the paste operation.
160
161 clipboard.setData(Department::renderedFormat, 0, 0);
162 clipboard.setText(objectsAsText);
163
164 // If this is a Cut, put the data on the clipboard
165 // instead of using delayed rendering because we delete
166 // the object. Therefore we request the data
167 // to force the delayed rendering by our handler.
168 if (event.commandId() == MI_CUT)
169 {
170 char* data = (char*)clipboard.data(Department::renderedFormat);
171 container().deleteSelectedObjects();
172 }
173 }
174 else
175 {
176 // If the object is not selected, repeat the above procedure
177 // for the cursored object.
178 objectList->add(cursoredObject);
179
180 // Put the data on the clipboard (requesting
181 // delayed rendering).
182 clipboard.setData(Department::renderedFormat, 0,0);
183
184 // If this is a Cut request, force the ClipboardCutPasteHandler
185 // to render the data by requesting the data. Then, delete the
186 // cursored object.
187 if (event.commandId() == MI_CUT) {
188 char* data = (char*)clipboard.data(Department::renderedFormat);
189 container().removeObject(cursoredObject);
190 delete cursoredObject;
191 }
192 }
193 return true;
194 }
195 case MI_PASTE :
196 {
197 IClipboard clipboard(event.window()->handle());
198
199 // If the clipboard has data of the private format,
200 // get the data and build objects from it.
201 // Note: To see the text format of the data, paste
202 // from the clipboard using any text editor that
203 // supports the clipboard.
204 if (clipboard.hasData(Department::renderedFormat))
205 {
206 IString strCount, strObject, objectsAsString;
207
208 // Query the data on the clipboard.
209 char* data = (char*)clipboard.data(Department::renderedFormat);
210
211 // Parse the string into our data fields.
212 data >> strCount >> separator >> objectsAsString;
213
214 // Extract the number of objects stored in the string.
215 unsigned long count = strCount.asUnsigned();
216

498 VisualAge C++ Open Class Library User's Guide

Clipboard Support

217 // Turn refresh off to eliminate multiple painting.
218 container().setRefreshOff();
219
220 // Construct new objects from the data.
221 for(int i=0; i<count; i++)
222 {
223 objectsAsString >> strObject >> separator >> objectsAsString;
224 Department* department = new Department();
225 department->initializeFromString(strObject);
226 container().addObject(department);
227 }
228
229 // Enable refresh and refresh the container.
230 container().setRefreshOn();
231 container().refresh();
232 }
233 return true;
234 }
235 }
236 return false;
237 }
238
239
240 /*--
241 | ContainerCutPasteHandler::makePopUpMenu |
242 | |
243 | Create a pop-up menu with the clipboard actions. |
244 --*/
245 IBase::Boolean ContainerCutPasteHandler::makePopUpMenu(IMenuEvent& event)
246 {
247 IPopUpMenu* popUpMenu = new IPopUpMenu(CNR_POPUPMENU,
248 event.window());
249
250 // Enable the allowable menu items in the pop-up menu.
251 if (popupMenuObject()) {
252 ((IContainerControl*)event.window())->setCursor(popupMenuObject());
253 popUpMenu->disableItem(MI_PASTE);
254 }
255 else
256 {
257 popUpMenu->disableItem(MI_CUT);
258 popUpMenu->disableItem(MI_COPY);
259 }
260
261 // Show the menu.
262 popUpMenu->setAutoDeleteObject();
263 popUpMenu->show(event.mousePosition());
264 return true;
265 }
266
267 /*--
268 | ContainerCutPasteHandler::clipboardEmptied |
269 | |
270 | This function is responsible for cleaning up data when the clipboard is |
271 | emptied and has nothing to do for now. |
272 --*/
273 IBase::Boolean ContainerCutPasteHandler::clipboardEmptied (IEvent&)
274 {

 Chapter 40. Adding Clipboard Support 499

Clipboard Support

275 return true;
276 }
277
278 /*--
279 | ContainerCutPasteHandler::renderFormat |
280 | |
281 | Put our private format data on the clipboard. |
282 --*/
283 IBase::Boolean ContainerCutPasteHandler::renderFormat(IEvent& event,
284 const IString& format)
285 {
286 // Use the handler's collection to find the Department objects
287 // whose data we need to put on the clipboard.
288 // Note: If data gets copied to the clipboard for a Department
289 // object and the object is deleted before the paste
290 // operation, we will not be able to supply the object's
291 // data. If this is a problem, do not use delayed
292 // rendering or post a message to the container telling
293 // it to renderAllFormats whenever objects are deleted in
294 // the container.
295 IClipboard clipboard(event.window()->handle());
296 if (clipboard.hasData(Department::renderedFormat))
297 {
298 // Cursor the objects and build the string.
299 ICnrObjectSet::Cursor cursor(*objectList);
300
301 IString objectsAsString("");
302 unsigned long count = 0;
303
304 // Loop through our collection and query the object for
305 // its data.
306 for(cursor.setToFirst(); cursor.isValid(); cursor.setToNext())
307 {
308 count++;
309 Department* department = (Department*)objectList->elementAt(cursor);
310
311 // Document that no support is present for rendering objects
312 // after they are removed from the container.
313 IASSERTSTATE(container().containsObject(department));
314
315 objectsAsString = objectsAsString + separator
316 + department->asString();
317 }
318 // Build the final string and put the data on the clipboard.
319 objectsAsString = IString(count) + objectsAsString;
320 clipboard.setData(Department::renderedFormat,
321 (const char*)objectsAsString,
322 objectsAsString.size()+1);
323 }
324 return true;
325
326 }
327
328
329 /*--
330 | ContainerCutPasteHandler::renderAllFormats |
331 | |
332 | Pass this on to our function to render a single format since we only use |

500 VisualAge C++ Open Class Library User's Guide

Clipboard Support

333 | one format with delayed rendering. |
334 --*/
335 IBase::Boolean ContainerCutPasteHandler::renderAllFormats(IEvent& event)
336 {
337 return renderFormat(event, Department::renderedFormat);
338 }
...
382
383 /*--
384 | Department::asString |
385 | |
386 | Render the Department object as a String that we can later use to |
387 | reconstruct a Department object. |
388 --*/
389 IString Department::asString () const
390 {
391 IString strObject = name() + separator + address();
392 return strObject;
393 }
394
395 /*--
396 | Department::text |
397 | |
398 | Render the Department object as a text string with Name formatted to |
399 | 30 characters, and address formatted to 50 characters with both |
400 | followed by a new line character. Use this format for storing a plain |
401 | text format of our object on the clipboard. |
402 --*/
403 IString Department::text () const
404 {
405 IString strObject(name().subString(1,30) + address().subString(1,50) + "\n");
406 return strObject;
407 }
408
409
410 /*--
411 | Department::initializeFromString |
412 | |
413 | Set the fields of the object by parsing the passed string. |
414 --*/
415 Department& Department::initializeFromString (const IString& renderedString)
416 {
417 IString strName, strAddress;
418 renderedString >> strName >> separator >> strAddress;
419 setName (strName);
420 setAddress(strAddress);
421
422 return *this;
423 }

 Chapter 40. Adding Clipboard Support 501

Clipboard Support

502 VisualAge C++ Open Class Library User's Guide

Tool Bars

41 Adding Tool Bars

A tool bar is a window whose buttons represent tools or menu items and actions.

The tool bar can be located along the top, bottom, or sides of a frame window or can

“float” and be positioned anywhere on your desktop. The floating tool bar can then

be moved independently or you can “pin” the tool bar to the frame window. You can

also have multiple tool bars with a variety of different tool bar buttons using text, bit

maps, or both.

A new button class that inherits from ICustomButton and provides drawing behaviour

for the buttons in a tool bar. These buttons accept text and a bitmap and can draw

bitmaps transparently without the need for a mask bitmap. Bitmaps used in these

buttons must be created with one color reserved as the transparent color. By default

this color is pink (255, 0, 255) but it can be changed on a per button basis.

The classes that comprise the tool bar are also shipped with common text and bitmaps

for frequently used functions found on a tool bar. This ensures a common look

among applications and products. In addition, tool bar buttons support a standard

style to ensure a consistant look across applications.

The tool bar is essentially a frame extension with buttons that represent common

actions. You can add both fly over help and drag and drop support on the tool bar.

You can use the direct manipulation support to rearrange the tool bar buttons within

an application or add new buttons from a menu.

See “Adding Fly Over Help” on page 588 for more information on fly over help.

See “Using Defaults for Tool Bars” on page 423 for more information on using

direct manipulation with tool bars.

Figure 63 shows an example of a tool bar.

 Copyright IBM Corp. 1993, 1995 503

Tool Bars

Figure 63. Tool Bar Example

This figure is created using the sample code found in the ibmcpp\samples\ioc\tbar1

directory.

Creating a Tool Bar

The IToolBar class creates and manages a tool bar area for a frame window. You

can use the following classes to create tool bars:

IToolBar

Use objects of this class to create a tool bar, position that tool bar as a

frame extension or as a floating tool bar, and add and remove tool bar

buttons.

When you construct controls for a tool bar, you must explicitly add them

to the tool bar using one of the following member functions:

 ¹ IToolBar::addAsFirst

 ¹ IToolBar::addAsLast

 ¹ IToolBar::addAsPrevious

 ¹ IToolBar::addAsNext

IToolBarButton

Creates and manages the tool bar button window. IToolBarButton

provides support for displaying a bitmap, text, or bitmap and text on a

504 VisualAge C++ Open Class Library User's Guide

Tool Bars

tool bar button. If you specify a particular style for the view of your tool

bar button, this style is changed when the button is added to the tool bar

if it differs from the tool bar style itself.

The following classes are used by IToolBar and IToolBarButton to implement a tool

bar:

IToolBarContainer

A set canvas that provides layout control for multiple tool bars within a

frame extension. Objects of this class are created automatically by

IToolBar objects to house one or more tool bars.

IToolBarTitle

Creates title bars that are smaller in height than the system title bar. This

is created automatically whenever you create a floating tool bar using the

IToolBar class.

IToolBarFrameWindow

Class representing a frame window to contain floating tool bars.

IToolBarFrameWindows are created when you construct a floating tool

bar.

IToolBarFrameWindows are different from other frame windows. The

title bar height of IToolBarFrameWindows are smaller than other frame

windows, with two buttons that appear where the frame window’s

minimize and maximize buttons normally are.

The left button is a toggle button that allows you to pin or attach a tool

bar frame window to its owning frame window. This keeps the tool bar

in the same location relative to its owner frame window when the owner

is moved.

The right button allows you to expand and collapse the tool bar contained

in the tool bar frame window. You can then reduce the size of the tool

bar when it is not in use. Select the button again to expand the tool bar

and show all the tool bar controls.

ICustomButton

Provide the base class for IToolBarButtons and create and manage the

custom button window. Custom buttons allow the application to

customize the button appearance by providing an ICustomButtonHandler

to draw the button.

ICustomButtonDrawEvent

Provides information about a custom button event for

ICustomButtonHandler event handling functions.

 Chapter 41. Adding Tool Bars 505

Tool Bars

ICustomButtonDrawHandler

Processess ICustomButton drawing events. Attach objects of this class

only to ICustomButton objects.

You can construct objects from the IToolBar class in the following ways:

1. The following IToolBar constructor creates a tool bar as the last tool bar in the

tool bar area defined by the frameLocation. If groupWithPreceding is true, the

tool bar is placed on the same row or column as the previous tool bar, if one

exists. If an IToolBarContainer is needed for the location indicated, it is created

when you use this contructor.

IToolBar (unsigned long identifier,
 IFrameWindow* owner,

Location location = aboveClient,
Boolean groupWithPreceding = false,

 const Style& style=defaultStyle());

2. Alternatively, you can construct a tool bar relative to an existing tool bar created

with the first constructor (or with this constructor). This constructor adds the

tool bar to the IToolBarContainer created when the precedingToolBar was

created.

IToolBar (unsigned long identifier,
 IToolBar* precedingToolBar,

Boolean groupWithPreceding = false,
 const Style& style=defaultStyle());

Customizing Your Tool Bar

When you create an object from the IToolBarButton class, you can use a standard

format to ensure that all your buttons have the same common appearance. Standard

formatting controls the amount of area occupied by the bitmap (when visible) and the

amount of area occupied by text (when visible). Standard formatting affects all of the

tool bar buttons that have a style of IToolBarButton::standardFormat. The User

Interface Class Library takes advantage of the standard formatting of tool bar buttons

when painting the button. This therefore improves the performance.

The nested classes IToolBar::Style and IToolBarButton::Style provide a set of valid

styles you can use upon construction for objects of the class.

For a complete listing of the styles and nested styles you can use with these classes,

refer to the IToolBar classes in the Open Class Library Reference.

Tool Bar Example

The following example shows a customized tool bar that implements fly over help,

direct manipulation support, and floating tool bars. This sample is found in the

ibmcpp\samples\ioc\tbar2 directory.

506 VisualAge C++ Open Class Library User's Guide

Tool Bars

First, we do the following in the .HPP:

1. Define the main window for our MLE on lines 92 through 144.

2. Define our tool bars on lines 110 through 113.

3. Define the buttons we want to place on our tool bar on lines 126 through 134.

4. We also define our tool bar settings notebook on lines 149 through 158.
...
 85 //---
 86 // Editor
 87 //
 88 // This class is the main window of the sample problem. It is
 89 // responsible for creating and managing all of the windows that
 90 // are used.
 91 //---
 92 class Editor : public IFrameWindow
 93 {
 94 public:
 95 Editor();
 96
 97 EditorMLE
 98 &editorWindow () { return editWindow; }
 99
100 IFont
101 &editorFont () { return editFont; }
102
103 Editor
104 &updateFontToolBar ();
105
106 IToolBar
107 &toolBar (unsigned long id);
108
109 private:
110 IToolBar
111 fileToolBar,
112 editToolBar,
113 fontToolBar;
114 IFlyText
115 flyText;
116 IStaticText
117 infoText;
118 IFlyOverHelpHandler
119 flyHelpHandler;
120 EditorMLE
121 editWindow;
122 EditorCommandHandler
123 commandHandler;
124 FontSelectHandler
125 fontSelectHandler;
126 IToolBarButton
127 openButton,
128 saveButton,
129 cutButton,
130 copyButton,
131 pasteButton,
132 boldButton,

 Chapter 41. Adding Tool Bars 507

Tool Bars

133 italicButton,
134 underscoreButton;
135 IComboBox
136 fontCombo;
137 IMenuBar
138 menu;
139 IFont
140 editFont;
141 IWindow
142 *fileSubmenu,
143 *editSubmenu;
144 };
145
146 //---
147 // ToolBarNotebook
148 //---
149 class ToolBarNotebook : public IFrameWindow
150 {
151 public:
152 ToolBarNotebook (Editor& editor);
153 private:
154 Editor
155 &editorFrame;
156 INotebook
157 notebook;
158 };
...

In the .CPP file we then do the following:

1. Construct and show the editor (MLE) main window on lines 37 through 40.

2. Construct tool bars within the main window constructor on lines 56 through 58.

3. Construct the fly over help short and long text and help handler on lines 59

through 61.

4. Add our tool bar buttons to the tool bars on lines 85 through 98.

5. Add the tool bar titles for floating tool bars on lines 118 through 120.

6. Add handlers for events, including fly over help on lines 132 through 145.

7. Enable direct manipulation from a menu choice on lines 148 through 151.
...
 29 //---
 30 // Main routine
 31 //
 32 // This routine creates and shows the editor window
 33 //---
 34 int main ()
 35 {
 36
 37 Editor editor;
 38 editor.show();
 39 editor.setFocus();
 40 IApplication::current().run();

508 VisualAge C++ Open Class Library User's Guide

Tool Bars

 41 return 0;
 42 }
 43
 44 //---
 45 // Editor::Editor
 46 //
 47 // This constructor initializes all of the windows (including the
 48 // tool bar and tool bar buttons).
 49 //
 50 // Note: The tool bar buttons are created with standard identifiers
 51 // that are provided by the class library (defined in icconst.h) for
 52 // standard operations.
 53 //---
 54 Editor::Editor ()
 55 :IFrameWindow("Tool Bar Sample 2"),
 56 fileToolBar(ID_FILE, this),
 57 editToolBar(ID_EDIT, &fileToolBar, true),
 58 fontToolBar(ID_FONT, &editToolBar, true),
 59 flyText(ID_FLYTEXT, this),
 60 infoText(ID_INFOTEXT, this, this),
 61 flyHelpHandler(&flyText, &infoText, 0),
 62 editWindow(ID_EDITOR, *this),
 63 commandHandler(*this),
 64 fontSelectHandler(*this),
 65 openButton (IC_ID_OPEN, &fileToolBar, &fileToolBar),
 66 saveButton (IC_ID_SAVE, &fileToolBar, &fileToolBar),
 67 cutButton (IC_ID_CUT, &editToolBar, &editToolBar),
 68 copyButton (IC_ID_COPY, &editToolBar, &editToolBar),
 69 pasteButton (IC_ID_PASTE, &editToolBar, &editToolBar),
 70 boldButton (IC_ID_BOLD, &fontToolBar, &fontToolBar,
 71 IRectangle(), IToolBarButton::defaultStyle() |
 72 IToolBarButton::noDragDelete),
 73 italicButton (IC_ID_ITALIC, &fontToolBar, &fontToolBar,
 74 IRectangle(), IToolBarButton::defaultStyle() |
 75 IToolBarButton::noDragDelete),
 76 underscoreButton(IC_ID_UNDERSCORE, &fontToolBar, &fontToolBar,
 77 IRectangle(), IToolBarButton::defaultStyle() |
 78 IToolBarButton::noDragDelete),
 79 fontCombo(ID_FONTCOMBO, &fontToolBar, &fontToolBar, IRectangle(),
 80 IComboBox::classDefaultStyle &¡IComboBox::simpleType |
 81 IComboBox::dropDownListType),
 82 menu(ID_MAIN_WINDOW,this),
 83 editFont()
 84 {
 85 // Add buttons to the file toolbar
 86 fileToolBar.addAsLast(&openButton,true);
 87 fileToolBar.addAsLast(&saveButton);
 88
 89 // Add buttons to the edit toolbar
 90 editToolBar.addAsLast(&cutButton,true);
 91 editToolBar.addAsLast(©Button);
 92 editToolBar.addAsLast(&pasteButton);
 93
 94 // Add buttons to the font toolbar
 95 fontToolBar.addAsLast(&boldButton,true);
 96 fontToolBar.addAsLast(&italicButton);
 97 fontToolBar.addAsLast(&underscoreButton);
 98 fontToolBar.addAsLast(&fontCombo,true);

 Chapter 41. Adding Tool Bars 509

Tool Bars

 99
...
116
117 // Set up titles for toolbars when floating
118 fileToolBar.setFloatingTitle(ID_FILE);
119 editToolBar.setFloatingTitle(ID_EDIT);
120 fontToolBar.setFloatingTitle(ID_FONT);
121
122 // Setup the editor
123 setClient(&editWindow);
124 editWindow.setFont(editFont);
125 editWindow.importFromFile("toolbar2.not");
126 editWindow.setTop(1);
127
128 // Add the Info frame extension
129 addExtension(&infoText, IFrameWindow::belowClient);
130
131 // Set up and add the help handler
132 flyHelpHandler.setLongStringTableOffset(OFFSET_INFOTEXT);
133 flyHelpHandler.setDefaultText(" ");
134 flyHelpHandler.handleEventsFor(&fileToolBar);
135 flyHelpHandler.handleEventsFor(&editToolBar);
136 flyHelpHandler.handleEventsFor(&fontToolBar);
137
138 // Attach the Command Handler to frame and toolbar
139 commandHandler.handleEventsFor(this);
140 commandHandler.handleEventsFor(&fileToolBar);
141 commandHandler.handleEventsFor(&editToolBar);
142 commandHandler.handleEventsFor(&fontToolBar);
143
144 // Add the handler to change the font
145 fontSelectHandler.handleEventsFor(&fontCombo);
146
147 // Set up drag from menu
148 fileSubmenu = new IWindow(menu.menuItem(ID_FILE).submenuHandle());
149 IDMHandler::enableDragFrom((ISubmenu*) fileSubmenu);
150 editSubmenu = new IWindow(menu.menuItem(ID_EDIT).submenuHandle());
151 IDMHandler::enableDragFrom((ISubmenu*) editSubmenu);
152
...

The resulting MLE and tool bars are displayed in Figure 64

510 VisualAge C++ Open Class Library User's Guide

Tool Bars

Figure 64. Tool Bar Sample

You can use the settings notebook to chose where the tool bar will appear and what

will appear on each tool bar button. In the preceding figure, there are three tool bars

with different tool bar buttons. The floating tool bar, containing the font information,

has been pinned to the owner window. The edit tool bar has been placed on the

bottom of the window and contains both text and bitmaps on the buttons.

The settings notebook for the tool bars is displayed in Figure 65 on page 512

 Chapter 41. Adding Tool Bars 511

Tool Bars

Figure 65. Tool Bar Sample Settings Notebook

Several common bitmaps are provided for use when constructing IToolBarButton

objects. The resource IDs for these bitmaps are defined in the ICCONST.H file.

Figure 66 shows the commonly used bitmaps shipped with the User Interface Class

Library.

Figure 66. Tool Bar Bitmaps

512 VisualAge C++ Open Class Library User's Guide

Graphics

42 Using Graphics in Your Application

The User Interface Class Library provides two-dimensional graphics support to fulfill

your graphic element requirements for your current applications. In the future, we

will provide Taligent graphics support as your portable graphics solution. The classes

presented here will not be enhanced in future releases.

The graphics classes cover primitive graphical output mechanisms, such as lines,

boxes, and curves; device control for controlling graphical output devices, such as the

screen, printers, and plotters; attribute control such as colors, lines styles, fill patterns;

font control; and use of bitmaps.

You can use these classes to customize the windows in your applications.

The graphics classes include the IGraphicContext class, IGraphic, and the graphic

primitive classes. IGraphicContext wrappers a presentation space and provides much

of the function in the OS/2 Presentation Manager Graphics Programming Interface

(GPI) application program interfaces (APIs). A presentation space is a data structure,

the equivalent of a blank piece of paper on which graphic images are created before

being sent to an output device. An output device can be, for example, a printer or

plotter, memory bitmap, or a display screen.

A device context is also a data structure. Its purpose is to translate graphics

commands made to its associated presentation space into commands that the physical

device can convert to displayed information.

Graphics primitives are building blocks provided by the programming interface from

which you can construct two-dimensional pictures. The classes provided for

constructing and drawing the graphic primitives include line, arc, pie, chord, text,

polyline, polygon, ellipse, box, and bitmap.

Each graphic primitive has a set of properties that further defines its appearance. A

line, for example, can be drawn in different colors and different widths; it can be

dotted, solid, or even invisible. These properties are called primitive attributes.

Primitive attributes are set for the type of primitive rather than for a single instance of

the primitive.

All primitive attributes have default settings that apply when a presentation space is

first created and continue to apply until you change them. When an attribute value is

set, it remains in effect until you change it.

 Copyright IBM Corp. 1993, 1995 513

Graphics

Each primitive can optionally contain an IGraphicBundle object. The IGraphicBundle

class represents a collection of drawing attributes. Some of the attributes contained

within a bundle may not apply to a specific primitive and will be ignored. For

example, a line does not have fill color and that attribute, even if it is set, are

ignored.

Each primitive can also contain an ITransformMatrix object. This object represents a

transformation matrix that is concatenated to the existing model space transform

before drawing the primitive.

The User Interface Class Library provides the following graphics classes for use in

your applications:

 ¹ IGArc

 ¹ IGBitmap

 ¹ IGChord

 ¹ IGEllipse

 ¹ IGLine

 ¹ IGList

 ¹ IGList::Cursor

 ¹ IGPie

 ¹ IGPolygon

 ¹ IGPolyline

 ¹ IGRectangle

 ¹ IGRegion

 ¹ IGString

 ¹ IGraphic

 ¹ IGraphicBundle

 ¹ IGraphicContext

 ¹ IG3PointArc

 ¹ IPointArray

 ¹ ITransformMatrix

 See “2D Graphic Classes” on page 662 for the class hierarchy for the User

Interface Class Library graphic classes.

Adding Graphic Primitives to Your Applications

IGraphic is an abstract base class that provides common behavior for all of the

two-dimensional graphic classes. All of the graphic primitives derive from this class

and this common behavior includes bounding rectangle information, accessing bundle

attributes, transforming a graphic object, detecting if a graphic object has been

selected, and identifying a graphic object. You cannot instantiate an object of this

class directly.

514 VisualAge C++ Open Class Library User's Guide

Graphics

An IGraphic object can optionally contain an IGraphicBundle and an

ITransformMatrix. You can set a graphic bundle onto a graphic object so that the

attributes set in the bundle are used when you draw a graphic object.

If you use any of the world transform functions or set a transform matrix on a

graphic object, then the transform matrix contained in the graphic object is used when

you draw a graphic object.

A transformation is an operation performed on a graphic object that changes the

object in one of the following ways:

 ¹ Translation

 ¹ Rotation

 ¹ Scaling

 ¹ Shearing

Transformations enable an application to control the location, orientation, size, and

shape of graphic objects on an output device.

The transformation of graphic objects can be conceptually divided into a series of

distinct transformations applied from 1 logical stopping point to another. Coordinate

spaces are used as a method of conceptualizing these logical stopping points. The

coordinate spaces are concepts used to explain and manipulate the transformation

process.

The world coordinate space is where most drawing coordinates are specified. The

world coordinate space is a grid that provides a reference scale for what is being

drawn on the presentation space. The components of a picture defined in world

coordinate space are often defined to a scale convenient to only that component.

Applications also can define each component, or subpicture, starting at the origin

(0,0). This enables applications to define the scale of a subpicture and the location of

the subpicture separately.

After subpictures are defined in world coordinate space, they undergo a

transformation before they appear on an output device. If an application has not

specifically applied a transformation on a subpicture, by default the identity transform

is applied. This makes no change to the subpicture.

 See “Defining a Transformation Matrix” on page 528 and the Open Class Library

Reference for more information.

Setting Attributes for Drawing Primitives

You can set drawing attributes for graphic objects (such as IGLine, IGArc, and

IGPolyline) using the IGraphicBundle class. You can use this class to set an attribute

for a graphic object that does not support the attribute.

 Chapter 42. Using Graphics in Your Application 515

Graphics

The graphic bundle class allows you to selectively change drawing attributes from the

attributes currently set for a graphic context. If a graphic object does not contain a

graphic bundle, the current graphic context drawing attributes are used when you

draw a graphic object. If you call a set attribute function of a graphic bundle object

and set the graphic bundle onto a graphic object, this graphic bundle’s attributes

override the drawing attributes for the graphic context when you draw that object.

For drawing attributes that you have not changed using a set attribute function, the

current drawing attributes set in the graphic context are used when you draw a

graphic object.

Each drawing attribute has four functions associated with it:

set Sets a drawing attribute on the graphic bundle

query Obtains a drawing attribute set on a graphic bundle.

has Determines if a drawing attribute is set on a graphic object.

reset Uses the current graphic context drawing attribute instead of the drawing

attribute set in the graphic bundle.

You can use the following IGraphicBundle member functions to change the drawing

attributes of a graphic object:

background mix mode

determines how an existing drawing is combined with the background

object of a graphic object.

color attributes

Controls the use of pen, fill, and background colors for a graphic bundle.

draw operation

Controls the methods used to draw any of the closed graphic objects.

mix mode

Controls the use of pen and fill colors with existing drawings.

pen and fill Patterns

Controls the pattern used when you draw lines that have a pen width

greater than one or when you fill a closed figure.

pen type

Defines the way lines, arc, polylines, and the frame on closed figures are

drawn.

pen width

Controls the width of the pen when you draw lines or the width of the

frame when you draw a closed figure. A pen width greater than one is

always a solid pen type.

516 VisualAge C++ Open Class Library User's Guide

Graphics

pen ending style

Controls the shape of the unattached end of a line. The pen width must

be greater than one for the style to have an affect.

pen joining style

Controls the shape formed by two intersecting lines. The pen width must

be greater than one for the style to have an affect.

Figure 67 shows the different pen types.

Figure 67. Pen Types

Figure 68 shows the different pen joining styles.

 Chapter 42. Using Graphics in Your Application 517

Graphics

Figure 68. Pen Joining Styles

Figure 69 shows the different pen and fill patterns.

Figure 69. Mix Modes

Refer to the Open Class Library Reference for the complete listings of supported

styles.

Drawing Lines and Arcs

Simple drawing applications use line and arc primitives as drawing tools or building

blocks for more complex pictures, such as geometric objects, pie charts, and bar

graphs. Both lines and arcs are governed by the following attributes:

 ¹ pen color

518 VisualAge C++ Open Class Library User's Guide

Graphics

 ¹ mix mode

 ¹ pen width

 ¹ pen type

¹ pen ending style

Use the IGLine class to create two-dimensional line segments specifying the starting

(IGLine::setStartingPoint) and ending points (IGLine::setEndingPoint) of the line

segment.

The IGPolyline class allows you to create a series of line segments drawn starting

from the first point and then connecting all remaining points. You use

IGPolyline::setPoints to set the points used to define the polyline.

Using the IGArc class, you can create two-dimensional arcs by specifying a bounding

rectangle, a start angle, and a sweep angle. The rectangle you specify in the

constructor is the enclosing rectangle of an ellipse. The start angle and sweep angles

specify an arc section of this ellipse.

IG3PointArc objects are two-dimensional arcs created by specifying three points that

the arc passes through: the starting point, intermediate point, and ending point of the

arc. The three points specify the arc of a circle unless you apply a transform to the

object.

Displaying Areas, Polygons, and Regions

You can use the following classes to create two-dimensional closed figures:

IGPolygon

Creates a two-dimensional closed figure from a series of line segments.

The series of line segments is drawn starting from the first point and

connecting all remaining points. If the first and last points are not the

same, this class draws a line from the last point to the first point to close

the figure.

IGRectangle

Draws two-dimensional rectangles. An IGRectangle can be filled,

framed, or filled and framed.

You can optionally round the corners of the rectangle by specifying the

full length of the horizontal and vertical axes of an ellipse. The corners

of the rectangle are rounded by a quarter of the ellipse.

IGEllipse

Draws two-dimensional ellipses. An IGEllipse can be filled, framed, or

filled and framed.

 Chapter 42. Using Graphics in Your Application 519

Graphics

IGPie

Creates a two-dimensional pie slice of an ellipse. The IGPie can be

filled, framed or filled and framed. The rectangle you specify in the

constructor is the enclosing rectangle of an ellipse. The start angle and

sweep angles specify a pie section of this ellipse.

IGChord

Creates a two-dimensional closed figure created from the chord of an

ellipse. The IGChord can be filled, framed, or filled and framed. The

rectangle you specify in the constructor is the enclosing rectangle of an

ellipse. The start angle and sweep angles specify a chord section of this

ellipse.

IGRegion

Creates graphic objects that can be composed of one or more closed

figures. You can use an IGRegion to construct a shape from one or more

closed figures. You can draw the region on a graphic context or use it as

a clip region when drawing other graphic objects on a graphic context.

The coordinates you use to define a region are specified in device space.

For this reason the world transform functions that are declared in

IGraphic have no effect and are overridden as private functions in

IGRegion.

For a listing of the graphic bundle attributes that affect these objects and how to

construct objects of these classes, see the Open Class Library Reference

Using Character Strings

The IGString class is a graphic object that allows you to draw text. When you

construct objects of this class you must provide a location point of where the text

drawing starts. The text alignment and font direction determine where the text is

positioned relative to that location. You can also associate a font with it that will be

used when you draw the IGString object.

Objects of the IFont class manage the use of fonts. Use these objects to select a font

through the IFont functions. You can also use the font dialog to get font information

and set the font when drawing text.

The IFont class attempts to match the requested font but if it cannot find an exact

match, IFont uses the nearest match. An IFont object represents a particular font that

is available on the system. It does not represent a font actually being used by a

control or the currently selected font for a presentation space.

 Refer to the Open Class Library Reference for more information about the IFont

classes

520 VisualAge C++ Open Class Library User's Guide

Graphics

Working with Bitmaps

The IGBitmap class is used to create, copy, modify, and draw bitmaps. IGBitmap

objects can be created from existing bitmap handles, from bitmap resources, from a

rectangular area of a graphic context, or directly from an image file.

Once a bitmap has been created, you can save the bitmap in any of the supported

image file formats.

If the bitmap is a color bitmap, none of the graphic bundle attributes affects the

appearance of the bitmap. If the bitmap is a monochrome bitmap, one bit-per-plane,

then the following graphic bundle attributes affect its appearance:

 ¹ Pen color

 ¹ Background color

 ¹ Mix mode

¹ Background mix mode

The following sample demonstrates how to use the IGBitmap class. This sample is

located in the ibmcpp\samples\ioc\2d-bmap directory and shows how you can work

with bitmap files.

First, in the .HPP we do the following:

1. Declare our drawing area paint handler on line 32.

2. Declare our command handler to process events on line 49 through 58.

3. Declare our drawing area on lines 60 through 95.

4. Declare a pointer to our IGBitmap object.

5. On lines 104 through 107 we declare our main window including our drawing

area.

6. Load an image based on a string on line 115.

 26 //**
 27 // Class: DrawingAreaPaintHandler *
 28 // *
 29 // Purpose: Draw the bitmap. *
 30 // *
 31 //**
 32 class DrawingAreaPaintHandler : public IPaintHandler
 33 {
 34 typedef IPaintHandler
 35 Inherited;
 36
 37 protected:
 38
 39 virtual Boolean
 40 paintWindow(IPaintEvent& event);
 41 };
 42

 Chapter 42. Using Graphics in Your Application 521

Graphics

 43 //**
 44 // Class: MainCommandHandler *
 45 // *
 46 // Purpose: Handle command events for the bitmap sample program. *
 47 // *
 48 //**
 49 class MainCommandHandler : public ICommandHandler
 50 {
 51 typedef ICommandHandler
 52 Inherited;
 53
 54 protected:
 55
 56 virtual Boolean
 57 command(ICommandEvent& event);
 58 };
 59
 60 class DrawingArea : public IDrawingCanvas
 61 {
 62 typedef IDrawingCanvas
 63 Inherited;
 64
 65 public:
 66
 67 DrawingArea(unsigned long id, IWindow* parent, IWindow* owner);
 68 virtual
 69 ¡DrawingArea();
 70
 71 DrawingArea
 72 &loadBitmap(const IString& imageFile);
 73
 74 IGBitmap*
 75 bitmap() const;
 76
 77 DrawingArea
 78 &setClipStyle (unsigned long style) { fStyle = style; return *this; }
 79 unsigned long
 80 clipStyle() const { return fStyle; }
 81
 82 protected:
 83
 84 virtual ISize
 85 calcMinimumSize () const;
 86
 87 private:
 88
 89 DrawingAreaPaintHandler
 90 drawingAreaPaintHandler;
 91 IGBitmap*
 92 fBitmap;
 93 unsigned long
 94 fStyle;
 95 };
 96
 97 //**
 98 // Class: MainWindow *
 99 // *
100 // Purpose: Main Window for C++ Hello World sample application *
101 // It is a subclass of IFrameWindow *
102 // *
103 //**
104 class MainWindow : public IFrameWindow
105 {
106 typedef IFrameWindow
107 Inherited;
108

522 VisualAge C++ Open Class Library User's Guide

Graphics

109 public: //Define the Public Information
110 MainWindow(unsigned long windowId); //Constructor for this class
111 virtual
112 ¡MainWindow();
113
114 virtual MainWindow
115 &loadImageFile(const IString& imageFile);
116
117 virtual MainWindow
118 &modifyBitmap(unsigned long eventId);
119
120 DrawingArea
121 &drawingArea() { return fDrawingArea; }
122
123 private: //Define Private Information
124 IViewPort fViewPort;
125 DrawingArea fDrawingArea;
126 MainCommandHandler fMainCommandHandler;
127 };

In the .CPP file, we then do the following:

1. List the actions we can use to modify the bitmap on lines 85 through 110. For

example, on line 99 we rotate the bitmap by 90 degrees.

2. Define our command handler on line 124.

3. Load a bitmap using a file dialog on lines 129 through 148.

4. List the actions we can perform on the bitmap calling the functions defined

above.

5. Load the image file, calling our drawing area on line 187.

6. Define the handler for painting the window on line 238.

7. On lines 240 through 255, we define our graphic context and graphic region.

8. We clip the bitmap using an ellipse on lines 262 through 279 and a rectangle on

lines 280 through 292.

9. On lines 297 through 307 we rotate the bitmap.

10. We then draw the bitmap on line 314 through 317.
...
 85 MainWindow& MainWindow::modifyBitmap(unsigned long eventId)
 86 {
 87 IGBitmap* bitmap(fDrawingArea.bitmap());
 88 if (bitmap)
 89 {
 90 switch (eventId)
 91 {
 92 case IDM_REFLECTHORZ:
 93 bitmap->reflectHorizontally();
 94 break;
 95 case IDM_REFLECTVERT:
 96 bitmap->reflectVertically();
 97 break;
 98 case IDM_ROTATE90:
 99 bitmap->rotateBy90();
100 break;

 Chapter 42. Using Graphics in Your Application 523

Graphics

101 case IDM_ROTATE180:
102 bitmap->rotateBy180();
103 break;
104 case IDM_ROTATE270:
105 bitmap->rotateBy270();
106 break;
107 case IDM_TRANSPOSE:
108 bitmap->transposeXForY();
109 break;
110 } /* endswitch */
111 ISize bitmapSize(bitmap->size());
112 fDrawingArea.sizeTo(bitmapSize);
113 fViewPort.setViewWindowSize(bitmapSize);
114 fDrawingArea.refresh();
115 }
116 return *this;
117 }
118
119 /*--
120 | MainCommandHandler::command |
121 | |
122 | |
123 --*/
124 IBase::Boolean MainCommandHandler::command(ICommandEvent& event)
125 {
126 Boolean fProcessed = false;
127 switch (event.commandId())
128 {
129 case IDM_FILEOPEN:
130 {
131 MainWindow *mainWindow((MainWindow*)event.window());
132
133 IFileDialog::Settings fsettings; // .
134 fsettings.setTitle("Load an image file");//Set Open Dialog Title from Resource .
135 fsettings.setFileName("*.bmp"); //Set FileNames to *.hlo .
136
137 IFileDialog fd(//Create File Open Dialiog .
138 IWindow::desktopWindow(), // Parent is Desktop .
139 mainWindow, fsettings); // Owner is me with settings .
140 if (fd.pressedOK()) //Check if ok from file open dialog .
141 {
142 mainWindow->loadImageFile(fd.fileName());
143 IMenuBar menuBar(mainWindow->id(), mainWindow);
144 menuBar.setAutoDestroyWindow(false);
145
...
146 }
147 }
148 break;
149 case IDM_QUIT:
150 {
151 IFrameWindow *frameWindow((IFrameWindow*)event.window());
152 frameWindow->close();
153 }
154 break;
155 case IDM_REFLECTHORZ:
156 case IDM_REFLECTVERT:
157 case IDM_ROTATE90:
158 case IDM_ROTATE180:
159 case IDM_ROTATE270:
160 case IDM_TRANSPOSE:
161 {
162 MainWindow *mainWindow((MainWindow*)event.window());
163 mainWindow->modifyBitmap(event.commandId());
164 }
165 break;
166

524 VisualAge C++ Open Class Library User's Guide

Graphics

167 case IDM_CLIPCIRCLES:
168 case IDM_CLIPSQUARES:
169 case IDM_CLIPRAD:
170 case IDM_CLIPNONE:
171 {
172 MainWindow *mainWindow((MainWindow*)event.window());
173 mainWindow->drawingArea().setClipStyle(event.commandId());
174 mainWindow->drawingArea().refresh();
175 }
176 break;
177 } /* endswitch */
178
179 return fProcessed;
180 }
181
182 /*--
183 | MainWindow::loadImageFile |
184 | |
185 | |
186 --*/
187 MainWindow& MainWindow::loadImageFile(const IString& imageFile)
188 {
189 fDrawingArea.loadBitmap(imageFile);
190 fViewPort.setViewWindowSize(fDrawingArea.bitmap()->size());
191 return *this;
192 }
193
194 DrawingArea::DrawingArea(unsigned long id, IWindow* parent, IWindow* owner)
195 : DrawingArea::Inherited(id, parent, owner, IRectangle(),
196 IDrawingCanvas::defaultStyle() & ¡IDrawingCanvas::useDefaultPaintHandler),
197 fBitmap(0),
198 fStyle(IDM_CLIPNONE)
199 {
200 drawingAreaPaintHandler.handleEventsFor(this);
201 }
202
203 DrawingArea::¡DrawingArea()
204 {
205 drawingAreaPaintHandler.stopHandlingEventsFor(this);
206 if (fBitmap)
207 delete fBitmap;
208 }
209
210 IGBitmap* DrawingArea::bitmap() const
211 {
212 return fBitmap;
213 }
214
215 DrawingArea& DrawingArea::loadBitmap(const IString& imageFile)
216 {
217 if (fBitmap)
218 delete fBitmap;
219 fBitmap = new IGBitmap(imageFile);
220 sizeTo(fBitmap->size());
221 refresh();
222 return *this;
223 }
224
225 ISize DrawingArea::calcMinimumSize() const
226 {
227 if (fBitmap)
228 return fBitmap->size();
229 else
230 return ISize();
231 }
232

 Chapter 42. Using Graphics in Your Application 525

Graphics

233 /*--
234 | DrawingAreaPaintHandler::paintWindow |
235 | |
236 | |
237 --*/
238 IBase::Boolean DrawingAreaPaintHandler::paintWindow(IPaintEvent& event)
239 {
240 // Get a graphic context
241 IGraphicContext gc(event.presSpaceHandle());
242
243 // Get a pointer to the current bitmap if one exists.
244 IGBitmap* bitmap(((DrawingArea*)event.window())->bitmap());
245
246 // Get the dimensions of the window
247 IRectangle windowRect(IPoint(),((DrawingArea*)event.window())->size());
248
249 // paint the current background color
250 event.clearBackground();
251
252 // Query the current clipping style
253 unsigned long clipStyle(((DrawingArea*)event.window())->clipStyle());
254
255 IGRegion region;
256 IGRegion oldClipRegion(gc.clipRegion());
257
258 // Clear the current clip region so that the oldClipRegion can
259 // be used in region operations.
260 gc.clearClipRegion();
261
262 switch (clipStyle)
263 {
264 case IDM_CLIPCIRCLES:
265 {
266 IGRectangle rect(windowRect);
267 region -= rect;
268 IGEllipse ellipse(windowRect);
269 region += ellipse;
270 windowRect.shrinkBy(25);
271 ellipse.setEnclosingRect(windowRect);
272 region -= ellipse;
273 windowRect.shrinkBy(25);
274 ellipse.setEnclosingRect(windowRect);
275 region += ellipse;
276
...
277 region &= oldClipRegion;
278 }
279 break;
280 case IDM_CLIPSQUARES:
281 {
282 IGRectangle rect(windowRect);
283 region += rect;
284 windowRect.shrinkBy(25);
285 rect.setEnclosingRect(windowRect);
286 region -= rect;
287 windowRect.shrinkBy(25);
288 rect.setEnclosingRect(windowRect);
289 region += rect;
290
...
291 region &= oldClipRegion;
292 break;
293 }

526 VisualAge C++ Open Class Library User's Guide

Graphics

294 case IDM_CLIPRAD:
295 {
296 IGPie pie(windowRect, 0, 60);
297 region += pie;
298 pie.setStartAngle(120);
299 region += pie;
300 pie.setStartAngle(240);
301 region += pie;
302 region &= oldClipRegion;
303 break;
304 }
305 case IDM_CLIPNONE:
306 region = oldClipRegion;
307 break;
308 } /* endswitch */
309
310 // set the clip region
311 gc.setClipRegion(region);
312
313 // draw the bitmap if we have one
314 if (bitmap)
315 {
316 bitmap->drawOn(gc);
317 }
318
319 // clear the current clip region
320 gc.clearClipRegion();
321
322 return true;
323 }

The resulting window is displayed in Figure 70

Figure 70. Bitmap Sample

 Chapter 42. Using Graphics in Your Application 527

Graphics

Grouping Graphic Objects

The IGList class is an ordered collection of IGraphic objects. The IGraphic objects

are arranged so that each IGList object has a first and a last IGraphic object, each

IGraphic object except the last has a next IGraphic object, and each IGraphic object

but the first has a previous IGraphic object.

An IGList allows you to group simple IGraphic objects to compose a complex

picture. At any time you can add additional IGraphic objects to the IGList or remove

any IGraphic objects from it. You can also add the same IGraphic object to the list

multiple times to replicate part of a picture.

Because IGList inherits from IGraphic, you can add an IGList to an IGList. You can

also use any of the transform functions inherited from IGraphic on an IGList.

Transforms applied to an IGList affect all IGraphic objects in the IGList. You can

easily construct complex pictures and transform them as a single entity.

When you draw an IGList, it iterates through the graphic objects contained in the list.

IGList recursively calls the drawOn function for all nested IGLists. Also, the

attributes you use to draw the graphic objects contained in the list are those of the

graphic bundle applied to the IGList with one exception. When a graphic object

contains a graphic bundle that has the same attributes set, the graphic object’s bundle

attributes override the IGList's graphic bundle attributes.

The member functions provided by the IGList class allow you to add graphics objects

at varying positions within the list, remove objects, reorder the list, and query list

information and retrieve the graphic objects in the list.

The IGList::Cursor class iterates through graphic objects contained in an IGList. The

Cursor class has three constructors that control how to iterate through the IGList.

The class iterates through top-level objects only. If you nest an IGList inside an

IGList, the cursor does not iterate through the graphic objects contained within the

nested IGList.

 Refer to the Open Class Library Reference for more information about the IGList

and IGList::Cursor classes.

Defining a Transformation Matrix

The ITransformMatrix class is used to represent a 3x3 transformation matrix.

You can use ITransformMatrix objects to quickly construct transformation matrixes

for use with IGraphic::setTransformMatrix or with the native graphic programming

interface.

528 VisualAge C++ Open Class Library User's Guide

Graphics

If you use any of the world transform functions or set a transform matrix on a

graphic object, then the transform matrix contained in the graphic object is used when

you draw a graphic object.

 Refer to the Open Class Library Reference for more information.

Using the Drawing Functions

The IGraphicContext class renders graphic objects on a device. IGraphicContext

contains the graphic state information used when drawing graphics. The graphic state

includes the current attribute bundle, the current world space transform matrix, and

the current clip region.

PM The IGraphicContext class wrappers the presentation space data types.

The IGraphicContext class also contains a static collection of default drawing

attributes that initialize the attributes of the graphic context when you create it. You

can change any of these default drawing attributes so that any graphic context created

subsequently is initialized with these new drawing attributes.

You can also use other native graphic programming interfaces whose function is not

included in the User Interface Class Library graphics classes by accessing either the

presentation space handle or device context by using the handle member function as

the first parameter to the graphic programming interface.

Adding Handlers to Graphical Objects

Use the ITrackingHandler class to handle events resulting from a user changing a

control’s input value without releasing the mouse, such as rotating the circular slider

or moving the arm of a slider. ITrackingHandler objects process input tracking

events for the ISlider and ICircularSlider controls.

You create a handler derived from ITrackingHandler and attach it to either the control

whose input users can change or to the control’s owner window. Call

IHandler::handleEventsFor to pass the appropriate control window or owner window

to the edit handler.

Two-dimensional Graphics Samples

The following sample demonstrates how to use the two-dimensional graphics classes.

This sample is located in the ibmcpp\samples\ioc\2d-draw

First, in the .HPP file, we do the following:

1. Declare our drawing area on line 46.

 Chapter 42. Using Graphics in Your Application 529

Graphics

2. Declare all our graphic objects.

3. Declare our main frame window on line 155.
...
 39 //**
 40 // Class: DrawingArea *
 41 // *
 42 // Purpose: Subclass of IDrawingCanvas. Class contains the handlers *
 43 // necessary for interactive drawing of the graphic objects. *
 44 // *
 45 //**
 46 class DrawingArea : public IDrawingCanvas,
 47 public IMouseHandler
 48 {
 49 public:
 50 DrawingArea (unsigned long windowId,
 51 IWindow* parent,
 52 IWindow* owner,
 53 const IRectangle& intial = IRectangle());
 54 virtual
 55 ¡DrawingArea ();
 56
 57 enum DrawState {
 58 drawing,
 59 waitForInput,
 60 notDrawing
 61 };
 62
 63 DrawingArea
 64 &setDrawState (const DrawState newState = drawing);
 65 DrawState
 66 drawState () const { return dState; }
 67
 68 DrawingArea
 69 &setBitmapFileName (const IString& bitmapFile)
 70 { currentBitmap = bitmapFile;
 71 return *this; }
 72 IString
 73 bitmapFileName () const
 74 { return currentBitmap; }
 75
 76 enum DrawObject {
 77 pointer = PALLET_NORM,
 78 line,
 79 freeHand,
 80 rectangle,
 81 ellipse,
 82 polyline,
 83 polygon,
 84 arc,
 85 pie,
 86 chord,
 87 text,
 88 bitmap
 89 };
 90
 91 virtual DrawingArea
 92 &setDrawObject (const DrawObject drawObject)
 93 { currentObj = drawObject;
 94 return *this; }
 95 virtual DrawObject
 96 drawObject () const {return currentObj;}
 97
 98 virtual IGraphicBundle

530 VisualAge C++ Open Class Library User's Guide

Graphics

 99 &graphicBundle () { return currentBundle; }
100
101 virtual DrawingArea
102 &setCurrentFont (const IFont& font);
103 virtual IFont
104 currentFont () const;
105
106 protected:
107
108 virtual Boolean
109 mouseMoved (IMouseEvent& event),
110 mouseClicked (IMouseClickEvent& event),
111 mousePointerChange (IMousePointerEvent& event);
112
113 virtual DrawingArea
114 &button1Down (const IPoint& point),
115 &button1Up (const IPoint& point),
116 &button1DoubleClick (const IPoint& point),
117 &button2Down (const IPoint& point),
118 &button2Up (const IPoint& point);
119
120 private:
121 IGraphicContext gc;
122 IFont currentfont;
123 IGraphicBundle currentBundle;
124 IString currentBitmap;
125 DrawState dState;
126 DrawObject currentObj;
127 IGraphic* iGraphic;
128 IGraphic* moveGraphic;
129 IGRectangle moveRect;
130 IPoint startingPt;
131 IPoint previousPt;
132 IPoint tempPt;
133 unsigned long pointCount;
134 IPointerHandle ptrLine;
135 IPointerHandle ptrDraw;
136 IPointerHandle ptrRectangle;
137 IPointerHandle ptrEllipse;
138 IPointerHandle ptrPolyline;
139 IPointerHandle ptrPolygon;
140 IPointerHandle ptrArc;
141 IPointerHandle ptrPie;
142 IPointerHandle ptrChord;
143 IPointerHandle ptrText;
144 IPointerHandle ptrBitmap;
145 IPointerHandle ptrCurrent;
146 };
147
148 //**
149 // Class: MainWindow *
150 // *
151 // Purpose: Main Window for C++ 2D-Draw sample application *
152 // It is a subclass of IFrameWindow *
153 // *
154 //**
155 class MainWindow : public IFrameWindow,
156 public ICommandHandler,
157 public IMenuDrawItemHandler
158 {
159 public: //Define the Public Information
160
161 MainWindow(unsigned long windowId); //Constructor for this class
162
163 virtual
164 ¡MainWindow();
165

 Chapter 42. Using Graphics in Your Application 531

Graphics

166 static IColor
167 penColorFromId (unsigned long Identifier),
168 fillColorFromId (unsigned long Identifier),
169 backColorFromId (unsigned long Identifier);
170
171 static unsigned long
172 patternFromId (unsigned long Identifier),
173 penWidthFromId (unsigned long Identifier);
174
175 static IGraphicBundle::PenType
176 penTypeFromId (unsigned long Identifier);
177
178 protected:
179
180 virtual Boolean
181 setSize (IMenuDrawItemEvent& evt,
182 ISize& newSize),
183 draw (IMenuDrawItemEvent& evt,
184 DrawFlag& flag),
185
186 command (ICommandEvent& event);
187
188 private: //Define Private Information
189 DrawingArea drawingArea; // move back to top of list.
190 IToolBar toolBar;
191 IMenuBar menuBar;
192 IStaticText infoText;
193 IFlyText flyText;
194 IFlyOverHelpHandler flyOver;
195 unsigned long lastPenColorId;
196 unsigned long lastFillColorId;
197 unsigned long lastPenPatternId;
198 unsigned long lastFillPatternId;
199 unsigned long lastPenTypeId;
200 unsigned long lastPenWidthId;
201 unsigned long lastBackId;
202 unsigned long lastDrawOperationId;
203 IToolBarButton normalButton,
204 lineButton,
205 drawButton,
206 rectangleButton,
207 ellipseButton,
208 polylineButton,
209 polygonButton,
210 arcButton,
211 pieButton,
212 chordButton,
213 textButton,
214 bitmapButton;
215 };
...

In the .CPP file, we then do the following:

1. Initialize the main window on lines 56 through 90 and call the constructors for

all the data members.

2. Set fly over help for the main window on lines 122 through 131.

3. Construct our drawing area on lines 173 through 186.

4. Define our current attribute bundle on lines 188 through 191.

532 VisualAge C++ Open Class Library User's Guide

Graphics

5. Create the cursor for IGList to clean up the drawing area on lines 225 through

234. The cursor calls the destructor for each object in the IGList and deletes all

the objects when the window is closed.

6. Handle mouse click events on lines 242 through 275.

7. Handle button messages. These events indicate a new graphic object is created

of additional data points to add to an existing graphic object.

8. Set the draw state which determines how to interpret the mouse clicks.

9. Create a line, rectangle, and ellipse on lines 356 through 378.
...
 51 /*--
 52 | MainWindow::MainWindow |
 53 | |
 54 | |
 55 --*/
 56 MainWindow::MainWindow(unsigned long windowId)
 57 : IFrameWindow (//Call IFrameWindow constructor
 58 IFrameWindow::defaultStyle() // Use default plus
 59 | IFrameWindow::animated // Set to show with "animation"
 60 | IFrameWindow::menuBar // Frame has a menu bar
 61 | IFrameWindow::minimizedIcon, // Frame has an icon
 62 windowId), // Main Window ID
 63 drawingArea(WND_DRAW, this, this),
 64 toolBar(WND_TOOLBAR,this, IToolBar::aboveClient),
 65 menuBar(this, IMenuBar::wrapper),
 66 infoArea(this, WND_TEXT),
 67 flyText(1054, &menuBar),
 68
 69 // Set the initial delay for fly over help to 1 1/2 seconds and
 70 // set the regular delay to 1/3 seconds.
 71 flyOver(&flyText, &infoArea, 1500, 333),
 72 lastPenColorId(ID_COL_BLK),
 73 lastFillColorId(ID_FLCOL_BLK),
 74 lastPenPatternId(ID_PENPATTERN_SOLID),
 75 lastFillPatternId(ID_FILLPATTERN_SOLID),
 76 lastPenTypeId(ID_PENTYPE_SOLID),
 77 lastPenWidthId(ID_PENWIDTH_1),
 78 lastDrawOperationId(ID_FILLANDFRAME),
 79 normalButton(PALLET_NORM, &toolBar, &toolBar),
 80 lineButton(PALLET_LINE, &toolBar, &toolBar),
 81 drawButton(PALLET_DRAW, &toolBar, &toolBar),
 82 rectangleButton(PALLET_RECTANGLE, &toolBar, &toolBar),
 83 ellipseButton(PALLET_ELLIPSE, &toolBar, &toolBar),
 84 polylineButton(PALLET_POLYLINE, &toolBar, &toolBar),
 85 polygonButton(PALLET_POLYGON, &toolBar, &toolBar),
 86 arcButton(PALLET_ARC, &toolBar, &toolBar),
 87 pieButton(PALLET_PIE, &toolBar, &toolBar),
 88 chordButton(PALLET_CHORD, &toolBar, &toolBar),
 89 textButton(PALLET_TEXT, &toolBar, &toolBar),
 90 bitmapButton(PALLET_BITMAP, &toolBar, &toolBar)
 91 {
...
122 // Set the fly over help for the client window to the
123 // help information for the pointer (normal) button.
124
125 flyOver.setHelpText(drawingArea.handle(),
126 IResourceId(0),
127 IResourceId(PALLET_NORM + LONG_OFFSET));
128
129 flyOver.handleEventsFor(this);

 Chapter 42. Using Graphics in Your Application 533

Graphics

130 flyOver.handleEventsFor(&drawingArea);
131 flyOver.setLongStringTableOffset(LONG_OFFSET);
132
133 setClient(&drawingArea);
134 setFocus();
135 show();
136 }
137
...
168 /*--
169 | DrawingArea::DrawingArea |
170 | |
171 | |
172 --*/
173 DrawingArea::DrawingArea(unsigned long windowId, IWindow* parent,
174 IWindow* owner, const IRectangle& initial)
175 : IDrawingCanvas(windowId, parent, owner, initial),
176 gc(handle()),
177 currentfont(),
178 currentBundle(),
179 currentBitmap(),
180 dState(notDrawing),
181 currentObj(pointer),
182 iGraphic(0),
183 moveGraphic(0),
184 moveRect(IRectangle()),
185 startingPt(), previousPt(), tempPt(),
186 pointCount(0)
187 {
188 currentBundle.setPenColor(IGraphicContext::defaultPenColor())
189 .setFillColor(IGraphicContext::defaultFillColor())
190 .setMixMode(IGraphicContext::defaultMixMode())
191 .setDrawOperation(IGraphicBundle::fillAndFrame);
192
193 gc.setMixMode(IGraphicBundle::xor).setPenColor(IColor::white)
194 .setFillColor(IColor::white)
195 .setDrawOperation(IGraphicBundle::frame);
196 setGraphicContext(&gc);
197
198 setGraphicList(new IGList());
199
...
215 ((IMouseHandler*)this)->handleEventsFor(this);
216 }
217
218 /*--
219 | DrawingArea::DrawingArea |
220 | |
221 | |
222 --*/
223 DrawingArea::¡DrawingArea()
224 {
225 // Delete all the graphic objects in the drawing canvas.
226 IGList::Cursor graphicsCursor(*graphicList());
227 for (graphicsCursor.setToFirst();
228 graphicsCursor.isValid();
229 graphicsCursor.setToNext())
230 {
231 IGraphic* graphic(&(graphicList()->graphicAt(graphicsCursor)));
232 delete graphic;
233 } /* endfor */
234 delete graphicList();
235 }
236
237 /*--
238 | DrawingArea::mouseClicked |

534 VisualAge C++ Open Class Library User's Guide

Graphics

239 | |
240 | Translate the mouse clicked events. |
241 --*/
242 Boolean DrawingArea::mouseClicked(IMouseClickEvent& event)
243 {
244 Boolean bRc = false;
245 if (event.mouseButton() == IMouseClickEvent::button1 &&
246 event.mouseAction() == IMouseClickEvent::down)
247 {
248 button1Down(event.mousePosition());
249 bRc = false;
250 }
251 else if (event.mouseButton() == IMouseClickEvent::button1 &&
252 event.mouseAction() == IMouseClickEvent::up)
253 {
254 button1Up(event.mousePosition());
255 bRc = true;
256 }
257 else if (event.mouseButton() == IMouseClickEvent::button1 &&
258 event.mouseAction() == IMouseClickEvent::doubleClick)
259 {
260 button1DoubleClick(event.mousePosition());
261 bRc = true;
262 }
263 else if (event.mouseButton() == IMouseClickEvent::button2 &&
264 event.mouseAction() == IMouseClickEvent::down)
265 {
266 button2Down(event.mousePosition());
267 }
268 else if (event.mouseButton() == IMouseClickEvent::button2 &&
269 event.mouseAction() == IMouseClickEvent::up)
270 {
271 button2Up(event.mousePosition());
272 }
273
274 return bRc;
275 }
...
332
333 /*--
334 | DrawingArea::button1Down |
335 | |
336 | Handle button 1 down messages. This event indicates a new graphic object is |
337 | to be created of additional data points to add to an existing graphic object.|
338 --*/
339 DrawingArea& DrawingArea::button1Down(const IPoint& point)
340 {
341 switch (currentObj)
342 {
343 case pointer:
344 {
345 // Change all objects to the current pen and fill color.
346 IGList::Cursor cursor(*graphicList(), gc, point);
347 for (cursor.setToFirst(); cursor.isValid(); cursor.setToNext())
348 {
349 IGraphic& graphic(graphicList()->graphicAt(cursor));
350 this->refresh(graphic.boundingRect(gc));// .expandBy(1));
351 graphic.setGraphicBundle(currentBundle);
352 graphic.drawOn(gc);
353 } /* endfor */
354 }
355 break;
356 case line:
357 startingPt = point;
358 previousPt = point;
359 iGraphic = new IGLine(startingPt, previousPt);
360 setDrawState();

 Chapter 42. Using Graphics in Your Application 535

Graphics

361 break;
367 case rectangle:
368 startingPt = point;
369 previousPt = point;
370 iGraphic = new IGRectangle(IRectangle(startingPt, previousPt));
371 setDrawState();
372 break;
373 case ellipse:
374 startingPt = point;
375 previousPt = point;
376 iGraphic = new IGEllipse(startingPt, 0L);
377 setDrawState();
378 break;
...
468 } /* endswitch */
469 return *this;
470 }
471
472 /*--
473 | DrawingArea::button2Down |
474 | |
475 | Determine the object under the mouse and start moving. |
476 --*/
477 DrawingArea& DrawingArea::button2Down(const IPoint& point)
478 {
479 if (drawState() == notDrawing)
480 {
481 moveGraphic = graphicList()->topGraphicUnderPoint(point, gc);
482 if (moveGraphic)
483 {
484 moveRect.setEnclosingRect(moveGraphic->boundingRect(gc));
485 previousPt = point;
486 startingPt = point;
487 capturePointer();
488 }
489 }
490 return *this;
491 }
492
493 /*--
494 | DrawingArea::mouseMoved |
495 | |
496 | Handle button 1 down mouse move events. This allows data points to be |
497 | moved while the object is drawn with a rubber band effect. |
498 --*/
499 Boolean DrawingArea::mouseMoved(IMouseEvent& event)
500 {
501 IPoint point(event.mousePosition());
502 if (hasPointerCaptured())
503 {
504 IRectangle windowRect(this->rect());
505 windowRect.moveTo(IPoint(0,0));
506 if (!windowRect.contains(point))
507 {
508 if ((short)point.x() < (short)windowRect.left())
509 point.setX(windowRect.left());
510 else if ((short)point.x() > (short)windowRect.right())
511 point.setX(windowRect.right());
512 else if ((short)point.y() < (short)windowRect.bottom())
513 point.setY(windowRect.bottom());
514 else if ((short)point.y() > (short)windowRect.top())
515 point.setY(windowRect.top());
516
517 IPoint mapPt(IWindow::mapPoint(point,
518 this->handle(),
519 IWindow::desktopWindow()->handle()));
520

536 VisualAge C++ Open Class Library User's Guide

Graphics

521 IWindow::movePointerTo(mapPt);
522 }
523 }
524
525 // If we're not moving an object
526 if (!moveGraphic)
527 {
528 if (drawState() == drawing)
529 {
530 switch (currentObj)
531 {
532 case pointer:
533 break;
534 case line:
535 ((IGLine*)iGraphic)->drawOn(gc);
536 ((IGLine*)iGraphic)->setEndingPoint(point);
537 ((IGLine*)iGraphic)->drawOn(gc);
538 break;
543 case rectangle:
544 {
545 IRectangle rc(((IGRectangle*)iGraphic)->enclosingRect());
546 iGraphic->drawOn(gc);
547 rc.sizeTo(rc.size() + point - previousPt);
548 ((IGRectangle*)iGraphic)->setEnclosingRect(rc);
549 iGraphic->drawOn(gc);
550 previousPt = point;
551 }
552 break;
553 case ellipse:
554 {
555 iGraphic->drawOn(gc);
556 IPoint centerPt(((IGEllipse*)iGraphic)->enclosingRect().center());
557
558 ((IGEllipse*)iGraphic)->setEnclosingRect(
559 ((IGEllipse*)iGraphic)->enclosingRect().sizeTo(IPair(
560 abs(2*(point.x() - centerPt.x())),
561 abs(2*(point.y() - centerPt.y()))))
562 .centerAt(centerPt));
563 iGraphic->drawOn(gc);
564 }
565 break;
...
614 } /* endswitch */
615 }
616 }
617 else
618 {
619 moveRect.drawOn(gc);
620 moveRect.translateBy(point - previousPt);
621 moveRect.drawOn(gc);
622 previousPt = point;
623 }
624 return false;
625 }
626
627 /*--
628 | DrawingArea::button1Up |
629 | |
630 | Handle button 1 up events. This indicates a data points final location. |
631 --*/
632 DrawingArea& DrawingArea::button1Up(const IPoint& point)
633 {
634 if (drawState() == drawing)
635 {
636 switch (currentObj)
637 {
638 case pointer:

 Chapter 42. Using Graphics in Your Application 537

Graphics

639 break;
640 case line:
641 ((IGLine*)iGraphic)->setEndingPoint(point);
642 iGraphic->setGraphicBundle(currentBundle);
643 iGraphic->drawOn(gc);
644 setDrawState(notDrawing);
645 graphicList()->addAsLast(*iGraphic);
646 break;
654 case rectangle:
655 {
656 IRectangle rc(((IGRectangle*)iGraphic)->enclosingRect());
657 rc.sizeTo(rc.size() + point - previousPt);
658 ((IGRectangle*)iGraphic)->setEnclosingRect(rc);
659 iGraphic->setGraphicBundle(currentBundle);
660 iGraphic->drawOn(gc);
661 setDrawState(notDrawing);
662 graphicList()->addAsLast(*iGraphic);
663 }
664 break;
665 case ellipse:
666 {
667 IPoint centerPt(((IGEllipse*)iGraphic)->enclosingRect().center());
668
669 ((IGEllipse*)iGraphic)->setEnclosingRect(
670 ((IGEllipse*)iGraphic)->enclosingRect().sizeTo(IPair(
671 abs(2*(point.x() - centerPt.x())),
672 abs(2*(point.y() - centerPt.y()))))
673 .centerAt(centerPt));
674
675 iGraphic->setGraphicBundle(currentBundle);
676 iGraphic->drawOn(gc);
677 setDrawState(notDrawing);
678 graphicList()->addAsLast(*iGraphic);
679 }
680 break;
...
776 } /* endswitch */
777 } /* endif */
778 return *this;
779 }
780
781 /*--
782 | DrawingArea::button2Up |
783 | |
784 --*/
785 DrawingArea& DrawingArea::button2Up(const IPoint& point)
786 {
787 if (moveGraphic)
788 {
789 moveRect.translateBy(point - previousPt);
790 moveRect.drawOn(gc);
791 moveRect.resetTransformMatrix();
792 this->refresh(moveRect.boundingRect(gc).expandBy(1));
793 moveGraphic->translateBy(point - startingPt);
794 moveGraphic->drawOn(gc);
795 moveGraphic = 0;
796 capturePointer(false);
797 }
798 return *this;
799 }
800
801 /*--
802 | DrawingArea::button1DoubleClick |
803 | |
804 | Handle button 1 up double click events. In the case of polyline and polygon |
805 | a double click indicates the user has finished adding data points to the |
806 | object. |

538 VisualAge C++ Open Class Library User's Guide

Graphics

807 --*/
808 DrawingArea& DrawingArea::button1DoubleClick(const IPoint& point)
809 {
810 if (drawState() == waitingForInput)
811 {
812 switch (currentObj)
813 {
...
836 }
837 }
838 return *this;
839 }
840
841 /*--
842 | DrawingArea::setDrawState |
843 | |
844 | |
845 --*/
846 DrawingArea& DrawingArea::setDrawState(const DrawState newState)
847 {
848 dState = newState;
849 if (dState == drawing)
850 {
851 if (!hasPointerCaptured())
852 capturePointer();
853 }
854 else if (dState == notDrawing)
855 capturePointer(false);
856 return *this;
857 }
...

Figure 71 shows the compiled graphics sample.

Figure 71. Two-dimensional Graphic Sample

 Chapter 42. Using Graphics in Your Application 539

Graphics

540 VisualAge C++ Open Class Library User's Guide

Multimedia

43 Creating and Using Multimedia Controls

A multimedia application that integrates text and graphics with a combination of

audio, motion video, images, and animation makes your application more attractive to

the user, easier to use, and offers better mapping to real world objects.

You can use the window control classes and multimedia classes to implement an

interface for your application that looks like the controls of common electronic

devices, such as stereo components and video cassette recorders (VCRs). Your

application can use these controls as interfaces to control audio and video media that

is presented to the user. Keep in mind user expectations when you create your user

interface. Mapping your user interface to the mental image the user has of real-world

devices greatly enhances the ease of use of your product. For instance, most users

are familiar with the play, stop, pause, fast forward, and reverse controls of an audio

cassette recorder.

To use the multimedia classes, ensure that your working environment meets the

following requirements:

Software IBM OS/2 V.3 Multimedia Presentation Manager/2 Version 1.1 is

required for using the User Interface Class Library multimedia classes.

Hardware

The following sections introduce multimedia concepts, describe multimedia devices

and controls, and discuss the User Interface Class Library classes.

If you are: Hardware required:

Using MIDI, audio classes, or software

motion video sound

OS/2-supported sound card

Using CDXA or AudioCD CDROM

Hearing any sounds (CD or otherwise) Speakers or headphones

Recording audio Microphone

 Copyright IBM Corp. 1993, 1995 541

Device Classes

 Understanding Multimedia

A medium is a carrier of information. A multimedia computer system is one that is

capable of input or output on more than one medium. With the new class of

computers, information in virtually any format can be combined into multimedia

presentations.

Multiple types of input allow the user to interact with the computer in a style that

best suits the information to be communicated, thus relieving overloaded input

channels, such as a keyboard, mouse, or microphone.

Output information can be presented in more entertaining formats. Typically, output

implies a computer display, video, or audio. Video has the potential to hold people’s

interest and illustrate concepts better than static images. Audio and speech contribute

a unique quality to the multimedia system and can increase the information's content.

Understanding Multimedia Device Classes

The User Interface Class Library supports audio adapters, CD-ROM drives, video-disc

players, logical devices, amplifier-mixers, and other hardware devices as media

devices. These media devices are abstracted into classes that contain the data and

functions essential for the operation of the real-world devices that they model.

The classes you define for your application combine the capabilities of several

classes. Before defining the objects your application needs, choose real-world models

that the user knows how to manipulate for the interfaces. You can then use the

appropriate User Interface Class Library multimedia classes that provide the

corresponding functions.

Understanding Base Device Classes

The base device classes let you create multimedia devices for your application. The

following table lists the base classes and refers to the appropriate sections describing

the multimedia devices. In addition, these sections describe how to use the devices.

You can directly instantiate device objects from the following classes:

542 VisualAge C++ Open Class Library User's Guide

Device Classes

Device Class For more information, refer to:

Audio amplifier-mixer IMMAmpMixer “Amplifier-Mixer Device

(IMMAmpMixer)” on page 546

CD audio player IMMAudioCD “CD Audio Player Device

(IMMAudioCD)” on page 550

CD Extended-Architecture

player

IMMCDXA “CD Extended-Architecture Player

Device (IMMCDXA)” on page 579

Digital video player IMMDigitalVideo “Digital Video Player Device

(IMMDigitalVideo)” on page 574

Master audio IMMMasterAudio “Master Audio Device

(IMMasterAudio)” on page 545

MIDI sequencer IMMSequencer “MIDI Sequencer Device

(IMMSequencer)” on page 556

Waveform audio player IMMWaveAudio “Waveform Audio Player Device

(IMMWaveAudio)” on page 557

Understanding Abstract Device Classes

Common functions for devices are made available through abstract device classes.

That is, abstract device classes allow inheriting classes to reuse common functions.

Note that you cannot instantiate objects from these classes. The following sections

describe the multimedia base class and abstract device classes. The multimedia base

class (IMMDevice) is the parent class for the family of multimedia classes, including

the base device classes and the other abstract classes.

Device Purpose

IMMPlayableDevice Used for many tasks, such as playing, pausing,

and seeking.

IMMFileMedia Used for devices that work with files.

IMMRecordable Records, saves, cuts, pastes, allows undo, allows

redo, saves-as.

IMMRemovableMedia Opens and ejects media; unlocks and locks doors.

Using the User Interface Class Library Base Class for Multimedia

All of the multimedia device classes inherit from the IMMDevice class. This abstract

class contains all of the common functions for device objects. These functions

include the following:

¹ Querying the capabilities of a device

¹ Opening and closing devices

¹ Changing the speed and time formats

 Chapter 43. Creating and Using Multimedia Controls 543

Audio Devices

¹ Changing the audio (on or off)

¹ Controlling the volume

Playable

Device

Objects are usually instantiated from this class in applications that manage different

types of devices (e.g. VCR and CD remote). You don't create an actual device rather

the instantiated object is used to point to a device a user desires to activate (e.g. video

player).

An object instantiated from IMMPlayableDevice is capable of performing tasks that a

home device does to play such things as CDs or video tapes. In addition to the

common device functions; like play, pause, seek for devices that support playback,

IMMPlayableDevice objects are able to perform resume, stop, query position and

length functions.

Creating and Using Audio Devices

This section introduces creating audio devices that play wave and musical instrument

digital interface (MIDI) file formats.

Audio input and output is usually in the form of wave or MIDI files.

There is a distinction between sound and music; while it might not be distinctive to a

radio, it is to a computer. Sound, such as the sound in wave files (see “Waveform

Audio Player Device (IMMWaveAudio)” on page 557) is basically just digitized data

that a computer cannot process. MIDI augments waveform audio by producing sound

in the multimedia environment. Your system plays whatever is in a wave file out to

your speakers. By comparison, music is actual information. The following section

introduces basic concepts about these two formats.

Understanding MIDI Concepts

MIDI is a standardized set of data blocks or “messages” that instruct any

MIDI-compatible sound source as to which notes to play. Rather than representing

actual sound recordings, as a file of digitized audio does, a MIDI file merely

describes what notes to play and includes settings for the sound or instrument,

duration, stereo pan position (how far left or right), and volume.

A MIDI file is comprised of variable-length chunks. There are two types of chunks:

a header chunk and one or more track chunks. The number of chunks are defined in

the header. A MIDI event can be one of a number of things. It can be a message

that turns a particular note on or off, that changes the voice being played by a

particular channel, or that defines something about the piece being played.

When you create multimedia applications that play instrumental music, handle it with

MIDI (music) rather than digitized audio files (sound). The relative size of the files

544 VisualAge C++ Open Class Library User's Guide

Audio Devices

involved is one of the best arguments for doing so. Developers never used to work

with wave files because they could not handle the size. This might change now that

compact discs (CDs) are common and hold large amounts of information.

Digital synthesis methods, either FM or wavetable playback, are customarily driven

by MIDI.

MIDI files have the extension .mid and deliver more music per byte than other

formats. MIDI files are comparable in size to ASCII text files, while the other music

and sound formats (for example, wave) are comparable to color bitmaps. A digital

audio recording of a musical instrument performance can consume megabytes of

storage; a MIDI file describing that same performance can take only a kilobyte (K) or

two. Wave and CD audio files can sometimes be too big to distribute easily, where

as MIDI files are smaller. Compare 5 minutes of sound in a MIDI file to a 20 MB

wave file. The MIDI file is about 10K while the wave file is 20 MB. There is a

noticeable difference with your application's performance.

MIDI files do not support voice or words. The main role for MIDI in multimedia is

music composition and production. Once the music is recorded, it can be played on a

high-end synthesizer and recorded in wave or CD-audio formats.

Understanding Waveform Concepts

Waveform refers to digital representation of an original audio sound wave. Audio

refers to sound waves that have a perceived effect on the human ear.

Digital recordings offer more consistency than MIDI files. A CD recording of music

sounds virtually the same on any CD player you use, but a MIDI musical file could

sound like, for instance, a French horn on one synthesizer and a kazoo on another.

The sound depends on the quality of the sound card. However, MIDI music typically

sounds cleaner, more realistic, and more professional than the digital recording,

especially if you do not have a sound studio to record your tracks.

Wave files have the extension .wav and contain analog sound that has been recorded

digitally. The pieces of sound are usually sampled sound stored as data. An

analog-to-digital converter creates sampled sound. A wave file can reproduce sound

with anything from telephone to compact disc quality in monaural or stereo under

computer control.

Creating Audio Devices

The following sections describe audio devices and their related controls.

Master Audio Device (IMMasterAudio)

The master volume control determines the maximum volume level of all audio output

devices in the system. It sets a scale by which all subsequent volume commands are

 Chapter 43. Creating and Using Multimedia Controls 545

Audio Devices

based. For instance, if the volume control sets the master volume at 50 percent, then

all volume levels are cut in half.

Use the IMMasterAudio class to create a master audio object.

The master audio object has functions that do the following:

¹ Returns the current or saved setting of headphones, speakers, and master volume.

¹ Saves the current setting of headphones, speakers, and master volume.

¹ Sets the headphones and speakers on or off.

¹ Sets the master volume to a percent of the total volume available.

Note: We recommend that you do not use a master volume control in your

application unless it absolutely requires you to do so. This control affects all

volumes in your system. One scenario that is appropriate for using a master

volume control is when you are using the amplifier-mixer device class to

control a complete system. In this case, you want to control all volume in the

system.

Amplifier-Mixer Device (IMMAmpMixer)

The visuals and functions of the amplifier-mixer device are similar to the

amplifier-mixer device on your home stereo system. Components are plugged into

the amplifier-mixer so that audio signals can be transferred to a pair of attached

speakers, headphones, or perhaps another device. The amplifier-mixer is the center of

all audio signals and provides input or output switching and sound-shaping services,

such as volume, treble, or base control.

Use the IMMAmpMixer class to create an amplifier-mixer device. Its specific

functions include the following:

¹ Controlling the balance, bass, treble, gain, and pitch of a signal

¹ Connecting other devices that need the above functions to the amplifier-mixer

¹ Turning off and on the sound that is routed through the amplifier-mixer to

another device

Creating an Amplifier-Mixer Device: An Example

An example that creates an amplifier-mixer device follows:

546 VisualAge C++ Open Class Library User's Guide

Audio Devices

1. Define the device in the .hpp file.

class AmpHandler : public ISliderArmHandler {
typedef ISliderArmHandler Inherited;
//***
//Class: AmpHandler *
// *
// Purpose: Provide a handler for processing the circular sliders. *
// It is a subclass of ISliderArmHandler. *
// *
//***
public:

 AmpHandler ();

 virtual Boolean moving (IControlEvent& evt);
};

class Amp : public IMultiCellCanvas {
//***
// Class: Amp *
// *
// Purpose: Provide an amplifier-mixer for use by *
// all of the devices. *
// It is a subclass of IMultiCell. *
// *
//***
public:

 Amp(IMMAmpMixer* pAmp,
unsigned long windowid,

 IWindow* parent,
 IWindow* owner);

 ICircularSlider
 slVolume,
 slBalance,
 slBass,
 slTreble,
 slPitch,
 slGain;

 IMMAmpMixer* pAmpMixer;

 AmpHandler ampHandler;

 IStaticText name;
};

class MainWindow : public IFrameWindow {
//***
// Class: MainWindow *
// *
// Purpose: Main application window. *
// It is a subclass of IFrameWindow. *
//***
public:

 Chapter 43. Creating and Using Multimedia Controls 547

Audio Devices

MainWindow(unsigned long windowId);

private:
 ISetCanvas clientCanvas;

 IMMWaveAudio* wavPlayer;

 IMMAmpMixer* ampMixer;

 Amp* amp;
};

2. Create the constructors for the MainWindow and the amplifier-mixer.
...
/*---
| MainWindow::MainWindow
---*/
MainWindow::MainWindow(unsigned long windowId)
 : IFrameWindow(windowId),
 clientCanvas(CLIENTCANVASID,this,this)
{

wavPlayer = new IMMWaveAudio(true); // Create the wave player
// The operating system

 // automatically
// creates and associates an
// amplifier-mixer with both
// a wave device and CD device.

ampMixer = new IMMAmpMixer(wavPlayer->connectedDeviceId(
 IMMDevice::waveStream));

// Create the amplifier-mixer
amp = new Amp(ampMixer, AMP_ID, &clientCanvas, this);

// Create the layout canvas
...
/*--
| Amp::Amp
--*/
Amp::Amp(IMMAmpMixer& aAmp,

unsigned long windowid,
 IWindow* parent,
 IWindow* owner)
 : IMultiCellCanvas(windowid,parent,owner),
 name (AMPNAMEID, this,owner),
 slVolume (SL_VOLUME_ID,this,this,IRectangle(),
 ICircularSlider::defaultStyle()

| ICircularSlider::proportionalTicks),
...

slVolume.setRange (IRange(0,100)); // Customize the volume controls
 slVolume.setIncrement (IPair(10,1));
 slVolume.setText ("Volume");

addToCell (&slVolume, 1, 1, 1, 1);
...
ampHandler.handleEventsFor(this); // Handle events for the amplifier
}

548 VisualAge C++ Open Class Library User's Guide

Audio Devices

 3. Handle events.
...
/*--
| AmpHandler::moving
--*/
IBase::Boolean AmpHandler::moving (
 IControlEvent& evt)
{
 Boolean result=false;

Amp* pAmp = (Amp*)(evt.window());
ICircularSlider* pSld = (ICircularSlider*)(evt.controlWindow());
short val = pSld->value();

 if (pAmp->pAmpMixer)
 {
 switch (evt.controlId())
 {

case SL_VOLUME_ID: // Manage the volume control
 pAmp->pAmpMixer->setVolume(val);

result = true;
 break;

case SL_BALANCE_ID: // Manage the balance control
pAmp->pAmpMixer->setBalance(val + 50);

//Added 50 since balance can only be 1 to 100 where
//0 is full to the left and 100 is full to the right

result = true;
 break;

case SL_BASS_ID: // Manage the bass control
 pAmp->pAmpMixer->setBass(val);

result = true;
 break;

case SL_TREBLE_ID: // Manage the treble control
 pAmp->pAmpMixer->setTreble(val);

result = true;
 break;

case SL_PITCH_ID: // Manage the pitch control
 pAmp->pAmpMixer->setPitch(val);

result = true;
 break;

case SL_GAIN_ID: // Manage the gain control
 pAmp->pAmpMixer->setGain(val);

result = true;
 break;

} /* endswitch */
} /* endif */

 return result;
}

Figure 72 shows an amplifier-mixer player. All audio signals and sound shapings are

controlled here.

 Chapter 43. Creating and Using Multimedia Controls 549

Audio Devices

Figure 72. Amplifier-Mixer Example

CD Audio Player Device (IMMAudioCD)

The CD audio player device's interface should look and function similarly to your

home CD system as it uses the same meduim, the compact disk.

A compact disc can store up to 74 minutes of 44.1-kilohertz, two-channel audio

encoded as digital information. The audio compact disc, or the audio portion with

both data and audio on it, is organized as tracks, where one track is typically one

song. A track can be any length you want it to be, as long as it fits in the length of

the disc. The length of a compact disc track is measured in minutes, seconds, and

frames, where one frame is 1/75 second. It is possible to play portions of a track,

starting and stopping within the accuracy of a single frame. While an application can

play portions of a track, the amount of time required to seek from one track to

another and locate the starting frame in question can be substantial; it can vary

depending on where you are starting from. If your application calls for playing

numerous sounds from a CD with precise timing, make sure they are located

physically close together on the disc.

In addition to playing tracks, you can find out things about a CD, such as how many

tracks it contains and how long each track is, or you can query a CD’s table of

contents.

The CD device class, IMMAudioCD, provides access to devices that read CDs in

order to play a compact disc’s digital audio data. This data format, which is digital

audio, consists of sound that has been recorded as a sequence of 1s and 0s. A

digital-to-analog converter recreates the original waveforms at playback.

You can perform the following functions with the IMMAudioCD class:

 ¹ Playing

 ¹ Scanning

 ¹ Tracking

¹ Querying a CD’s table of contents

¹ Querying a UPC code or country code (a UPC code is a serial number that is

assigned to a disc)

550 VisualAge C++ Open Class Library User's Guide

Audio Devices

¹ Setting up to play a particular song automatically

¹ Forwarding or reversing to a particular track

¹ Forwarding or reversing to a particular location (for example, 2 minutes into

track 3)

Also useful is the ability to program the order in which a CD plays its tracks. Using

the IProfile class, you can record in a file the song title or track information. The

IMMAudioCD object loads the profile data and plays the CD based on the contents

of the data. This might be useful in a CD store, where a system allows you to listen

to CDs, traversing through the various tracks in six minutes.

You can use the following command to create a CD device object:

#include <immcdda.hpp> // Define the header file

IMMAudioCD cdPlayer; // Define the object

cdPlayer(true) // Pass true to the device constructors so
// the devices are opened and no additional
// function calls are made before using
// the device.

Playing Audio Compact Discs

The interface for accessing and playing CDs should look very similiar to what you

are used to on your home system. It should allow you to scan, play, stop, pause, and

reverse. The IMMAudioCD class works only on discs that contain CD_DA tracks.

The application must ensure that the appropriate compact disc is in the CD drive. For

example, a CD player application might simply update its track and time displays if a

new disc is inserted and verified. If you try to open an IMMAudioCD object and

there is not an audio CD in the CD-ROM drive, then the application sends a message

that the medium is not valid. A CD-drive can only be accessed by one player at a

time. An example of designing a user interface with a player panel containing a CD

player device follows:

1. Define the device in the .hpp file.
...
class MainWindow;

class CD : public IMultiCellCanvas,
 public ICommandHandler,
 public IObserver,
 public ISliderArmHandler,

public ISelectHandler {
//**
// Class: CD *
// *
// Purpose: Provide a CD player. *
// *
// It is a subclass of IMultiCell. *

 Chapter 43. Creating and Using Multimedia Controls 551

Audio Devices

// *
// *
//**
public:

CD(unsigned long windowid,
 IWindow* parent,
 IWindow* owner);

protected:

virtual Boolean
command(ICommandEvent& evt),
moving (IControlEvent& evt),

 selected(IControlEvent& event);

virtual IObserver
 &dispatchNotificationEvent(const INotificationEvent&);

private:
IMMAudioCD
cdPlayer; // CD player device

IMMPlayerPanel
baseButtons; // Player panel

IAnimatedButton // buttons to manipulate CD
 trackF,
 trackB,
 scanF,
 scanB,
 eject;

ICircularSlider
 volume;

IStaticText
 name,
 readout;

IRadioButton
 doorOpen,
 doorClosed;
};
...
class MainWindow : public IFrameWindow {
//***
// Class: MainWindow *
// *
// Purpose: Main Window for the CD sample application. *
// It is a subclass of IFrameWindow. *
// *
//***
...
private:
CD*
 cd;
...

552 VisualAge C++ Open Class Library User's Guide

Audio Devices

2. Create the main window and the CD
...
/*---
| MainWindow::MainWindow
--
MainWindow::MainWindow(unsigned long windowId)

: IFrameWindow("Audio CD Example",windowId),
 clientCanvas(CLIENTCANVASID,this,this)
{

cd = new CD (CD_ID, &clientCanvas, this);

...
/*--
CD::CD
CD::CD(unsigned long windowid,
 IWindow* parent,
 IWindow* owner)
 : IMultiCellCanvas(windowid,parent,owner),
 readout (READOUTID, this,this),

name (CDNAMEID, this, this),
baseButtons (BASEBUTTONID, this,this, IMMDevice::audioCD),

 trackF (TRACKFID,&baseButtons,&baseButtons,IRectangle(),
IWindow::visible | IAnimatedButton::animateWhenLatched),

 trackB (TRACKBID,&baseButtons,&baseButtons,IRectangle(),
IWindow::visible | IAnimatedButton::animateWhenLatched),

 scanF (SCANFID,&baseButtons,this,IRectangle(),
 ICustomButton::autoLatch |
 ICustomButton::latchable |

IWindow::visible | IAnimatedButton::animateWhenLatched),
 scanB (SCANBID,&baseButtons,this,IRectangle(),
 ICustomButton::autoLatch |
 ICustomButton::latchable |

IWindow::visible | IAnimatedButton::animateWhenLatched),
 eject (EJECTID,this,this,IRectangle(),
 ICustomButton::autoLatch |

IWindow::visible | IAnimatedButton::animateWhenLatched),
volume (VOLID, this, this, IRectangle(),

 ICircularSlider::defaultStyle() |
 ICircularSlider::proportionalTicks),

doorOpen (OPENBTN, this, this, IRectangle(),
 IRadioButton::defaultStyle() |
 IControl::group),

doorClosed(CLOSEDBTN, this, this),
 cdPlayer()
{

...
 doorOpen.setText("Open");

doorClosed.setText("Close door (if possible)");
 doorOpen.select();
 ISelectHandler::handleEventsFor(this);
 ICommandHandler::handleEventsFor(this);
 IObserver::handleNotificationsFor(cdPlayer);
 ISliderArmHandler::handleEventsFor(&volume);
}

 Chapter 43. Creating and Using Multimedia Controls 553

Audio Devices

3. Handle the CD track and scan buttons.
...
/*---
| CD::command
--*/
IBase::Boolean CD::command(ICommandEvent& evt)
{
 Boolean rv = false;
switch (evt.commandId())

 {
 case TRACKBID:
 cdPlayer.trackBackward();
 rv=true;
 break;
 case TRACKFID:
 cdPlayer.trackForward();
 rc=true;
 break;
 case SCANFID:
 if (scanF.isLatched())
 cdPlayer.startScanningForward();
 else
 cdPlayer.stop();
 rv=true;
 break;
 case SCANBID:
 if (scanB.isLatched())
 cdPlayer.startScanningBackward();
 else
 cdPlayer.stop();
 rv=true;
 break;
 case EJECTID:
 if (cdPlayer.isMediaPresent())
 cdPlayer.openDoor();
 else
 {
 cdPlayer.closeDoor();
 if (cdPlayer.isMediaPresent())
 eject.unlatch();
 }

rv = true;
 break;
 }
 return rv;
}

4. Handle the radio buttons to open and close the CD drive.

/*---
| CD::selected *
| Handle radio button click *
--*/
IBase::Boolean CD::selected(IControlEvent& evt)
{
 Boolean rv = false;
 switch(evt.controlId())
 {

554 VisualAge C++ Open Class Library User's Guide

Audio Devices

 case OPENBTN:
// enable open cd

 cdPlayer.openDoor();
rv = true;

 break;
 case CLOSEDBTN:

// close cd
 cdPlayer.closeDoor();

rv = true;
 break;
 }
 return rv;
}

5. Handle the notification events.

/*---
| CD::displatchNotificationEvent
--*/
IObserver& CD::dispatchNotificationEvent(const INotificationEvent& event)
{

if (event.notificationId() == IMMAudioCD::positionTimerId)
 {

IMMTrackMinSecFrameTime* time =
 (IMMTrackMinSecFrameTime*)(event.eventData().asUnsignedLong());

readout.setText(IString("TRACK ") +
 IString(time->track()).rightJustify(2,'0') +

IString(" MIN:SEC ") +
 IString(time->minutes()).rightJustify(2,'0') +
 IString(":") +
 IString(time->seconds()).rightJustify(2,'0'));

} /* endif */
else if (event.notificationId() == IMMAudioCD::trackStartedId)

 {
IMMTrackMinSecFrameTime* time =

 (IMMTrackMinSecFrameTime*)(event.eventData().asUnsignedLong());
readout.setText(IString("TRACK ") +

 IString(time->track()).rightJustify(2,'0') +
IString(" MIN:SEC ") +

 IString(time->minutes()).rightJustify(2,'0') +
 IString(":") +
 IString(time->seconds()).rightJustify(2,'0'));

} /* endif */
 return *this;
}

6. Handle the volume slider events.

/*---
| CD::moving |
--*/
...
IBase::Boolean CD::moving (IControlEvent& evt)
{
Boolean result = false;

 ICircularSlider
pSld = (ICircularSlider)(evt.controlWindow());

 short
val = pSld->value();

 Chapter 43. Creating and Using Multimedia Controls 555

Audio Devices

 switch(evt.controlId())
 {
 case VOLID:
 cdPlayer.setVolume(val);

result = true;
 break;
 }
 return result;
}

Figure 73 shows an audio CD example. Note that the track information is displayed

on the top part of the interface. The open and closed radio buttons control the CD

door.

Figure 73. Audio CD Example

MIDI Sequencer Device (IMMSequencer)

A sequencer device plays a MIDI file by sending commands to a synthesizer where

the commands are converted to the sounds of a specific musical instrument. The

sequencer uses the timing commands to sequence the playing of the music.

Music devices with a sequencer, such as a Casio keyboard or a drum machine (a

machine that reproduces percussion sounds), can record what is being played and can

play what has been recorded previously. This recording is called a sequence. This

sequence of music notes is stored in the MIDI format.

A sequencer is personal computer software that allows you to record, edit, and

arrange multiple tracks of MIDI data. Most sequencers let you edit the messages in a

sequence and link different sequences stored in memory. This finished sequence,

556 VisualAge C++ Open Class Library User's Guide

Audio Devices

ready for playback, is called a song. If you do not want to manipulate songs already

recorded with a sequencer, you can also create original songs. A sequencer lets you

record any style of music you want.

The MIDI sequencer device plays a MIDI song by sending commands from a MIDI

file to a synthesizer where the commands are converted to the sounds of specific

instruments. The IMMSequencer class is the base class for handling a MIDI

sequencer device, and it supports the MIDI standard. Thus, the sequencer controls

the characteristics of the MIDI information. In addition to allowing you to load MIDI

files, the IMMSequencer class inherits all of the main functions, such as play, stop,

pause, and record.

You can use the following command to create a MIDI sequencer object:

#include <immsequ.hpp> // Define the header file

IMMSequencer midiPlayer; // Define the object

midiPlayer(true) // Pass true to the device constructors so
// the devices are opened and no additional
// functions calls are made before using the

 // device.

Waveform Audio Player Device (IMMWaveAudio)

The waveform audio device allows an application to play or record digital audio

using files or application memory. Waveform audio devices require some form of

input, that is, a file. The file contains the actual sound or waveform. The device can

be opened with or without a file. If it is opened without a file, then a file is typically

loaded later.

This device can use files or memory buffers. Buffering data improves performance of

multimedia applications that perform numerous file input and output operations when

accessing media devices. Applications that are performance-sensitive (that is, slow

machines) can optimize file input and performance by buffering their data. If the data

is already in the memory buffer, the operating system can transfer the record to the

application’s area without reading the sector from disk.

An object instantiated from IMMWaveAudio is capable of performing many tasks

with a sound file. It can edit, play back, and record to name a few. In addition, the

object inherits up the chain for the functions of play, stop, pause, and setFormat, plus

cut, copy, and paste to and from a memory buffer.

You can use the following command to create a waveform audio device object:

 Chapter 43. Creating and Using Multimedia Controls 557

Audio Devices

#include <immwave.hpp> // Define the header file

IMMWaveAudio wavePlayer; // Define the object

wavePlayer(true) // Pass true to the device constructors so
// the devices are opened and no additional
// functions calls are made before using
// the device.

Using Audio Devices

The following sections discuss various ways of using the audio devices previously

introduced.

Playing a

Waveform

If you want to design an application that can record and play back an audio signal

from the user’s desktop, create an IMMWaveAudio object.

To play or record audio data, a device must be able to start and stop. Also, you

might want fast-forward, reverse, and pause functions. Because most people are

familiar with the control panel of the typical stereo, choose that model as your

application’s user interface model.

An example that creates a user interface with an audio device and its controls

follows:

1. Define the wave player device in the .hpp file.
...
class MainWindow;
class WavePlayer : public IMultiCellCanvas,
 public ICommandHandler,
 public ISliderArmHandler
{

public:
 WavePlayer(unsigned long windowid,
 IWindow* parent,
 IWindow* owner);
protected:
 virtual Boolean

command(ICommandEvent& evt),
moving(IControlEvent& evt);

private:
 IStaticText infoText;

 IAnimatedButton playbtn,
 stopbtn,
 ffbtn,
 rewbtn,
 pausebtn,
 recordbtn;

 ICircularSlider volume;

558 VisualAge C++ Open Class Library User's Guide

Audio Devices

 IMMWaveAudio wavePlayer;
...
};

2. Create the main window and the wave player.
...
/*---
| MainWindow::MainWindow
--*/
MainWindow::MainWindow(unsigned long windowId)

: IFrameWindow("Playing/Recording Waveform Example",windowId),
 menuBar(windowId, this)

{
wave = new WavePlayer(WAVEID, this, this);
setClient(wave);

 sizeTo(ISize(550, 300));
 setFocus().show();
...
/*---
| WavePlayer::WavePlayer
--*/
WavePlayer::WavePlayer(unsigned long windowid,
 IWindow* parent,
 IWindow* owner)
 : IMultiCellCanvas(windowid,parent,owner),

volume(VOLID, this, this, IRectangle(),
 ICircularSlider::defaultStyle() |
 ICircularSlider::proportionalTicks),
...
 wavePlayer()
{

 volume.setArmRange (IRange(0,100));
 volume.setRotationIncrement(10);
 volume.setText ("Volume");

volume.setValue(100);
wavePlayer.setVolume(100);

...
 ICommandHandler::handleEventsFor(this);

ISliderArmHandler::handleEventsFor(&volume);
}

3. Handle the player panel events.

/*---
| WavePlayer::moving
--*/
IBase::Boolean WavePlayer::moving(IControlEvent& evt)
{
 Boolean

result = false;

 ICircularSlider
pSld = (ICircularSlider)(evt.controlWindow());

 short
val = pSld->value();

 Chapter 43. Creating and Using Multimedia Controls 559

Audio Devices

switch(evt.controlId())
 {
 case VOLID:

wavePlayer.setVolume(val);
result = true;

 break;
 }

 return result;
}

/*---
| WavePlayer::command
--*/
...
IBase::Boolean WavePlayer::command(ICommandEvent& evt)
{
Boolean rv = false;

 switch (evt.commandId())
 {
 case MI_OPEN:
 {
 IFileDialog::Settings fdSettings;
 fdSettings.setTitle("Load file");
 fdSettings.setFileName("*.wav");

IFileDialog fd(desktopWindow(), this, fdSettings);
 if (fd.pressedOK())
 wavePlayer.loadOnThread(fd.fileName());
 rv=true;
 break;
 }

 case PLAYID:
 wavePlayer.play();
 infoText.setText("Play Mode");
 rv=true;
 break;
 case STOPID:
 wavePlayer.stop();
 infoText.setText("Stop Mode");
 playbtn.unlatch();
 rv=true;
 break;
 case REWID:
 wavePlayer.seekToStart();
 infoText.setText("Rewind Mode");
 rv=true;
 break;
 case FFID:
 wavePlayer.seekToEnd();
 infoText.setText("FF Mode");
 rv=true;
 break;
 case PAUSEID:

if (IMMDevice::paused == WavePlayer.mode())
 playbtn.latch();
 wavePlayer.pause();

560 VisualAge C++ Open Class Library User's Guide

Audio Devices

 infoText.setText("Pause Mode");
 rv=true;
 break;
 case RECID:
 {
 wavePlayer.loadOnThread("hui.wav");
 recordbtn.latch();
 wavePlayer.record();

infoText.setText("Record Mode");
 rv=true;
 break;
 }
 }
 return rv;
}

Figure 74 demonstrates a wave player interface.

Figure 74. Wave Player Interface Example

Recording a

Waveform

As stated earlier, a waveform is a digital representation of a sound wave.

Different formats of a waveform, such as pulse code modulation (PCM), encode

sound into digital data that can be sent to an amplifier-mixer device for subsequent

conversion into audio. This signal can be played through conventional speakers or

earphones.

The average waveform audio driver uses PCM, 22 kiloHertz, 16 bits-per-second, and

monaural as the default for 16-bit adapters. If the adapter does not support 16-bit

PCM, then the resolution (bits-per-second) is downgraded to 8 bits. The types of

audio resolution are 8 (multimedia), 16 (CD audio) and 24 (high-end) digital

bits-per-sample. Red Book audio is a music industry term technically known as the

CD digital audio standard for music CD audio. Yellow Book audio is 16-bit or 8-bit

digital audio played back by the sound card. Typically, yellow book audio is stored

on the personal computer as .wav files.

 Chapter 43. Creating and Using Multimedia Controls 561

Audio Devices

One of the typical uses of the waveform audio device is to digitize an input signal or

sound into discrete samples for storage in a file. An example of this is recording an

electronic audio mail message to tell someone about an idea, as opposed to typing a

memo. An electronic audio mail application would provide the user with a simple

control panel to allow the message to be recorded. Recording digitally means you get

flawless sound quality that does not deteriorate.

You can record digital audio information in the format that fits your specific needs,

such as for space or quality. For example, assume that a new wave audio file is

created with the following command:

#include <immwave.hpp>
wavePlayer = new IMMWaveAudio(true); // Create the object.
wavePlayer.record(10, 20); // Enter begin and end time values.

When you create the file, you might want a file that is compatible with mu-law (the

compression scheme used by a telephone system). The compression scheme can

change the frequency range from a telephone to CD quality.

The attributes you need to consider when recording a file are the following:

¹ Format and its compression algorithm (pcm, adpcm, ibmcvcsd, okiadpcm,

dviadpcm, digistd, digifix, or alaw)

¹ Bits per sample (16-bit is considered CD quality)

¹ Sampling rate (for example, 22 kiloHertz)

¹ Number of channels (stereo or monaural)

These attributes determine the audio quality. You can even make the decision to use

low-bit resolution, a low sample rate, or even monaural versus stereo on the basis of

disc space and bandwidth considerations. Always set the waveform format, sampling

rate, resolution, and number of channels to ensure that the waveform is created with

the desired parameters.

An example of code that sets these values follows:

#include <immwave.hpp>
wavePlayer = new IMMWaveAudio(); // Create the object.
wavePlayer.setBitsPerSample(Value);
wavePlayer.setSamplesPerSecond(Value); // Set sampling rate
wavePlayer.setChannels(1); // Monaural is 1 (stereo is 2)

Your application needs to define or select the recording source. The microphone is

the default input device for recording waveforms.

The IMMWaveAudio class inherits the record function. An example of playing and

recording a wave file follows:

562 VisualAge C++ Open Class Library User's Guide

Audio Devices

1. Define the wave player device in the .hpp file.
...

class WavePlayer : public IMultiCellCanvas,
 public ICommandHandler
 public ISliderArmHandler,
 public ISelectHandler
{
//**
// Class: WavePlayer *
// *
// Purpose: Provide a WavePlayer for use by all of the devices. *
// It is a subclass of IMultiCell. *
// *
//**
public:
 WavePlayer(unsigned long windowid,
 IWindow* parent,
 IWindow* owner);

 virtual Boolean
command(ICommandEvent& event),
selected(IControlEvent& event),
moving(IControlEvent& event);

private:
 IStaticText infoText;

IAnimatedButton playbtn, // Player panel
 stopbtn,
 ffbtn,
 rewbtn,
 pausebtn,
 recordbtn;

ICircularSlider volume; // Volume control

IRadioButton mono, // Radio Button controls
 stereo;

 IStaticText formatText; // Static Text

 IMMWaveAudio wavePlayer;
};
...
//***
// Class: MainWindow *
// *
// Purpose: Provide a WavePlayer for use by all of the devices. *
// It is a subclass of IMultiCell. *
// *
//***
class MainWindow : public IFrameWindow {

public:

 Chapter 43. Creating and Using Multimedia Controls 563

Audio Devices

MainWindow(unsigned long windowId);

private:
 IMenuBar menuBar;
 WavePlayer myWavePlayer;

};

2. Create the main window and the wave player.

/*---
MainWindow::MainWindow
MainWindow::MainWindow(unsigned long windowId)

: IFrameWindow("Playing/Recording Waveform Example",windowId),
 menuBar(windowId, this),

myWavePlayer(WINDOWID, this, this)

{

setClient(&myWavePlayer);
 setFocus().show();
...
/*---
| WavePlayer::WavePlayer
---*/
WavePlayer::WavePlayer(unsigned long windowid,
 IWindow* parent,
 IWindow* owner)

:IMultiCellCanvas (windowid, parent, owner),
volume (VOLID, this, this, IRectangle(),

 ICircularSlider::defaultStyle() |
 ICircularSlider::proportionalTicks),
...

infoText(INFOTXT, this, this),
mono(MONOID, this, this, IRectangle(),

IRadioButton::defaultStyle() | IControl::group),
stereo(STEREOID, this, this),
formatText(FORTEXTID, this, this),

 wavePlayer()
...

 3. Handle events.

/*---
| WavePlayer::selected
---*/
IBase::Boolean WavePlayer::selected(IControlEvent& evt)
{
Boolean rv = false;

switch (evt.controlId()) // Handle the radio button controls
 {
 case MONOID:
 wavePlayer.setChannels(1);

rv = true;
 break;

564 VisualAge C++ Open Class Library User's Guide

Audio Devices

 case STEREOID:
 wavePlayer.setChannels(2);

rv = true;
 break;
 }
 return rv;
 }
IBase::Boolean WavePlayer::moving(IControlEvent& evt)
{
 Boolean

result = false;

 ICircularSlider
pSld = (ICircularSlider)(evt.controlWindow());

 short
val = pSld->value();

switch(evt.controlId())
 {
 case VOLID:

wavePlayer.setVolume(val);
result = true;

 break;
 }
 return result;
}

IBase::Boolean WavePlayer::command(ICommandEvent& evt)
{
 Boolean

rv = false;
switch(evt.commandId())

 {
 case MI_OPEN:
 {
 IFileDialog::Settings
 fdSettings;

fdSettings.setTitle("Load file");
fdSettings.setFileName("*.wav");

 IFileDialog
fd(desktopWindow(), this, fdSettings);

if (fd.pressedOK())
 {

wavePlayer.loadOnThread(fd.fileName());
 }
 rv=true;
 break;
 }
 case PLAYID:
 {
 wavePlayer.play();

infoText.setText("Play Mode");
 rv=true;
 break;
 }
 case STOPID:
 {
 wavePlayer.stop();

 Chapter 43. Creating and Using Multimedia Controls 565

Audio Devices

 playbtn.enable();
 pausebtn.enable();
 ffbtn.enable();
 rewbtn.enable();

infoText.setText("Stop Mode");
 playbtn.unlatch();
 rv=true;
 break;
 }
 case REWID:
 {
 wavePlayer.seekToStart();

infoText.setText("Rewind Mode");
 rv=true;
 break;
 }
 case FFID:
 {
 wavePlayer.seekToEnd();

infoText.setText("FF Mode");
 rv=true;
 break;
 }
 case PAUSEID:
 {

if (IMMDevice::paused == wavePlayer.mode())
 playbtn.latch();
 wavePlayer.pause();

infoText.setText("Pause Mode");
 rv=true;
 break;
 }
 case RECID:
 {
 recordbtn.latch();

playbtn.enable(false);
pausebtn.enable(false);
ffbtn.enable(false);
rewbtn.enable(false);

 wavePlayer.record();
infoText.setText("Record Mode");

 rv=true;
 break;
 }
 }
 return rv;
}

Figure 75 demonstrates playing and recording a wave player. You can select a

format and number of channels.

566 VisualAge C++ Open Class Library User's Guide

Audio Devices

Figure 75. Wave Player Playing and Recording Example

Loading the Audio or Video Device Data Files (IMMFileMedia)

There are three ways to load a file:

¹ Load with the wait calltype. The call does not return until the system loads the

file into memory. This will tie up the operating system’s windowing system until

this call returns.

¹ Load with the nowait calltype. This creates a thread. The thread then loads the

data and then notifies the attached observers when it is done. This call will

return without waiting for the thread to complete. This will not tie up the

operating system’s windowing system.

¹ Use LoadOnThread. This creates a thread. The thread then loads the data. This

call will not return until the thread finishes. This will not tie up the operating

system’s windowing system.

Using the Default Device Player (IMMPlayerPanel)

The interface for play, pausing, and stopping should appear similar to your system at

home.

You can use VisualAge C++ Open Class Library’s custom player panel. The

IMMPlayerPanel class creates and manages a player panel. If you create the

IMMPlayerPanel without passing in a device type then you will get the default

buttons, which are:

 Chapter 43. Creating and Using Multimedia Controls 567

Audio Devices

 ¹ Play

 ¹ Stop

 ¹ Pause

 ¹ Rewind

 ¹ Fast forward

If you pass in an overlay, videoDisk animation, or digital video you will also get step

forward and step backward buttons.

The base player panel is sufficient to control most multimedia devices.

The buttons are added to an IMultiCellCanvas in the following coordinates:

Play 4,1 or at 5,1 if the step buttons are enabled

Pause 3,1 or at 4,1 if the step buttons are enabled

fastForward 5,1 or at 6,1 if step buttons are enabled

rewind 1,1 or at 2,1 if step buttons are enabled

stop 2,1 or at 3,1 if step buttons are enabled

stepForward 7,1 if step buttons are enabled

stepBackward 1,1 if step buttons are enabled

An example of creating the VisualAge C++ Open Class Library custom player panel

follows. See the other examples in this chapter for additional samples of using a

player panel.
...

// Create a playable wave device
IMMWaveAudio player;

// Create the player panel and set it to control the wave audio player
IMMPlayerPanel panel(0x8008, &mainWindow, &mainWindow,
 IMMDevice::waveAudio);
panel.setPlayableDevice(player);
...

Figure 76 shows a custom player panel.

Figure 76. Player Panel Example

568 VisualAge C++ Open Class Library User's Guide

Audio Devices

Note: The stop and pause buttons are disabled when starting up the application.

Editing a

Waveform

The IMMWaveAudio class edits wave behavior. You can cut, copy, and paste to

and from a memory buffer. A wave editor program allows you to record, edit,

combine, and add special effects to a digital audio file. The file is not actually

modified until the original file is saved. The editor allows you to mix tracks. You

can use the musical editing process, for example, to correct mistakes in an artist’s

original interpretation or to change certain points of style before playback or final

recording.

Using Save

and Save As

The IMMRecordable class provides all the common behavior for devices that

support recordable media. When you save a file the binary information is stored in

addition to all of the wave's attributes. For example, if you are saving a waveform,

some of the attributes that are saved follow:

 ¹ Sampling rate

 ¹ Resolution

 ¹ Waveform format

¹ Number of channels

Playing a Musical Instrument Digital Interface (MIDI) File

Typical user interfaces designed to offer playing of MIDI files have either a player

panel containing a MIDI device object or a menu option to load a file via a file

dialog or both. An example with a player panel follows:

1. Define the MIDI device in the .hpp file.

class MIDI : public IMultiCellCanvas,
 public ICommandHandler,
 public ISliderArmHandler {
//**
// Class: MIDI *
// *
// Purpose: Provide a MIDI Player. *
// It is a subclass of IMultiCell. *
// *
//**
public:

MIDI(unsigned long windowid,
 IWindow* parent,
 IWindow* owner);

protected:
virtual Boolean
command(ICommandEvent& evt),
moving (IControlEvent& evt);

private:

IMMSequencer
 midiPlayer;

 Chapter 43. Creating and Using Multimedia Controls 569

Audio Devices

IMMPlayerPanel
 baseButtons;

IAnimatedButton
 loadbtn,
 rec;

ICircularSlider
 volume;

IStaticText
 name;

};
...

2. Create the main window and the MIDI player.
...
/*---
| MainWindow::MainWindow
---*/
MainWindow::MainWindow(unsigned long windowId)

: IFrameWindow ("Example MIDI Window", windowId),
clientCanvas (CLIENTCANVASID, this, this),
midi (MIDI_ID, &clientCanvas, this),
menuBar (windowId, this)

{
...
}
/*---
| MIDI::MIDI
---*/
MIDI::MIDI(unsigned long windowid,
 IWindow* parent,
 IWindow* owner)
 : IMultiCellCanvas(windowid,parent,owner),

name (MIDINAMEID, this, this),
baseButtons (BASEBUTTONID, this,this),
volume (VOLID, this, this, IRectangle(),

 ICircularSlider::defaultStyle() |
 ICircularSlider::proportionalTicks),

rec (RECID, &baseButtons, this, IRectangle(),
 ICustomButton::latchable |
 ICustomButton::latchable |
 IWindow::visible |
 IAnimatedButton::animateWhenLatched),

loadbtn (LOADID, this, this, IRectangle(),
 IWindow::visible |
 IAnimatedButton::animateWhenLatched),
 midiPlayer()
{

 baseButtons.setPlayableDevice(&midiPlayer); // Add button to panel
...

3. Handle events for the sliders.

570 VisualAge C++ Open Class Library User's Guide

Audio Devices

/*---
| MIDI::moving
---*/
IBase::Boolean MIDI::moving (IControlEvent& evt)
{
Boolean result = false;

 ICircularSlider
pSld = (ICircularSlider)(evt.controlWindow());

 short
val = pSld->value();

 switch(evt.controlId())
 {
 case VOLID:
 midiPlayer.setVolume(val);

result = true;
 break;
 }
 return result;
}

4. Handle events for the radio buttons.

/*---
| MIDI::command
---*/
IBase::Boolean MIDI::command(ICommandEvent& evt)
{
Boolean rc = false;
switch (evt.commandId()) // Load the midi file to play

 {
 case MI_OPEN:
 case LOADID:
 IFileDialog::Settings fdSettings;
 fdSettings.setTitle("Load file");
 fdSettings.setFileName("*.mid");

IFileDialog fd(desktopWindow(), this, fdSettings);
 if (fd.pressedOK())
 midiPlayer.loadOnThread(fd.fileName());
 rc=true;

 case PLAYID:
 {
 midiPlayer.play();
 rv=true;
 break;
 }
 }
 return rv;
}

Figure 77 Displays a MIDI interface. Note that when you select the file menu

option, a file dialog appears.

 Chapter 43. Creating and Using Multimedia Controls 571

Audio Devices

Figure 77. An example of a MIDI interface.

Using

Animated

Buttons

Animated buttons are customized push buttons. For example there is a play

animated button which has a play button graphic on it. Use the IAnimatedButton

class to create and manage the animated buttons. You can use a set of predefined

bitmaps as graphics on the animated button (such as fast-forward or stop). The event

handling for animated buttons is handled exactly as you handle pushbuttons. See

the wave player example in “Playing a Waveform” on page 558 for an example of

animated buttons. The rewind, stop, pause, play, fast-forward and record buttons are

all examples of animated buttons.

Using

Circular

Sliders

Use circular sliders for functions that a user can manipulate, such as volume and

balance. You probably know how a linear slider works. A circular slider provides

the same function; however, physically it looks different because it is circular. Like

the dials found on your home electronics, its slider arm is shown as a radius of the

dial. Outside the perimeter of the dial is a circular scale with tick marks representing

incremental values the slider arm can point to. Its value can be tracked by pointing

to any area on the dial and pressing the select button while moving the mouse on the

desktop.

Because of its shape, the circular slider takes up less space than a linear slider and

gives you more flexibility in designing a panel that has multiple controls.

An example of a creating a circular slider follows:

572 VisualAge C++ Open Class Library User's Guide

Audio Devices

...
//***
// main - Application entry point
//***
int main()
{

IFrameWindow mainWindow ("Circular Slider Example",0x1000); // Create the frame window

ICircularSlider slider(0x8008, // Create the slider control
 &mainWindow,
 &mainWindow,
 IRectangle(),
 ICircularSlider::defaultStyle()
 | ICircularSlider::proportionalTicks);

slider.setArmRange(IRange(0, 100)); // Customize the circular slider
 slider.setRotationIncrement(1);
 slider.setText("Volume");

 mainWindow.setClient(&slider);
ISliderArmHandler *shslider = new ISliderArmHandler();

 shslider->handleEventsFor(&slider);

 mainWindow.sizeTo(ISize(400,300));
 mainWindow.show();
 mainWindow.setFocus();
 IApplication::current().run();

// Attach a handler to the control

 return 0;
}
...

Figure 78 shows a slider example. Note that its value is currently set at 30%.

Figure 78. Circular Slider Example

 Chapter 43. Creating and Using Multimedia Controls 573

Video Devices

Creating and Using Video Devices

The following section discusses creating a video device with controls that manipulate

the device.

Understanding Video Concepts

Many people do not realize that the differences between analog and digital video are

similar to the audio differences. An analog video is a series of squiggles that

modulate a ray gun in a picture tube to paint images similar to what we see on a

television.

Digitizing video freezes images into individual frames, each one a picture that can be

manipulated. The frame rate is akin to the sample rate in that it explains how many

times a second video is frozen. Frame rates generally vary from 12 (animation) to 24

(film) and up. Instead of bandwidth, a video's frame rate affects how smooth the

motion of objects within the video image will appear.

Video resolution defines how much information is used to describe each dot or pixel

of a frame. It ranges from 8 (multimedia) to 24 (higher-end graphics).

Creating Video Devices

The following sections introduce you to the video aspect of multimedia. You first

learn how to create video devices.

Digital Video Player Device (IMMDigitalVideo)

A good way to visualize what a digital video player device does is to compare it to

your VCR at home. Anything you can do with a VCR you can do with a digital

video player device.

A digital video player device supports functions that manipulate digital video and

audio files as well as digital video-only files. The audio-visual files have the

extension of .avi (AVI means audio-visual interface).

The digital video device class, IMMDigitalVideo, includes functions that change the

state of the window, query and set a device’s playback speed, and change a video

window’s attributes. The video window is where the actual video is displayed. It

can be free-floating or in a canvas window along with the buttons to manipulate the

video. This class inherits functions, such as playback, record, query, adjust speed of

motion video, and modify the audio attributes of the audio stored in the video file. A

sound card is required to play back the sound part of the video files.

The system provided default video window does not provide a Close menu choice. If

you want that capability, the digital video class provides the ability to replace the

default video window with one of your choosing.

574 VisualAge C++ Open Class Library User's Guide

Video Devices

The command to create a digital video device object is:

#include <immdigvd.hpp> // Define the header file

IMMDigitalVideo videoPlayer; // Define the object

videoPlayer(true) // Pass true to the device constructors so
// the devices are opened and no additional
// functions calls are made before using
// the device.

Using Video Devices

The following sections discuss the intricacies of using video devices.

Playing Video

Devices

The type of system in which you plan to play your video files is relative to the

type of performance you will get when you play your files. The AVI files that store

the clips can be rather large, even for something like a brief commercial. We

recommend that you use the loadOnThread function when reading in large video

clips. If you use load, it will more than likely tie up your OS/2 windowing system

until the file is loaded. That can annoy your users. The loadOnThread function

creates a thread to do the loading, which allows a user to continue doing an other

task.

In addition to requiring a lot of storage, playing video files requires fast computers to

run on. A 66-megahertz 486 system is an excellent choice. Lesser hardware

produces less realistic movies with poorer resolution. Larger objects require more

processor resources to animate. This means that it takes longer to move each frame

of the animation from your hard drive, or wherever it resides, to your screen.

To sum up, factors affecting playback of a video are:

.

¹ Processing power of the CPU

¹ Throughput of data storage (for example, CD-ROM, hard disk, LAN)

¹ Efficiency of the display subsystem (such as the video adapter and display driver)

When a motion video device element is opened, the current position in the medium is

the first playable area after any header or table of contents information.

Each frame in a motion video file has a number associated with it. The first frame is

frame 0, the second frame is frame 1, and so on. The current position always

indicates the frame that is about to be displayed. You can specify the play from and

play to positions. You also give a frame position parameter to the seek command.

AVI files typically have digitized sound tracks along with their pictures. If you play

the AVI file on a system with a sound card installed in it and turn on your speakers,

you also hear the sound it contains.

 Chapter 43. Creating and Using Multimedia Controls 575

Video Devices

The faster the machine, the faster the data processing and the playback are. Digital

video is processor-intensive. Raw video requires huge amounts of memory—typically

900 kilobytes for a single frame of video, which equates to roughly 27

megabytes-per-second to record or play in real time. This is far beyond the

capabilities of most personal computers today. So, digital video is often

data-compressed to make it manageable. The simplest form of video compression is

a smaller frame size or slower frame rate. This is the reason most digital video used

in multimedia is so small and jerky. With the slow data transfer rate of CD drives,

the video must be compressed further to be able to play it back. In sum: as your

frame sizes and rates go up, so do your hardware requirements.

The tracks of data on a hard drive are laid out as concentric circles, whereas a CD

has a single, spiral track, like an old phonograph record. Consequently, reading data

requires more processing time on a CD.

One usually designs a player panel with push buttons to play video files. Video files

can either be played in the application's window or in a free-floating window. A

free-floating window displays a video in motion where the window is separate from

the main application window. An example of doing either follows:

1. Define the video device.
...
class MainWindow : public IFrameWindow,
 public ICommandHandler,

public ISelectHandler {
//***
// Class: MainWindow *
// *
// Purpose: Main Window for MultiMedia sample *
// application. It is a subclass of IFrameWindow. *
// *
//***
...
ICanvas *videoCanvas; // Define the canvas to place

 // controls

IMMDigitalVideo videoPlayer; // Define the video player

IMMPlayerPanel btnPanel; // Define the player panel

IAnimatedButton loadBtn; // Additional button
// to load files

IRadioButton playFree, // Radio buttons
// to choose free-floating

playStatic; // or static window

2. Create the main window.

576 VisualAge C++ Open Class Library User's Guide

Video Devices

/*---
| MainWindow::MainWindow
---*/
...
MainWindow::MainWindow(unsigned long windowId)
 : IFrameWindow(windowId),
 clientCanvas(CLIENTCANVASID,this,this),

btnPanel(PANELID, &clientCanvas, &clientCanvas),
loadBtn(LOADID, &clientCanvas, &clientCanvas, IRectangle(),

IWindow::visible | IAnimatedButton::animateWhenLatched),
playFree(FREEID, &clientCanvas, &clientCanvas, IRectangle(),

IRadioButton::defaultStyle() | IControl::group),
playStatic(STATICID, &clientCanvas, &clientCanvas),

 videoPlayer(true)
{

unsigned long size = 180; // Create and attach
// the video canvas
// to the main window

videoCanvas = new ICanvas(VIDEOCANVAS, this, this);
 videoCanvas->setBackgroundColor(IColor::black);

 btnPanel.setPlayableDevice(&videoPlayer); // Attach video
// player to player panel

 loadBtn.setBitmaps(IAnimatedButton::eject);
 loadBtn.setText("Load");

playFree.setText("Play video in floating window");
playStatic.setText("Play video in static window");

 playFree.select();

 clientCanvas.addToCell(&btnPanel, 2, 7, 3, 1);
 clientCanvas.addToCell(&loadBtn, 1, 7);
 clientCanvas.addToCell(&playFree, 2, 2);

clientCanvas.addToCell(&playStatic, 2, 4);
 addExtension(videoCanvas, IFrameWindow::aboveClient,
 size, IFrameWindow::thinLine);

 3. Handle events.
...
/*---
| MainWindow::command
---*/
IBase::Boolean MainWindow::command(
 ICommandEvent& evt)
{
 Boolean rv=false;

 switch (evt.commandId()) // Load the .avi file to play
 {
 case LOADID:
 IFileDialog::Settings fdSettings;
 fdSettings.setTitle("Load file");
 fdSettings.setFileName("*.avi");

IFileDialog fd(desktopWindow(), this, fdSettings);
 if (fd.pressedOK())
 videoPlayer.loadOnThread(fd.fileName());
 rv=true;

 Chapter 43. Creating and Using Multimedia Controls 577

Video Devices

 break;
 }
 return rv;
}
/*---
| MainWindow::selected
---*/
IBase::Boolean MainWindow::selected(

IControlEvent& evt)
{
Boolean rv = false;

switch (evt.controlId()) // Handle radio buttons to switch
{ // between playing free-floaing
case STATICID: // or statically on the frame window

 videoPlayer.setWindow(*videoCanvas);
rv = true;

 break;
 case FREEID:
 videoPlayer.useDefaultWindow();

rv = true;
 break;
 }
 return rv;
 }

Figure 79 shows a video device using a floating window.

Figure 79. Motion Video Example

Figure 80 shows a video device displaying the video on a canvas child. Note that the

video window is located in the same window as the video player panel.

578 VisualAge C++ Open Class Library User's Guide

Video Devices

Figure 80. Motion Video Example

CD Extended-Architecture Player Device (IMMCDXA)

The device class IMMCDXA provides access to devices that read CDs for the

purpose of playing compact disc-extended architecture (CD-XA) data. CD-XA refers

to a storage format that accommodates data that is stored in a mixture of formats.

The CD-XA data is stored in part as files, in part as video, and in part as audio. The

maximum amount of storage for each is:

Video 100 MB

Data 50 MB

Audio 20 MB

Playback control is managed by the CD-XA media device and the amplifier-mixer

device.

 Chapter 43. Creating and Using Multimedia Controls 579

Additional Class Features

An application for using the IMMCDXA class might be for video CDs or movie CDs.

When giving a presentation, you might want to call up different data types at different

times.

This class performs the same functions as the IMMAudioCD class.

Using Additional Multimedia User Interface Class Library Class Features

The following sections describe additional features provided by the User Interface

Class Library:

¹ “Notifying Observer Objects” briefly discusses notifying objects when tasks are

completed.

¹ “Controlling Position, Time, and Speed” describes the concepts of time, position,

and speed in working with multimedia.

¹ The last section, “Multimedia Class Hierarchy” on page 582, presents the class

hierarchy.

Notifying Observer Objects

The system returns an asynchronous response message (notification message) to the

application to indicate events, such as completing a media device function or passing

ownership of a media device from one process to another.

You can implement the notification architecture in your multimedia applications in

the following ways:

¹ Call the INotifier::notifyObservers function with a user-defined event

¹ Subclass the IObserver class

 See the Notification sections in the Visual Builder User’s Guide and in the Open

Class Library Reference for more information.

 Refer to the CD sample for an example on using observer objects.

Controlling Position, Time, and Speed

Media position and time information are required as input and are also returned as

output by many of the classes. All of these attributes—position, time, and speed—are

relative in terms of time.

Time There are 8 different time classes:

 ¹ IMMTime

 ¹ IMMillisecondTime

 ¹ IMMHourMinSecFrameTime

580 VisualAge C++ Open Class Library User's Guide

Additional Class Features

 ¹ IMM24FramesPerSecondTime

 ¹ IMM25FramesPerSecondTime

 ¹ IMM30FramesPerSecondTime

 ¹ IMMMinSecFrameTime

 ¹ IMMHourMinSecTime

There are various types of time formats (for example, milliseconds, HourMinSec,

24FramePerSecond). Time formats vary, depending on the device being used and the

format of the data being operated on.

Descriptions of the time classes are as follows:

The time classes contain methods that manipulate (add, subtract) and parse the

formatted time data.

Class Description

IMMTime The base device time class. It provides

behavior common to all device times.

MMTime is the standard time and media

position format supported by the media

control interface. The time unit is 333

microseconds.

IMMMillisecondTime Represents one-thousandth of a second.

IMMHourMinSecFrameTime Represents the hours-minutes-seconds-frames

time format.

IMM24FramesPerSecondTime

IMM25FramesPerSecondTime

IMM30FramesPerSecondTime

Represent the frame-numbering system

developed by the Motion Picture and

Television engineers that assigns a number to

each frame of video. The 8-digit code is in

the form HH:MM:SS:FF (hours, minutes,

seconds, frame number). The numbers track

elapsed hours, minutes, seconds, and frames

from any chosen point. The classes differ

only in their respective frames-per-second

format. They are 24, 25 and 30

frames-per-second respectively. These

packed formats represent elapsed hours,

minutes, seconds, and frames from any

specified point.

IMMMinSecFrameTime Represents the time format based on the 75

frames-per-second CD digital audio standard.

IMMHourMinSecTime Represents the hours-minutes-seconds time

format.

 Chapter 43. Creating and Using Multimedia Controls 581

Multimedia Samples

Position Position relates to time. For example, you might want to seek 3 minutes into a song

on a compact disc. Position is the number of units before the request is executed.

Units can be bytes, time, or some other unit of measure.

Speed Speed can be thought of in two ways: framesPerSecond and as a percentage. The

percentage value refers to a percent of the maximum speed for the device. You

might use a percentage when you currently are playing video at the device’s fastest

rate of one hundred percent. You could cut the rate to 60 percent. To do that, create

a IMMSpeed object with a parameter of 60 and pass it to the set speed function. Or,

you could use frames-per-second if you want to play back a video at specific

frames-per-second.

The tracks of data on a hard drive are laid out as concentric circles, whereas a CD

has a single, spiral track, like an old phonograph record. Consequently, reading data

requires more processing time on a CD.

Multimedia Class Hierarchy

The names of the multimedia classes provide information about the data and functions

available to you for your application.

In addition to their own data and functions, the multimedia classes can access the data

and functions of the classes they inherit from. You can derive specialized classes for

your application from this extensive hierarchy.

 See “Multimedia Classes” on page 664 for the complete multimedia hierarchy.

 Multimedia Samples

The purpose of the mmremote and mmstereo sample programs is to illustrate how to

use the User Interface Class Library multimedia classes to create multimedia

applications. Although the samples do not demonstrate all of the multimedia controls

and functions, they do provide you with examples that span the most common uses of

the classes. You can modify and use the sample programs as templates to start

construction of your own multimedia applications. The multimedia samples are

located in the following directory: \ibmcpp\samples\ioc

 Subdirectory Structure

Code for the sample programs and the associated files you need to understand and

run the samples are located in the following subdirectories of the sample directory:

Sample Subdirectory

Stereo Control Panel mmstereo

Universal Remote Control mmremote

582 VisualAge C++ Open Class Library User's Guide

Help Information

44 Providing Help Information

Help information is the information about how to use an application. By describing

an application’s choices, objects, and interaction techniques, help information can

assist users in learning to use a product.

The User Interface Class Library provides an IHelpWindow class that uses the OS/2

Information Presentation Facility (IPF) to provide help information for applications.

You should create and associate an IHelpWindow object with one of your

application’s main windows. The User Interface Class Library also provides an

IHelpHandler class to process help window events. When you associate an

application window with a help window, help events are dispatched to the help

handlers attached to the application window.

Creating Help Information

Use the following steps to create help information for your application:

1. Create a file containing the help information.

Create the source text that displays in your application’s help window using the

IPF format (.IPF file). Compile your IPF file into a help file (.HLP file) using

the IPFC compiler. Refer to the OS/2 Information Presentation Facility

Guide and Reference for descriptions of the tags you use to create the source .IPF

file.

For an example of an IPF source file, refer to the Hello World version 5

AHELLOW5.IPF file, which is described in Chapter 50, “Adding Split Canvases,

a List Box, Native System Functions, and Help” on page 635.

2. Define the help window title and the help submenu in your resource file. In

Hello World version 5, the help window title and help submenu are defined in

the AHELLOW5.RC file, as follows:
...
STR_HTITLE, "C++ Hello World - Help Window" //Help window title string
...
SUBMENU "˜Help", MI_HELP, MIS_HELP //Help submenu
 BEGIN

MENUITEM "˜General help...", SC_HELPEXTENDED, MIS_SYSCOMMAND
MENUITEM "˜Keys help...", SC_HELPKEYS, MIS_SYSCOMMAND
MENUITEM "Help ˜index...", SC_HELPINDEX, MIS_SYSCOMMAND

 END
...

MI_HELP is the help menu ID.

 Copyright IBM Corp. 1993, 1995 583

Help Information

Normally, you specify MIS_HELP for a menu item to cause a help event, rather

than a command event, to be posted when the menu item is selected. OS/2 PM

ignores MIS_HELP specified on submenu items.

When MIS_SYSCOMMAND is specified with the predefined SC_HELP* IDs, a

system command event is generated. The default system command handler

recognizes the predefined IDs and shows the appropriate help panel, except for

SC_HELPKEYS, which by default does nothing. You can override this default

processing for SC_HELPKEYS, using an IHelpHandler, which is described in a

later step.

3. Define a help table in the resource file.

The help table defines the relationship between the window ID and the general or

contextual panel ID that is defined in the IPF file. The following help table is

defined in the resource file, AHELLOW5.RC, for Hello World version 5:

HELPTABLE HELP_TABLE
 BEGIN
 HELPITEM WND_MAIN, SUBTABLE_MAIN, 100
 HELPITEM WND_TEXTDIALOG, SUBTABLE_DIALOG, 200
 END

HELPSUBTABLE SUBTABLE_MAIN //Main window help subtable
 BEGIN //

HELPSUBITEM WND_HELLO, 100 //Hello static text help ID
HELPSUBITEM WND_LISTBOX,102 //List box help ID
HELPSUBITEM MI_EDIT, 110 //Edit menu item help ID
HELPSUBITEM MI_ALIGNMENT, 111 //Alignment menu item help ID
HELPSUBITEM MI_LEFT, 112 //Left command help ID
HELPSUBITEM MI_CENTER, 113 //Center command help ID
HELPSUBITEM MI_RIGHT, 114 //Right command help ID
HELPSUBITEM MI_TEXT, 199 //Text command help ID

 END //

HELPSUBTABLE SUBTABLE_DIALOG //Text dialog help subtable
 BEGIN //

HELPSUBITEM DID_ENTRY, 201 //Entry field help ID
HELPSUBITEM DID_OK, 202 //OK command help ID
HELPSUBITEM DID_CANCEL, 203 //Cancel command help ID

 END //

WND_HELLO and WND_LISTBOX are control IDs, MI_* are menu item IDs,

and the DID_* are push button IDs. Each window ID is related to a help panel

ID. In the preceding example, WND_MAIN and WND_HELLO both correspond

to help panel ID 100. That is, pressing the F1 key in the main window area

displays the same help panel as selecting General help... from the Help

submenu.

4. Create a help window object for your application window.

Use the IHelpWindow class to associate help information with an application

window. Hello World version 5 defines the private data member, helpWindow,

584 VisualAge C++ Open Class Library User's Guide

Help Information

as an IHelpWindow object. It is initialized in the AHelloWindow constructor in

AHELLOW5.CPP AHELLOW5.HPP.
...
class AHelpHandler : public IHelpHandler {
...
protected:
virtual Boolean
 keysHelpId(IEvent& evt);
};
...

5. Provide the overridden virtual function keysHelpId, which is called when keys

help is requested. The following code, from the Hello World version 5

AHELLOW5.CPP file, shows how to implement this function.
...
IBase::Boolean AHelpHandler :: keysHelpId(IEvent& evt)
{
evt.setResult(1000); //1000=keys help ID in

 // ahellow5.ipf file

return (true); //Event is always processed
} /* end AHelpHandler :: keysHelpId(...) */
...

In the preceding code, the help panel ID for the Hello World version 5 keys help

is set in the event result.

6. Start and stop help events processing.

Your help handler, previously described, does not begin handling help events

until the you use the handleEventsFor member function. For example, the

following code causes the helpHandler to begin processing help events for this

frame window:
...
helpHandler.handleEventsFor(this);
...

Typically, you include this statement in the constructor for the frame window.

KeyConcept.Note that the window which handles help events must be an

associated window. That is, you should identify the window as the associated

window on the IHelpWindow constructor or explicitly identify the window as an

associated window using the IHelpWindow::setAssociatedWindow function.

When you want to stop handling help events, for example, when you close your

frame window, use the stopHandlingEventsFor member function, as follows:
...
helpHandler.stopHandlingEventsFor(this);
...

You typically include this statement in the destructor for the frame window.

 Chapter 44. Providing Help Information 585

Help Information

7. Associate secondary frame windows with the parent window’s help window.

You can use an owner window’s help window for secondary frame windows by

using the IHelpWindow::setAssociatedWindow member function. This function

adds the secondary window to the help event chain for a specific help window.

Specify a pointer to the secondary window as the one argument to this function.

In many cases, you will want to make this association in the constructor of the

secondary frame window, but you will not be passed a pointer to the owner

window’s help window. To get a reference to the owner’s help window, use the

static IHelpWindow member function helpWindow, specifying the owner window

as the argument.

Hello World version 5 provides an example in the ADIALOG5.CPP file, as

follows:
...
IHelpWindow::helpWindow(ownerWnd)->setAssociatedWindow(this);
...

8. Attach the following special handler to child frame windows in your application.

This handler is needed so that help processes correctly for these windows.

class ChildFrameHelpHandler : public IHandler {
typedef IHandler Inherited;
/***
* This handler enables the OS/2 Help Manager to use help tables to display *
* contextual help for a child frame window (one whose parent window is not *
* the desktop). This handler should only be attached to child frame windows. *
***/
public:
virtual ChildFrameHelpHandler
 &handleEventsFor (IFrameWindow* frame),
 &stopHandlingEventsFor (IFrameWindow* frame);
protected:
virtual Boolean
 dispatchHandlerEvent (IEvent& evt);
ChildFrameHelpHandler
 &setActiveWindow (IEvent& evt, Boolean active = true);
private:
virtual IHandler
 &handleEventsFor (IWindow* window),
 &stopHandlingEventsFor (IWindow* window);
};

IBase::Boolean ChildFrameHelpHandler :: dispatchHandlerEvent (IEvent& evt)
{
switch (evt.eventId())

 {
 case WM_ACTIVATE:
 setActiveWindow(evt, evt.parameter1().number1());
 break;
 case WM_HELP:
 setActiveWindow(evt, true);
 break;
 default:

586 VisualAge C++ Open Class Library User's Guide

Help Information

 break;
} /* endswitch */

return false; // Never stop processing of event
}

ChildFrameHelpHandler&
ChildFrameHelpHandler :: setActiveWindow (IEvent& evt,

Boolean active)
{
IHelpWindow* help = IHelpWindow::helpWindow(evt.window());

 if (help)
 {

IFrameWindow* frame = 0;
 if (active)
 {

frame = (IFrameWindow*)evt.window();
 }
 help->setActiveWindow(frame, frame);
 }
 return *this;
}

ChildFrameHelpHandler&
ChildFrameHelpHandler :: handleEventsFor (IFrameWindow* frame)

{
IASSERTPARM(frame != 0);

 Inherited::handleEventsFor(frame);
 return *this;
}

ChildFrameHelpHandler&
ChildFrameHelpHandler :: stopHandlingEventsFor (IFrameWindow* frame)

{
IASSERTPARM(frame != 0);

 Inherited::stopHandlingEventsFor(frame);
 return *this;
}

IHandler& ChildFrameHelpHandler :: handleEventsFor (IWindow* window)
{ // private to hide version in IHandler
 ITHROWLIBRARYERROR(IC_MEMBER_ACCESS_ERROR,
 IErrorInfo::invalidRequest,
 IException::recoverable);
 return *this;
}

IHandler& ChildFrameHelpHandler :: stopHandlingEventsFor (IWindow* window)
{ // private to hide version in IHandler
 ITHROWLIBRARYERROR(IC_MEMBER_ACCESS_ERROR,
 IErrorInfo::invalidRequest,
 IException::recoverable);
 return *this;
}

 Refer to the Open Class Library Reference for more information on IHelpWindow

and IHelpHandler.

 Chapter 44. Providing Help Information 587

Fly Over Help

Adding Fly Over Help

Fly over help displays short help windows for the object that the mouse pointer is

currently positioned over. As users move their mouse pointer over various objects,

different help windows are displayed. In addition, you can display descriptive text

for the object in a text control, such as the information area at the bottom of the

window.

You can use the following classes to add fly over help to your applications:

IFlyText Use this static text control to display brief informative

messages for a window, such as the function of a push

button contained in a tool bar.

ITextControl Use a class derived from this base class to display

longer, more detailed text. Typically, you use an

information area as the ITextControl.

IFlyOverHelpHandler Attach an IFlyOverHelpHandler to a window to provide

context-specific help messages for any window that is a

child of the window you attached the handler to.

For more information on these classes, see the Open Class Library Reference.

Figure 81 shows an example of fly over help used on a tool bar.

588 VisualAge C++ Open Class Library User's Guide

Fly Over Help

Figure 81. Example of Fly Over Help on a Tool Bar

Displaying Fly Over Help Information

The IFlyText control displays help messages in a bordered window that is sized large

enough to contain the help text. The text is displayed using one row that does not

reflow. The default font used to display the help messages is an 8-point Helvetica.

In addition to displaying the help message in a window with a border around it,

IFlyText controls draw an arrow pointing outward from one of the four corners of the

control. This arrow points to the window for which the help message is being

displayed.

The IFlyText control positions itself relative to one of the corners of the window the

mouse pointer is over. Fly over help displays the help message so that none of the

text is drawn outside the desktop. This determines the corner of the IFlyText control

from which the arrow is drawn. The order in which the IFlyText control attempts to

position itself is as follows:

 1. Lower-right corner

 2. Lower-left corner

 3. Upper-left corner

 4. Upper-right corner

 Chapter 44. Providing Help Information 589

Fly Over Help

You can construct instances of this class from a given window ID and an owner

window.

For example:

IFrameWindow frameWindow(0x1000);
IToolBar toolbar(0x1001, &frameWindow, &frameWindow);
IFlyText flyText(0x1002, &toolbar);
IFlyOverHelpHandler flyOverHelpHandler(&flyText);

flyOverHelpHandler.handleEventsFor(&toolbar);

IFlyText provides the function setText to set the accessible attributes of each instance,

and provides functions setRelativeWindowRect and relativeWindowRect to set and

query the position relative to the IFlyText control.

Attaching Handlers to Provide Context-Sensitive Help

By attaching an IFlyOverHelpHandler to a window, you can provide context-specific

help messages for any window that is a child of the window you attached the handler

to.

You can use the IFlyOverHelpHandler to update an IFlyText control, an ITextControl,

or both. The IFlyText control contains short messages (one or two-words, for

example) for a window and ITextControl displays more descriptive text in the

information area. You do not need a string associated with every window in your

application. When a help string cannot be found for a window, a single blank is

displayed by default to keep the frame extension handler from hiding the

ITextControl when it contains a null string. You can also use the setMissingText

function to set the text to be displayed when an information string cannot be found.

Note: New-line characters are removed from a string before they are displayed in

the IFlyText control.

The last two parametera of each handler constructor is a time delay expressed in

milliseconds. The first delay, indicates the time the mouse pointer must remain in in

the same location before the fy over help is displayed for the first time. The second

delay, indicates the time the mouse pointer must remain in the same location after the

fly over help has been displayed for the first time.

You can change the length of the first delay using the setInitialDelayTime member

function or query what is currently set using the initialDelayTime member function.

Use the setDelayTime member function to change the second delay and use

delayTime to query what is currently set for that second delay.

You associate context-specific help for a window to a help message by specifying a

window identifier. This identifier is used with an offset to load strings from a string

590 VisualAge C++ Open Class Library User's Guide

Time Intervals

table. Specify different offsets into the string table for the IFlyText and the

ITextControl objects to display different help messages in each of the controls.

Note: To display help for a window using the string, you must either create the

window using the User Interface Class Library or wrapper an existing window.

Dynamically Adding Help Text to Windows

You can also dynamically associate help text to a window using

IFlyOverHelpHandler, a window handler. This is useful when you dynamically add

controls to a canvas or push buttons to a tool bar.

Use the following functions to dynamically add or remove the help text specified for

a window:

flyHelpText Returns the short help text for a window if you have

dynamically added help text for the window.

longHelpText Returns the long help text for a window if you have

dynamically added long help text for the window.

setHelpText Sets help text for a window by specifying a string or resouce

ID. If you add help text to a window by the setHelpText

functions, this text takes precedence over text that would

otherwise be loaded from a string table.

removeHelpText Removes help text you added to a window through the

setHelpText function.

For more information on these functions, see the Open Class Library Reference or

refer to the tool bar examples in your samples directory. These examples show you

how to incorporate fly over help into your applications.

Setting Time Intervals

A timer controls when certain events will occur based on a specified timed basis.

You can use the ITimer class objects to set time-interval-based operations. The User

Interface Class Library uses timers in fly over help (see “Adding Fly Over Help” on

page 588) and with IAnimatedButton. See the Open Class Library Reference for

more information on the IAnimatedButton class. The User Interface Class Library

provides the following classes to create timer objects:

ITimer This class creates objects representing operating system

timers. An object of this class calls a specified function in

your class when the timer expires. The timer continues to

call the function each time the specified time limit expires.

 Chapter 44. Providing Help Information 591

Time Intervals

ITimerFn An abstract timer function class. An instance of this class is

passed into ITimer when you start it. You can then delete

the ITimer object, and the timer will continue to run.

ITimerMemberFn Template class for the timer member function. This class

inherits from ITimerFn.

ITimerMemberFn0 Another template class for the timer member function. This

class does not accept any parameters.

 Creating Timers

Use the ITimer class objects to define and set time-interval-based operations for your

current program. You can also use ITimer objects to create additional

time-interval-based operations by instantiating new ITimer objects and starting them.

You start a timer using the ITimer::start member function.

The following is an example of starting a new timer to execute a member function:

ITimer timer
timer.start(new ITimerMemberFn< MyClass >(*this, foo));

You construct instances of this class in one of the following ways:

¹ Using the default constructor. Use this to build an ITimer that is started using

the ITimer::start member function.

¹ With specification of code to run. This form of the constructor is used to

construct a new ITimer and immediately start it. It is equivalent to constructing

using the default constructor and then using ITimer::start. You can specify a

time-interval to be used (in thousandths of a second) with this constructor. A

time-interval of one second is the default.

¹ From the timer ID of a currently started ITimer object.

Note: ITimer has a virtual destructor that deallocates resources. This destructor,

however, does not stop the timer. The timer continues to run until you call

ITimer::stop.

Using the Abstract and Template Classes

The ITimerFn class is an abstract timer function class. Objects of this class represent

events dispatched when an active timer expires. These objects are reference counted

to manage their destruction after the timer has stopped. This reference to an

ITimerFn is then passed to ITimer::start. The timerExpired function is called when

the timer expires.

The ITimerMemberFn template class is an ITimerFn-derived class for dispatching

C++ member functions against an object when a timer expires.

592 VisualAge C++ Open Class Library User's Guide

Time Intervals

You can use instances of this class to dispatch C++ member functions when a timer

expires. The template argument is the class of the object for which the member

functions are called. The constructor for such objects requires a reference to the

object the member function is to be applied to and a pointer to the member function.

This member function must return a void and accept a timer reference argument.

Note: This class overrides the inherited function, timerExpired.

To create a timer you would do the following:

1. Write a function for what you want to do on a timed basis.

2. Create a ITimerMemberFn or ITimerMemberFn0 object. For a function that will

be repeating an action on a timed basis, you would use ITimerMemberFn0. An

example would be if you wanted a window to refresh itself every 30 minutes. If

you wanted a window displayed for five seconds and then disappear, you would

use ITimerMemberFn since the action only occurs once. You would then use

ITimer::stop to delete the timer.

The following is an example of a timer created to run the public member job in

MyClass:

class MyClass {
public:
void job (unsigned long timerId)
 {
// Code to run.

 }
};
//...
MyClass myObj;
ITimer timer;
timer.start(new ITimerMemberFn<MyClass>(myObj, MyClass::job));

In the preceding example, we used ITimerMemberFn because the job member

function returns void and accepts an unsigned long parameter, timerId. When

parameters are not accepted by the member function, you can use ITimerMemberFn0.

See the Open Class Library Reference for more information on the timer classes.

 Chapter 44. Providing Help Information 593

Time Intervals

594 VisualAge C++ Open Class Library User's Guide

Hello World Conventions

45 Introducing the Sample Application

Sample application files are provided with the User Interface Class Library product

diskettes. Use the samples to understand the classes. Complete listings are included

in the \ibmcpp\samples\ioc directory.

About the Hello World Application

The Hello World sample application is divided into several versions, starting with the

simplest form, version 1, and building up to the most complicated form, version 6.

Each version shows you a different aspect of the User Interface Class Library.

Chapter 46, “Creating a Main Window” through Chapter 51, “Adding a Font Dialog,

a Pop-up Menu, and a Notebook” show you how to build an application, called

“Hello World”, using the User Interface Class Library. This sample application does

not teach you C++ programming. If you are not familiar with the principles and

aspects of C++ programming, consult the C++ Language Reference before continuing

with this section.

Running the Hello World Files

Files are included to help you compile and link each version of the Hello World

sample application. The README file contains complete instructions for compiling

and linking each version.

Reviewing the Conventions Used in the Samples

The User Interface Class Library uses conventions to enhance the usability and

readability of the code. The following conventions will help you as you create

applications.

¹ Class names begin with a capital letter. For example, all classes belonging to the

User Interface Class Library with a global scope begin with the letter “I”, as in

IApplication. If a class name consists of more than one word, the first letter of

each word is capitalized, such as IFrameWindow.

In keeping with this standard, the letter “A” was chosen as the first letter (for

example, AHelloWindow) for the Hello World application-defined classes. This

convention helps you distinguish the Hello World application classes from the

User Interface Class Library classes. This naming convention also helps you

distinguish the classes you create from those supplied by the class library.

 Copyright IBM Corp. 1993, 1995 595

Hello World Conventions

¹ Member functions begin with a lowercase letter. If a member function name

consists of more than one word, the first letter of each word that follows the first

word is capitalized, such as setText.

Note: In the User’s Guide, single-word member functions have ClassName::

added to them, for example, the member function “show” appears as

IWindow::show.

¹ A version indicator (for example, v2 or v4) appears in columns 79-80 in some

sample code comments, indicating which statements were added to enhance the

previous version. The following example illustrates this convention:

#include <istattxt.hpp> //IStaticText Class
#include <iinfoa.hpp> //IInfoArea Class
#include <imenubar.hpp> //IMenuBar Class
#include <ifont.hpp> //IFont
#include <istring.hpp> //IString Class
#include <isetcv.hpp> //ISetCanvas Class

 See “User Interface Class Library Conventions” on page 268 for information

about other User Interface Class Library conventions.

596 VisualAge C++ Open Class Library User's Guide

Hello World Version 1

46 Creating a Main Window

Version 1 of the Hello World sample application shows you how to create a main

window and insert a text string into it using the static text control. A static text

control is a text field, bit map, icon, or box that you can use to label or box another

control. In version 1, the “Hello World!!!” text string is inserted into a static text

control.

Version 1 shows you how to do the following:

1. Create the main window

2. Create a static text control

3. Set the focus and show the main window

The main window for version 1 of the application looks like this:

Figure 82. Version 1 of the Hello World Sample Application

Listing the Hello World Version 1 Files

The AHELLOW1.CPP file contains the source code for the main procedure, which is

described later in this chapter.

 Copyright IBM Corp. 1993, 1995 597

Hello World Version 1

File Type of Code

AHELLOW1.CPP Source code for the main procedure

The Primary Source Code File

AHELLOW1.CPP contains the source code used for version 1. Here is a listing of

the source code:

...
24 //Include User Interface Class Library class headers:
25 #ifndef _IBASE_ //Make sure ibase.hpp is included
26 #include <ibase.hpp> // since that is where IC_<environ>
27 #endif // is defined.
28 #include <iapp.hpp> //IApplication class
29 #include <istattxt.hpp> //IStaticText class
30 #include <iframe.hpp> //IFrameWindow class
31
32 /**
33 * main - Application entry point for Hello World Version 1. *
34 * This simple application does the following: *
35 * 1) Creates a new object mainWindow of class IFrameWindow *
36 * 2) Creates a new object hello of class IStaticText *
37 * 3) Sets the static text value and aligns it *
38 * 4) Sets the static text as the client of the mainWindow *
39 * 5) Sets the size of mainWindow *
40 * 6) Sets the window focus to mainWindow *
41 * 7) Displays the mainWindow *
42 * 8) Starts the events processing for the application *
43 **/
44 int main()
45 {
46 IFrameWindow mainWindow ("Hello World Sample - Version 1", 0x1000);
47
48 IStaticText hello(0x8008, &mainWindow, &mainWindow);
49 hello.setText("Hello, World!!!");
50 hello.setAlignment(IStaticText::centerCenter);
51 mainWindow.setClient(&hello);
52
53 mainWindow.sizeTo(ISize(400,300));
54 mainWindow.setFocus();
55 mainWindow.show();
56 IApplication::current().run();
57 return 0;
58 } /* end main */

Exploring Hello World Version 1

The following sections describe each of the tasks performed by version the Hello

World version 1 application.

598 VisualAge C++ Open Class Library User's Guide

Hello World Version 1

Creating the Main Window

The first statement creates the main window, an instance of the IFrameWindow class,

for the application. To make this class available, the application must include the

IFRAME.HPP library header file, as follows:
...
30 #include <iframe.hpp> //IFrameWindow Class
...

Now that the IFrameWindow class is available, a variable, in this case mainWindow,

is defined as a new object of this class. This object represents the main window of

the application. For example:
...
46 IFrameWindow mainWindow ("Hello World Sample - Version 1", 0x1000);
...

The window ID is assigned the hexadecimal value 0x1000. The object represents the

main window of the application.

Creating a Static Text Control

Next, create a static text control for the “Hello, World!!!” text string. Because this

control is an object of the IStaticText class, includes another library header file,

ISTATTXT.HPP, as follows:
...
29 #include <istattxt.hpp> //IStaticText class
...

Now, define another variable, hello, as a new object of the IStaticText class, which

represents a static text control. Use the following code:
...
48 IStaticText hello(0x8008, &mainWindow, &mainWindow);
...

The control ID is assigned the hexadecimal value 0x8008.

The argument that follows the hexadecimal value identifies the mainWindow as the

parent of the static text control. This positions the static text control in relation to the

main window and displays it on top of the main window.

The last argument identifies the main window as the owner of the static text control.

Controls notify their owner windows when events take place by using command,

help, or control events. In this case, if an action is performed on the static text

control, such as modifying its text string, that action is reported to the main window,

which is specified as the owner. In version 1, no actions are performed on the static

text control, but they are in Versions 2 through 6.

 Chapter 46. Creating a Main Window 599

Hello World Version 1

Setting a Text String for the Static Text Control

After creating the static text control, give it a static text string. The IStaticText class

is derived from the ITextControl class and, thus, inherits its member functions. One

of those member functions, setText, defines the text string for the static text control.

For example:
...
49 hello.setText("Hello, World!!!");
...

Aligning the Static Text Control

Next, the setAlignment member function of the IStaticText class aligns the text string

in the static text control. In this sample, it is centered both horizontally and

vertically.
...
50 hello.setAlignment(IStaticText::centerCenter);
...

If you do not align the text string, the default placement is in the upper left corner of

the static text area.

Setting Static Text Control as the Client Window

Next, designate the static text control as the frame’s client window so that the “Hello,

World!!!” text string displays in the main window’s client area. Use the setClient

member function of the IFrameWindow class, as follows:
...
51 mainWindow.setClient(&hello);
...

The frame’s client window is the window corresponding to the client area, which is

the rectangular portion of the frame window not occupied by the other frame controls

(for example, title bar, window border, and minimize and maximize buttons). Setting

the static text control as the client window causes it to occupy the entire client area

and to be aligned within the boundaries of that area. When the user resizes the main

window, the client area (static text control in this sample) grows or shrinks.

Setting the Size of the Main Window

The following code shows you how to change the size of the main window:
...
53 mainWindow.sizeTo(ISize(400,300));
...

This sets the size of the main window to 400 pixels wide by 300 pixels high.

600 VisualAge C++ Open Class Library User's Guide

Hello World Version 1

Setting the Focus and Showing the Main Window

The two statements in the following code do the following:

¹ Designate the main window as the active window

¹ Display the main window when running the application

These statements use the IFrameWindow::setFocus and IWindow::show member

functions:
...
54 mainWindow.setFocus();
55 mainWindow.show();
...

Because IFrameWindow is derived from IWindow, the setFocus and IWindow::show

member functions are inherited from the IWindow class. Classes inherit functions

from the base classes from which they are derived. An application does not have to

include those base classes. Therefore, the IWindow class does not need to be

included in this application for its functions to be available.

Starting Event Processing

The last statement displays the main window and starts the user interface window

event processing for the application. This is accomplished by using member

functions belonging to the IApplication and ICurrentApplication classes. Therefore,

include another library header file, IAPP.HPP, as follows:
...
28 #include <iapp.hpp> //IApplication class
...

The IApplication::current member function of the IApplication class returns the

current application as an instance of the ICurrentApplication class. Next, the

ICurrentApplication::run member function displays the main window and starts event

processing for this application, using the following code:
...
56 IApplication::current().run();
...

 Chapter 46. Creating a Main Window 601

Hello World Version 1

602 VisualAge C++ Open Class Library User's Guide

Hello World — Version 2

47 Adding a Resource File

and Frame Extensions

Version 2 of the Hello World application shows you how to use a resource file and

how to add frame extensions to the application window.

A resource file is a file that contains data used by an application, such as text strings

and icons. This data is often easier to maintain in a resource file than in the source

code of an application because the resource file keeps all of the application’s data

together in one place.

Frame extensions are controls that you can add to a frame window in addition to

those that are provided for you by basic Presentation Manager frame windows. For

example, in version 2, an information area is added below the client area.

Version 2 of the Hello World application extends version 1 by showing you how to:

¹ Get the “Hello, World!!!” text string and text for an information area

¹ Construct the main window and set the title and system menu icon

¹ Create and set the information area below the client window

The main window for version 2 of the Hello World application looks like this:

Figure 83. Version 2 of the Hello World Sample Application

 Copyright IBM Corp. 1993, 1995 603

Hello World — Version 2

Listing the Hello World Version 2 Files

The following files contain the code used to create version 2:

File Type of Code

AHELLOW2.CPP Source code for the main procedure and window constructor

AHELLOW2.HPP Header file for the AHellowWindow class

AHELLOW2.H Symbolic definitions file for HELLO2.EXE

AHELLOW2.RC Resource file for HELLO2.EXE

AHELLOW2.ICO Icon file for HELLO2.EXE

The Primary Source Code File

The AHELLOW2.CPP file contains the source code for the main procedure and the

window constructor. If columns 79-80 contain a //V, then this source line was

modified or added in this version. The tasks performed by this code are described in

the following sections.

The AHelloWindow Class Header File

The AHELLOW2.HPP contains the class definition and interface specifications for

the AHelloWindow class, a subclass of IFrameWindow that was created specifically

for this application. It is similar to a User Interface Class Library header file.

The Symbolic Definitions File

AHELLOW2.H contains the symbolic definitions for this application. These

definitions provide the IDs for the application main window, controls, and text

strings. They are required in this version of the Hello World application, because the

text strings are pulled in from a resource file.

The Resource File

AHELLOW2.RC is the resource file, for version 2 of the Hello World application.

This resource file assigns an icon and three text strings to the constants defined in the

AHELLOW2.H file. AHELLOW2.H is included in this resource file so the icon and

text strings can be associated with the appropriate IDs.

The User Interface Class Library for AIX supports the OS/2 Presentation Manager

(PM) format for .RC files. This format provides a tag language for describing the

following:

 ¹ String values

 ¹ Menu layout

¹ Accelerator key definitions

¹ Bit-map and icon associations to files

604 VisualAge C++ Open Class Library User's Guide

Hello World — Version 2

Note: OS/2 dialog templates are not supported.

The User Interface Class Library provides a tool, called ipmrc2X, for converting

OS/2-style resources into AIX resources.

 Refer to “Converting Resource Files” on page 463 for more information about

the resource file conversion tool.

The Icon File

AHELLOW2.ICO is used as both the title bar icon and the icon that displays when

the application is minimized.

The User Interface Class Library for AIX provides a tool, called ibmp2X, for

converting OS/2 bit maps and icons into AIX .xpm files.

 Refer to “Accessing Bitmap and Icon Resources” on page 460 for more

information about the resource file conversion tool.

Here is how the icon appears when minimized:

Figure 84. Hello World Icon

 Chapter 47. Adding a Resource File and Frame Extensions 605

Hello World — Version 2

Discussing the Advantages of the C++ File Structure

In version 1, all of the source code was intentionally put in the AHELLOW1.CPP file

to make that version of the application simple. However, for version 2, the source

code has been distributed among a variety of files to show that you can structure your

applications this way.

First, the AHelloWindow class, the subclass of IFrameWindow, is defined in the

header file (AHELLOW2.HPP). Putting the class definition and interface

specifications in the header file separates them from their implementation in the

source code (AHELLOW2.CPP). This allows the class and its specifications to be

used again with other applications and to be implemented in different ways. If the

class definition or interface specifications change, for translation, for example, they

change in only one place, the header file.

Similarly, the constant definitions file (AHELLOW2.H) assigns IDs to the windows

and text strings in one place. Defining the constants this way allows you to use

constants in a variety of places, such as the source code and the resource file, while

keeping their definitions in one place. Then, if you need to change the constant

definitions, you only modify the AHELLOW2.H file.

The advantage of placing the application’s data in a resource file (AHELLOW2.RC)

is that all of the resources are specified in one place. For example, finding and

modifying text strings is easier when they are all grouped in one place, rather than

searching through the source code for each one.

Exploring Hello World Version 2

The following sections describe each of the tasks performed by version 2 of the Hello

World application. Some of the tasks are the same as those performed by version 1,

but they are described again because they are performed differently in version 2.

Creating the Main Window

One of the major differences between version 1 and version 2 is the manner in which

you create the main window. Version 1 simply creates an IFrameWindow object.

However, version 2 provides its own class, AHelloWindow, to create the main

window.

The AHelloWindow class is defined in the AHELLOW2.HPP header file and is

derived from the IFrameWindow class. The IFrameWindow class is defined in the

IFRAME.HPP library header file. Therefore, the AHELLOW2.HPP header file

contains the following lines make the derivation of the AHelloWindow class from the

IFrameWindow class possible:

606 VisualAge C++ Open Class Library User's Guide

Hello World — Version 2

...
#ifndef _IFRAME_
#include <iframe.hpp> //Include IFrameWindow class header

#endif
...

Hello World version 2 uses the compiler directive, ifndef, to prevent the

IFRAME.HPP file from being included again, if it has already been included. This

works, because by convention, the _IFRAME_ symbolic is defined in the

IFRAME.HPP file. Both the User Interface Class Library and Hello World sample

application use this convention in the header files.

 See “Listing the Hello World Version 2 Files” on page 604 to learn about

reasons for putting class definitions and interface specifications in a header file.

The AHELLOW2.CPP file, which contains most of the source code for the

application, includes the AHELLOW2.HPP header file to have access to the

AHelloWindow class:
...
#include "ahellow2.hpp" //Include AHelloWindow class headers
...

The following lines in the AHELLOW2.CPP file create the main window by using

the AHelloWindow class constructor:
...
AHelloWindow mainWindow (WND_MAIN);
...

In version 1, the main window is given a hexadecimal value of 0x1000 as its window

ID when the main window was created. The same value is used for the window ID

of the main window in version 2. However, instead of specifying that value in the

primary source code file, Version 2 uses a constant, WND_MAIN, which is defined

in the AHELLOW2.H file, as follows:
...
#define WND_MAIN 0x1000 //Main Window ID
...

Note: See “Listing the Hello World Version 2 Files” on page 604 to learn about

reasons for using a constant definition file.

To have access to this definition, the primary source code file, AHELLOW2.CPP,

must include the AHELLOW2.H file, as follows:
...
#include "ahellow2.h" //Include symbolic definitions
...

 Chapter 47. Adding a Resource File and Frame Extensions 607

Hello World — Version 2

Starting Event Processing

When the main window is constructed, the following line in the AHELLOW2.CPP

file gets the current application and runs it:
...
IApplication::current().run();
...

 See “Starting Event Processing” on page 601 for a more detailed explanation.

Constructing the AHelloWindow Object

Version 2 constructs the main window using the AHelloWindow class. Here is the

class constructor as it is defined in the AHELLOW2.HPP header file:
...
class AHelloWindow : public IFrameWindow
{
public:

AHelloWindow(unsigned long windowId);
...

In the primary source code file, AHELLOW2.CPP, version 2 uses the following lines

to construct the main window:
...
AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow(IFrameWindow::defaultStyle() |

 IFrameWindow::minimizedIcon,
 windowId)

,hello(WND_HELLO, this, this)
 ,infoArea(this)
{
...

Two capabilities provided by the IFrameWindow class used here were not used in

version 1:

¹ Setting the main window to the default style

Use the defaultStyle member function from the IFrameWindow class. It returns

the current default style that all applications use for frame windows. The current

default style is either the original default style that is provided by the User

Interface Class Library for frame windows or a new default style that you

establish by using the setDefaultStyle member function.

In this case, because the setDefaultStyle member function has not been used, the

current default style is the same as the original default style, which provides a

title bar, title bar icon, minimize button, maximize button, window border,

window list, and an initial shell position for the window.

608 VisualAge C++ Open Class Library User's Guide

Hello World — Version 2

 Refer to “Adding Styles” on page 314 and to the Open Class Library

Reference for more information about styles.

In this application, the title bar text and the application icon are specified in the

resource file, AHELLOW2.RC. The text string for the window title is included

in the resource file, and the icon, AHELLOW2.ICO, is specified.

¹ Displaying an icon when the main window is minimized

The minimizedIcon style also inherits from the IFrameWindow class. This

member function allows an application to use an icon to represent the application

when it is minimized on the desktop. The Hello World application provides the

AHELLOW2.ICO icon file for this purpose.

 Refer to Figure 84 on page 605 to see how this icon appears when the main

window is minimized.

Creating a Static Text Control

Another difference between version 1 and version 2 is the means of creating a static

text control to display a text string. In version 1, this was done simply by setting

hello equal to a new instance of the IStaticText class, associating an ID with the

control window (0x1010), and making the main window the parent and owner of the

control.

In version 2, however, this code is divided into separate parts and placed in different

files. As shown in the following lines, hello is now declared in the AHelloWindow

class as an IStaticText object in the AHELLOW2.HPP file:
...
private:
 IStaticText hello;
...

In the AHELLOW2.CPP file, hello points to a new instance of a static text control:
...
,hello(WND_HELLO, this, this)
...

The WND_HELLO constant provides the ID for the static text control. All

Presentation Manager windows must have a unique ID, including controls. Therefore,

the AHELLOW2.CPP file must include AHELLOW2.H, because that is where this

constant is defined:
...
#include "ahellow2.h" //Include symbolic definitions
...

With the AHELLOW2.H included, the ID is associated with the WND_HELLO

constant. The following code is from the AHELLOW2.H file:

 Chapter 47. Adding a Resource File and Frame Extensions 609

Hello World — Version 2

...
#define WND_HELLO 0x8008 //Hello World Window ID
...

The other two arguments (this, this) pass in the main window (this instance of the

AHelloWindow class) as the parent and owner of the static text control.

 See “Creating a Static Text Control” on page 599 for information about parent

and owner windows.

Setting Static Text Control as the Client Window

Next, set the static text control as the client window. The following code is from the

AHELLOW2.CPP file:
...
setClient(&hello);
...

 See “Setting Static Text Control as the Client Window” on page 600 for an

explanation of client windows.

Setting a Text String for the Static Text Control

After the static text control is created, the next task is to set text in it. Version 2 gets

the text string from a resource file. To do this, it uses the setText member function,

which it inherits from the ITextControl class. The following code is in the

AHELLOW2.CPP file:
...
hello.setText(STR_HELLO);
...

The setText member function finds this constant string in the AHELLOW2.RC file

and puts it into the static text control:
...
STR_HELLO, "Hello, World!!!" //Hello World String
...

As noted earlier, each window, even a control, must have a numeric value assigned as

its ID. The resource file includes the constant definition file, so this constant

definition is available. The following code is from the AHELLOW2.H file.
...
#define STR_HELLO 0x1200 //Hello World String ID
...

610 VisualAge C++ Open Class Library User's Guide

Hello World — Version 2

Creating an Information Area

The following code, from the AHELLOW2.CPP file, creates a new instance of an

information area using the IInfoArea class. This class provides a frame extension

below the client window that shows information about the application.
...
,infoArea(this)
...

Setting the Information Area Text

Typically, the information shown in the information area pertains to the frame menu

item at which the selection cursor is currently positioned. The information is loaded

from a resource file string table. A different text string displays for each menu item,

changing dynamically in the information area as the cursor moves from item to item.

The information area also has a special string (called “inactive text”) that displays

whenever no menu item is selected.

Version 2 uses setInactiveText to set the information area’s inactive text to the same

string placed in the static text control in version 1. As a result, this text appears

whenever the menu is inactive. The following code is from the AHELLOW2.CPP

file:
...
infoArea.setInactiveText(STR_INFO);
...

The setInactiveText member function finds the STR_INFO constant in the

AHELLOW2.RC file and puts it into the information area:
...
STR_INFO, "Use Alt-F4 to Close Window" //Information Area String
...

The STR_INFO constant is associated with a string ID, hexadecimal value 0x1220, in

the AHELLOW2.H constant definition file. The resource file includes the constant

definition file, so this constant definition is available.
...
#define STR_INFO 0x1220 //Info String ID
...

Aligning the Static Text Control

As in version 1, the static text control for the client area is centered both horizontally

and vertically in the static text control. The following code is from the

AHELLOW2.CPP file:
...
hello.setAlignment(IStaticText::centerCenter);
...

 Chapter 47. Adding a Resource File and Frame Extensions 611

Hello World — Version 2

612 VisualAge C++ Open Class Library User's Guide

Hello World — Version 3

48 Adding a Command Handler and Menu Bars

Version 3 provides a menu bar with an Alignment choice. A menu bar is the area

near the top of a window, below the title bar and above the client area of the

window, which contains a list of choices. By selecting the Alignment choice, the

user can display a pull-down menu and align the “Hello, World!!!” text string to the

left, right, or center. In addition, this version adds a status area to show the status of

the text string, and an event handler for the menu bar and the pull-down menu.

In covering these topics, this chapter shows you how to:

¹ Create a status line to show the status of the text string alignment

¹ Use an event handler

¹ Add a menu bar

¹ Set an initial check mark in the pull-down menu

¹ Add command processing (event handling) to align a text string

The main window for version 3 of the Hello World application looks like this:

Figure 85. Version 3 of the Hello World Sample Application

 Copyright IBM Corp. 1993, 1995 613

Hello World — Version 3

Listing the Hello World Version 3 Files

The following files contain the code used to create version 3:

File Type of Code

AHELLOW3.CPP Source code for the main procedure, main window constructor, and

command processing

AHELLOW3.HPP Header file for the AHellowWindow and ACommandHandler classes

AHELLOW3.H Symbolic definitions file for HELLO3.EXE

AHELLOW3.RC Resource file for HELLO3.EXE

AHELLOW3.ICO Icon file for HELLO3.EXE

The Primary Source Code File

The AHELLOW3.CPP file contains the source code for the main procedure and the

AHelloWindow and ACommandHandler classes. The tasks performed by this code

are described in the following sections.

The AHelloWindow Class Header File

AHELLOW3.HPP, like AHELLOW2.HPP, contains the class definitions and interface

specifications for the AHelloWindow and ACommandHandler classes, with a few

modifications for version 3.

The Symbolic Definitions File

AHELLOW3.H contains the definitions for this application. These definitions

provide the IDs for the application window components.

For version 3, the symbolic definition file contains a new window ID

(WND_STATUS) for the status area and three new string IDs (STR_CENTER,

STR_LEFT, and STR_RIGHT) for the text strings used in the status area. In

addition, menu IDs (MI_ALIGNMENT, MI_CENTER, MI_LEFT, and MI_RIGHT)

have been added for the menu bar Alignment choice and the Center, Left, and Right

choices in the pull-down menu.

The Resource File

Version 3 provides a resource file, AHELLOW3.RC. This resource file assigns an

icon and several text strings with the constants defined in the AHELLOW3.H file. It

also contains the text strings for the menu bar. AHELLOW3.H is included in this

resource file so the icon and text strings can be associated with the appropriate IDs.

The resource file for version 3 contains two primary additions. The first is the text

strings that are assigned to the new string constants that were defined in

614 VisualAge C++ Open Class Library User's Guide

Hello World — Version 3

AHELLOW3.H. These text strings are used in the status area to show the state of the

static “Hello, World!!!” text string in the client area. For example, when the main

window is first displayed, the “Center Alignment” text string is shown in the status

area.

The second addition provides the text that appears on the menu bar (Alignment) and

pull-down menu (Left, Center, and Right), indicating which choices are available.

Each text string is assigned to a constant, also defined in AHELLOW3.H.

The tilde (˜) to the left of a letter in each text string indicates that the user can select

those letters to select a menu item. These are shortcut keys for the application. For

example, pressing R aligns the “Hello, World!!!” text string on the right side of the

main window, just as if the Right choice had been selected from the pull-down menu.

The Icon File

AHELLOW3.ICO is used as both the title bar icon and the icon that displays when

the application is minimized. This icon is the same as for version 2. Refer to

Figure 84 on page 605 to see how this icon appears.

The User Interface Class Library for AIX provides a tool, called ibmp2X, for

converting OS/2 bit maps and icons into AIX .xpm files.

 Refer to “Accessing Bitmap and Icon Resources” on page 460 for more

information about the resource file.

Exploring Hello World Version 3

The following sections describe each of the tasks performed by version 3 of the Hello

World application that have not been described for previous versions.

Constructing the AHelloWindow Object

Version 3 has made the following additions to the main window:

¹ Creating a status line

¹ Creating a menu bar

¹ Setting an initial check mark in the pull-down menu

¹ Aligning a text string

¹ Setting AHelloWindow as the event handler

¹ Destructing the main window

The following sections describe these additions.

 Chapter 48. Adding a Command Handler and Menu Bars 615

Hello World — Version 3

Creating a

Status Line

The status line shows the text string alignment status. Use the IStaticText class to

create the static text control to display a text string in a status area. The status area

is a small rectangular area that is usually located at the top of a window, below the

menu bar.

In the AHELLOW3.CPP file, an IStaticText object, called statusLine, is created with

this instance of the AHelloWindow class as the parent and owner.
...
,statusLine(WND_STATUS, this, this)
...

The WND_STATUS constant provides the window ID for this static text control.

This constant is defined in AHELLOW3.H.

Specifying the Location and Height of the Status Area: Use the IFrameWindow

member function addExtension in the AHELLOW3.CPP file to specify where the

status area is positioned and how high it is. For example:
...
addExtension(&statusLine, IFrameWindow::aboveClient,
 IFont(&statusLine).maxCharHeight());
...

The aboveClient argument of the Location enumeration specifies that the static text

control displays the status area above the client window.

The maxCharHeight member function returns the status area’s maximum height,

based on the current font.

Creating a Menu Bar

Now you can create the Alignment menu bar to display the Left, Center, and Right

choices. In the header file, AHELLOW3.HPP, menuBar is defined as an instance of

the IMenuBar class.
...
IMenuBar menuBar;
...

AHELLOW3.CPP uses menuBar to create a new instance of that class in the main

window, as follows:
...
,menuBar(windowId, this)
...

The WND_MAIN argument identifies the following menu in the AHELLOW3.RC

resource file:

616 VisualAge C++ Open Class Library User's Guide

Hello World — Version 3

...
MENU WND_MAIN //Main Window Menu (WND_MAIN)
 BEGIN

SUBMENU "˜Alignment", MI_ALIGNMENT //Alignment Submenu
 BEGIN

MENUITEM "˜Left", MI_LEFT //Left Menu Item - F7 Key
MENUITEM "˜Center", MI_CENTER //Center Menu Item - F8 Key
MENUITEM "˜Right", MI_RIGHT //Right Menu Item - F9 Key

 END
 END

The window ID for the menu must match the window ID of the frame window.

This menu puts one choice, Alignment, on the menu bar, and provides a pull-down

menu with three choices: Left, Center, and Right.

In addition, the MI_ALIGNMENT, MI_LEFT, MI_CENTER, and MI_RIGHT menu

item attributes correspond to those in the resource file’s string table:
...
MI_ALIGNMENT,"Alignment Menu" //InfoArea - Alignment Menu
MI_CENTER, "Set Center Alignment" //InfoArea - Center Menu
MI_LEFT, "Set Left Alignment" //InfoArea - Left Menu
MI_RIGHT, "Set Right Alignment" //InfoArea - Right Menu
...

When the user moves the selection cursor over each menu item, the text string

associated with that menu item displays in the information area below the client

window. For example, when the cursor is on the Right menu item, the text string

“Set Right Alignment” appears in the information area. For this to work, the string

ID must match the corresponding menu item ID.

Setting an Initial Check Mark in the Pull-Down Menu

The pull-down menu that displays when the Alignment choice is selected on the

menu bar contains three choices for aligning the “Hello, World!!!” text string: Left,

Center, and Right. Because this text string is aligned in the center of the client area

when the application is created, a check mark should display next to the Center

choice the first time the pull-down menu displays.

The checkItem member function of the IMenuBar class lets you place a check mark

on a pull-down menu choice. The following line, from in AHELLOW3.CPP, places a

check mark on the Center choice:
...
menuBar.checkItem(MI_CENTER);
...

 Chapter 48. Adding a Command Handler and Menu Bars 617

Hello World — Version 3

The MI_CENTER constant is defined in the AHELLOW3.RC resource file as the

“Center” text string for the menu. Do not confuse this with the MI_CENTER menu

item attribute defined in the string table, which is used only by the information area.

Destructing the AHelloWindow Object

After your application runs, you need to stop handling command events for the frame

window and delete the objects you created using the new operator. The following

lines in the AHELLOW3.CPP file to do this:
...
AHelloWindow :: ˜AHelloWindow()
{
 commandHandler.stopHandlingEventsFor(this);
...

Aligning a Text String

This section shows you how to associate commands with the menu items to align the

text string.

This sample shows command processing for one of the menu items. This code, from

AHELLOW3.CPP, calls the AHelloWindow setAlignment function to center-align the

“Hello, World!!!” text string in the client window:
...
IBase::Boolean
ACommandHandler :: command(ICommandEvent & cmdEvent)

{
Boolean eventProcessed(true); //Assume event will be processed

...
switch (cmdEvent.commandId()) {

 case MI_CENTER:
 frame->setAlignment(AHelloWindow::center);
 break;
...

The following code shows the setAlignment function from the AHelloWindow class.

AHelloWindow &
AHelloWindow :: setAlignment(Alignment alignment)

{
...
 switch(alignment)
 {
...
 case center:
 hello.setAlignment(
 IStaticText::centerCenter);
 statusLine.setText(STR_CENTER);
 menuBar.checkItem(MI_CENTER);
 menuBar.uncheckItem(MI_LEFT);
 menuBar.uncheckItem(MI_RIGHT);

618 VisualAge C++ Open Class Library User's Guide

Hello World — Version 3

 break;
...

This code does the following:

¹ Uses the IStaticText setAlignment member function to center the static text

control vertically and align it on the left horizontally

¹ Sets the appropriate text string in the status area (left alignment)

¹ Uses the uncheckItem member function to remove any existing check marks from

the Center and Right menu items

¹ Uses the checkItem member function to set a check mark on the Left

¹ Returns true and ends

Adding Text

for a Status

Line

The status area text strings are specified in the resource file, as shown in the

following code:
...
MI_CENTER, "Set Center Alignment" //InfoArea - Center Menu
MI_LEFT, "Set Left Alignment" //InfoArea - Left Menu
MI_RIGHT, "Set Right Alignment" //InfoArea - Right Menu
...

The following code, from AHELLOW3.CPP, gets the “Center Alignment” text string

from the resource file and puts it in the static text control for the status area:
...
statusLine.setText(STR_CENTER);
...

Setting ACommandHandler as the Command Handler

In version 3, the AHelloWindow class contains a subclass of the ICommandHandler

class, called ACommandHandler. This is necessary because, for the first time, this

application handles events, in this case, the commands that align the “Hello,

World!!!” text string.

The following code in AHELLOW3.CPP creates a command handler from the

ACommandHandler class:
...
,commandHandler(this)
...
commandHandler.handleEventsFor(this);
...

The second line of code, shown above, contains the handleEventsFor member

function inherited from the ICommandHandler class. Use this member function to set

the event handler for the application. In this case, the this argument is specified.

 Chapter 48. Adding a Command Handler and Menu Bars 619

Hello World — Version 3

This member function is available because the header file AHELLOW3.HPP includes

the ICMDHDR.HPP library header file, which contains the ICommandHandler class.
...
#ifndef _ICMDHDR_
#include <icmdhdr.hpp> //Include ICommandEvent & ICommandHandler

#endif
...

Adding

Command

Processing

The next statements construct the command handler from a pointer to the

AHelloWindow that events will be handled for. The AHELLOW3.CPP file uses the

ACommandHandler to create a command handler, as follows:
...
ACommandHandler :: ACommandHandler(AHelloWindow *helloFrame)
{

frame=helloFrame; //Save frame to be handled;
} /* end ACommandHandler :: ACommandHandler(...) */
...

Depending on the command event ID, you need to call the

AHelloWindow::setAlignment function with the appropriate AHelloWorld::Alignment

enumerator, as shown in the following sample from AHELLOW3.CPP. The

AHelloWorld::Alignment enumerator is defined in the AHELLOW3.HPP file.
...
IBase::Boolean
ACommandHandler :: command(ICommandEvent & cmdEvent)

{
Boolean eventProcessed(true); //Assume event will be processed

...
switch (cmdEvent.commandId()) {

 case MI_CENTER:
 frame->setAlignment(AHelloWindow::center);
 break;
 case MI_LEFT:
 frame->setAlignment(AHelloWindow::left);
 break;
 case MI_RIGHT:
 frame->setAlignment(AHelloWindow::right);
 break;

 default: //Otherwise,
eventProcessed=false; // the event wasn't processed

} /* end switch */

 return(eventProcessed);
} /* end ACommandHandler :: command(...) */
...

620 VisualAge C++ Open Class Library User's Guide

Hello World — Version 4

49 Adding Dialogs and Push Buttons

Version 4 modifies the menu bar and the pull-down menu in the following ways:

¹ Creates an Edit choice on the menu bar

¹ Moves the Alignment choice from the menu bar to the pull-down menu

¹ Moves the menu items associated with the Alignment choice (Left, Center, and

Right) from the pull-down menu into a cascaded menu that displays when the

Alignment choice is selected. These items still align the “Hello, World!!!” text

string in the client window. However, the commands assigned to these menu

items are also assigned to accelerator keys so the keyboard can bypass the menu

choices and establish the text alignment.

¹ Adds a Text... choice on the pull-down menu. Selecting this choice displays a

dialog box that contains an entry field in which the “Hello, World!!!” text string

can be edited.

Hello World version 4 application contains a resource file from the User Interface

Class Library for OS/2 Version 2.01, with definitions for accelerators. In OS/2, the

accelerator definitions require that you specify #include <os2.h> in the .RC file.

The main window for version 4 of the Hello World application looks like this:

Figure 86. Version 4 of the Hello World Sample Application

 Copyright IBM Corp. 1993, 1995 621

Hello World Version 4

Listing the Hello World Version 4 Files

The following files contain the code used to create version 4:

File Type of Code

AHELLOW4.CPP Source code for the main procedure, main window constructor, and

command processing

AHELLOW4.HPP Header file for the AHellowWindow class

AHELLOW4.H Symbolic definitions file for HELLO4.EXE

ADIALOG4.CPP Source code to create the ATextDialog class

ADIALOG4.HPP Header file for the ATextDialog class

AHELLOW4.RC Resource file for HELLO4.EXE

AHELLOW4.ICO Icon file for HELLO4.EXE

The Primary Source Code File

The AHELLOW4.CPP file contains the source code for the main procedure and the

AHelloWindow and ACommandHandler classes. The tasks performed by this code

are described in the following sections.

The AHelloWindow Class Header File

The AHELLOW4.HPP file, like the AHELLOW3.HPP file, contains the class

definition and interface specifications for the AHelloWindow class, with a few

modifications for version 4.

The Symbolic Definitions File

The AHELLOW4.H file contains the symbolic definitions for this application. These

definitions provide the IDs for the application window components.

For version 4, the symbolic definition file contains the Hello World version 3 code,

as well as the following:

¹ Three window IDs (WND_TEXTDIALOG, WND_MCCANVAS,

WND_STCANVAS) for ATextDialog.

¹ One window ID for the push button set canvas (WND_BUTTONS). It also

contains new string IDs (STR_CENTERB, STR_LEFTB, and STR_RIGHTB) for

the text strings used in the push buttons.

¹ Two menu IDs (MI_EDIT and MI_TEXT) for the menu bar Edit choice and the

Text choice in the pull-down menu.

¹ Four definitions for the dialog window controls (DID_OK, DID_CANCEL,

DID_ENTRY, and DID_STATIC).

622 VisualAge C++ Open Class Library User's Guide

Hello World Version 4

The Text Dialog Source Code File

The ADIALOG4.CPP file contains the source code for the ATextDialog class

constructor and functions created for version 4.

The ATextDialog Class Header File

The ADIALOG4.HPP file contains the class definition and interface specifications for

the ATextDialog class.

The Resource File

Version 4 provides a resource file, AHELLOW4.RC. This resource file assigns an

icon and several text strings with the constants defined in the AHELLOW4.H file

shown in “The Symbolic Definitions File” on page 622. It also contains resources

for the menu bar and the accelerator keys.

AHELLOW4.H is included in this resource file so the icon, text strings, and other

resources can be associated with the same IDs used in the application. OS2.H is

included because it is the top level include file that includes all the files necessary for

writing an OS/2 application.

The resource file for version 4 contains the version 3 code, as well as, additional

strings, updated menus, and command IDs. The first is the accelerator table of

command IDs assigned to the function keys. These command IDs are used in the

cascaded menu to show the accelerator, or shortcut, key assignments. For example,

with these assignments and the command processing in AHELLOW4.CPP, when

users press the F7 key, it is the same as if they select the Left choice in the cascaded

menu.

 Refer to “Converting Resource Files” on page 463 for more information about

the resource file conversion tool.

The Icon File

The AHELLOW4.ICO file is used as the icon that displays when the application is

minimized. This icon is the same as for versions 2 and 3. Refer to Figure 84 on

page 605 to see how this icon appears.

PM The User Interface Class Library for AIX provides a tool, called ibmp2X, for

converting OS/2 bit maps and icons into AIX .xpm files.

 Refer to “Accessing Bitmap and Icon Resources” on page 460 for more

information about the resource file.

 Chapter 49. Adding Dialogs and Push Buttons 623

Hello World Version 4

Exploring Hello World Version 4

The following sections describe each of the tasks performed by version 4 of the Hello

World application that have not been described for previous versions.

Adding a Cascaded Menu to the Menu Bar

For version 4, there are several modifications to the menu bar and its associated

pull-down menu.

Version 4 replaces the Alignment menu bar choice with Edit and makes the

Alignment choice a menu item on the Edit pull-down menu. When the Edit

pull-down menu displays, an arrow to the right of the Alignment choice indicates that

a cascaded menu will display to the right when it is selected. The Alignment and

Edit choices are defined in the AHELLOW4.RC file, as follows:
...
MENU WND_MAIN //Main window menu bar
 BEGIN

SUBMENU "¡Edit", MI_EDIT //Edit submenu
 BEGIN

SUBMENU "¡Alignment", MI_ALIGNMENT //Alignment submenu
 BEGIN

MENUITEM "¡Left\tF7", MI_LEFT //Left menu item - F7 Key
MENUITEM "¡Center\tF8", MI_CENTER //Center menu item - F8 Key
MENUITEM "¡Right\tF9", MI_RIGHT //Right menu item - F9 Key

 END
MENUITEM "¡Text...", MI_TEXT //Text dialog menu item

 END
 END
...

Adding

Keyboard

Accelerators

Keyboard accelerators are key sequences that perform the same actions as menu

items. In version 3, the Left, Center, and Right choices appeared as items in a

pull-down menu. In version 4, these choices become part of the cascaded menu and

are assigned a function key. The menu items are defined in the AHELLOW4.RC file,

with text describing the function and the accelerator key to use. The following code,

from the AHELLOW4.RC file, shows the accelerator keys:
...
MENUITEM "¡Left\tF7", MI_LEFT //Left Menu Item - F7 Key
MENUITEM "¡Center\tF8", MI_CENTER //Center Menu Item - F8 Key
MENUITEM "¡Right\tF9", MI_RIGHT //Right Menu Item - F9 Key
...

The \t indicates that the accelerator key name is tabbed to the right for readability.

This code conveys to users that the Left, Center, and Right alignment choices can be

made by selecting a menu item with the mouse or keyboard, or they can use the

keyboard function keys F7, F8, and F9.

624 VisualAge C++ Open Class Library User's Guide

Hello World Version 4

The menu choices for Left, Center, and Right are visual indicators to the user that

F7, F8, and F9 can be used. The main window in AHELLOW4.CPP must be

programmed to use the accelerator. This is done by using the accelerator style on the

AHelloWindow constructor, as shown in the following code from the

AHELLOW4.CPP file:
...
: IFrameWindow(IFrameWindow::defaultStyle() |
 IFrameWindow::minimizedIcon |
 IFrameWindow::accelerator,
 windowId)
...

The default processing for this style causes the resource file to be searched for an

ACCELTABLE definition for WND_MAIN which is the main window ID. The

accelerator table for version 4 is defined in the AHELLOW4.RC file:
...
ACCELTABLE WND_MAIN //Acc. Table for Main Window
 BEGIN //

VK_F7, MI_LEFT, VIRTUALKEY //F7 - Left Command
VK_F8, MI_CENTER, VIRTUALKEY //F8 - Center Command
VK_F9, MI_RIGHT, VIRTUALKEY //F9 - Right Command

 END //
...

Adding a Pull-Down Menu Choice

The final modification to the pull-down menu adds the Text... choice. By

convention, the ellipsis (...) indicates that selecting this choice causes a dialog

window to display. The following code from the AHELLOW4.RC file adds the

Text... choice:
...
MENUITEM "¡Text...", MI_TEXT //Text Menu Item
...

Figure 87 shows the pull-down menu choices and the cascaded menu.

 Chapter 49. Adding Dialogs and Push Buttons 625

Hello World Version 4

Figure 87. Cascaded Menu and Pull-Down Menu Choices for Version 4

Adding a Modal Dialog Window

A dialog window is a specific type of frame window containing window controls that

gather information from the user. Typically, dialog windows are defined as modal to

the owner frame window, that is, the user must respond to the dialog window before

returning to the previous frame.

In OS/2 Presentation Manager (PM), you use dialog templates to define dialog

windows externally to the application. The application creates a User Interface Class

Library frame window with the same window ID defined in the resource file for the

dialog template. Any controls from the dialog, for example entry fields, that you

want to manipulate using the User Interface Class Library are also constructed from

the corresponding control ID from the resource file. The following example shows an

OS/2 dialog template that you could use with Hello World version 4.

DLGINCLUDE 1 "AHELLOW4.H"

DLGTEMPLATE WND_TEXTDIALOG LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "Hello World Edit Dialog", WND_TEXTDIALOG, 17, 22, 137, 84,
WS_VISIBLE, FCF_SYSMENU | FCF_TITLEBAR

 BEGIN
DEFPUSHBUTTON "OK", DID_OK, 6, 4, 40, 14
PUSHBUTTON "Cancel", DID_CANCEL, 49, 4, 40, 14
LTEXT "Edit Text:", DID_STATIC, 8, 62, 69, 8
ENTRYFIELD "", DID_ENTRY, 8, 44, 114, 8, ES_MARGIN

 END
END

626 VisualAge C++ Open Class Library User's Guide

Hello World Version 4

If you use the User Interface Class Library only for AIX or if you write portable

applications, you should not use dialog templates, because they are not supported in

AIX. Alternatively, you can use User Interface Class Library canvas controls.

 See Chapter 31, “Creating and Using Canvas Controls” on page 361 for

information about the canvas classes. This Hello World version provides an example

of using canvases.

In Hello World version 4, the dialog window contains the following:

¹ A prompt for the entry field. The prompt is a static text control with the text

value loaded from the resource file.

¹ An entry field for changing the Hello World text string.

¹ An OK button, indicating the change should be returned to the main window.

¹ A Cancel button, indicating that the change should not be made.

Because these controls are best organized into columns and rows, use a multiple-cell

canvas control. However, because all controls in a column must be the same width,

aligning the OK button with the prompt would cause the Cancel button to be placed

to the right of the prompt text. Therefore, place the push buttons in a set canvas and

align the set canvas as a single control with the prompt and entry field.

The dialog looks like this:

Figure 88. Dialog Window for Hello World Version 4

 Chapter 49. Adding Dialogs and Push Buttons 627

Hello World Version 4

The following sections describe how to create, start, process, and end the dialog

window.

Invoking the

Dialog

Window

As mentioned in the previous section, the Text... choice on the pull-down menu

causes a dialog window to display. It does this by calling the

AHelloWindow::editText member function, as shown in the following code from the

AHELLOW4.CPP file, file.
...
 case MI_TEXT:
 frame->editText();
 break;
...

The editText function saves the hello text string and sets the information area to

indicate that the text dialog is active. The following code shows this:
...
 IString textValue(hello.text());
 infoArea.setInactiveText(STR_INFODLG);
...

Version 4 creates the textDialog data member from the ATextDialog class, a new

class created as a subclass of the IFrameWindow class. The following code comes

from the AHELLOW4.CPP: file:
...
 ATextDialog textDialog(textValue,this);
...

The textValue object is passed as the current text string to the dialog.

Constructing the Dialog Window: When you create the textDialog object, the frame

that represents the dialog and its components are initialized as shown in the following

sample from the ADIALOG4.CPP file:
...
ATextDialog :: ATextDialog(IString & textString, IWindow * ownerWnd)
 : IFrameWindow(IResourceId(WND_TEXTDIALOG)
 ,IWindow::desktopWindow()
 ,ownerWnd
 ,IRectangle(29,50,313,290)
 .moveBy(ownerWnd->rect().bottomLeft())
 ,IWindow::synchPaint
 |IWindow::clipSiblings
 |IWindow::saveBits
 |dialogBackground
 |dialogBorder
 |systemMenu
 |titleBar)
 ,clientCanvas(WND_MCCANVAS,this,this)

,buttons(WND_STCANVAS, &clientCanvas, &clientCanvas)
 ,statText(DID_STATIC,&clientCanvas,&clientCanvas)

628 VisualAge C++ Open Class Library User's Guide

Hello World Version 4

 ,textField(DID_ENTRY,&clientCanvas,&clientCanvas)
 ,pushButton1(DID_OK,&buttons,&buttons)
 ,pushButton2(DID_CANCEL,&buttons,&buttons)
 ,dialogCommandHandler(this)
 ,saveText(textString)
{
...

The IFrameWindow is initialized, in this case, with values that correspond to the

dialog template. The IRectangle values approximate the size and position that would

be generated from the dialog specifications. The style bits correspond to the bits that

would be set by the template. Notice that dialog windows typically do not have

sizing borders or minimize and maximize buttons.

Next, initialize the six controls needed for the dialog. Note that the buttons are

owned by the set canvas, that the set canvas, the static text, and the entry field are

owned by the multiple-cell canvas; and that the multiple-cell canvas is owned by the

dialog window frame.

Because there are buttons in the frame, you must initialize a command handler for

handling the OK and Cancel buttons.

The saveText data member is initialized with the reference passed on the constructor.

It provides the setTextFromEntryField access to the edit string.

Setting the Dialog Window Controls: Once you initialize the dialog window

controls, you must position and set them. The following code, from the

ADIALOG4.CPP file, positions and sets the dialog window controls:
...
textField.setText(saveText);
textField.disableAutoScroll().enableMargin().enableTabStop();

statText.setText(DID_STATIC);

pushButton1.enableDefault().setText(IResourceId(DID_OK));
pushButton2.setText(IResourceId(DID_CANCEL));
buttons.setPackType(ISetCanvas::expanded).setMargin(ISize());
buttons.enableTabStop();
...

First, you set the entry field. Then, you set the initial text value from the saved text

value. Then set tabStop, autoScroll, and margin styles to match the settings within

the dialog template.

You set the static text control’s value from the resource file.

Set the push buttons by getting their text values from strings in the resource file and

by enabling tabbing. Next, you set pushButton1 as the default push button, which

 Chapter 49. Adding Dialogs and Push Buttons 629

Hello World Version 4

means that when a user presses Enter, it is the same as pushing that button on the

keyboard.

You only need to turn on padding and set margins to zero for the set canvas

containing the buttons. Turning on padding lets the buttons expand to fill the set

canvas area.

Next you position the controls in the multiple-cell canvas. Column 1 and rows 1-3,

5, 6, and 8-14 serve as padding to give the controls the correct spacing in the canvas.

This is shown in the following code from the ADIALOG4.CPP file:
...
clientCanvas.addToCell(&statText , 2, 4);
clientCanvas.addToCell(&textField, 2, 7);
clientCanvas.addToCell(&buttons, 2,15);
...

Finally, you position the multiple-cell canvas in the dialog frame as the client, start

the command handler for the dialog, and set the focus to the entry field. The

following code, from the ADIALOG4.CPP file, shows this:
...
setClient(&clientCanvas);
dialogCommandHandler.handleEventsFor(this);
textField.setFocus();
...

Processing the Dialog Window: Once the textDialog has been created, editText

displays and gives control to it using the AHelloWindow::showModally member

function. Because the dialog window shows modally, it continues to have control

until the dismiss function is called.
...
 textDialog.showModally();
...

Once you give the dialog window control by the AHelloWindow::showModally

function, the user can interact with the dialog in three ways. Because you set the

focus to the entry field, the user’s normal keystrokes are processed by the default edit

handler and the entry field is edited.

Secondly, the user can use the system menu to close or move the dialog window.

However, the window cannot be resized.

Finally, the user can use the Tab keys or the mouse to select a push button. Also,

because you defined the OK as a default key, users can use the Enter key to select

it. When a user presses a button, the ADialogCommandHandler::command function

processes the event. If the user presses OK, the setTextFromEntryField function is

630 VisualAge C++ Open Class Library User's Guide

Hello World Version 4

called to change the saved text value to the one edited in the text entry field. The

code for this is found in the ADIALOG4.CPP file.
...
ATextDialog &
 ATextDialog::setTextFromEntryField()
{
saveText = textField.text();
return (*this); //Return a reference to the frame

} /* end AHelloWindow :: setTextFromEntryField */
...

The dismiss function is then called with the DID_OK ID. This value is saved in the

textDialog’s IFrameWindow object. The dismiss function closes the window and

returns control to the owner window. This is found in the ADIALOG4.CPP file.
...
case DID_OK:
 frame->setTextFromEntryField();
 frame->dismiss(DID_OK);
 break;
...

Pressing the Cancel button does not call the setTextFromEntryField function, but it

does call the dismiss function with the DID_CANCEL value. This is found in the

ADIALOG4.CPP file, as follows:
...
case DID_CANCEL:
 frame->dismiss(DID_CANCEL);
 break;
...

The AHelloWindow::editText function can then use the textDialog.result function to

determine if the user changed the text value. The information area is also reset. The

following code is from the AHELLOW4.CPP file.
...
if (textDialog.result() == DID_OK)
 hello.setText(textValue);
infoArea.setInactiveText(STR_INFO);
...

The code for the text dialog comes from the ADIALOG4.CPP file. The declaration

and interface specifications for the ATextDialog class are contained in the

ADIALOG4.HPP file, which is included by both the AHELLOW4.CPP and

ADIALOG4.CPP files.

Deleting the

Dialog

Window

Because you create the textDialog object statically, that is, the new operator is not

used to create it, the object is deleted automatically when it is no longer in scope, in

this case, when the editText function is exited. Using this approach means that each

 Chapter 49. Adding Dialogs and Push Buttons 631

Hello World Version 4

time the editText function is called, a new textDialog object is created, processed, and

deleted.

Setting Push Buttons in a Set Canvas

The following code, from the AHELLOW4.HPP file, defines the buttons data member

as an instance of the ISetCanvas class.
...
ISetCanvas buttons;
...

 See “Understanding Set Canvases” on page 366 for more information about the

ISetCanvas features described in this chapter.

To make the ISetCanvas class available to the application, the AHELLOW4.HPP file

includes the ISETCV.HPP library header file, as follows:
...
#ifndef _ISETCV_
#include <isetcv.hpp> //Include ISetCanvas Class Header

#endif
...

Next, the buttons data member is created as a set canvas control with the main

window as the parent and owner of the control. The WND_BUTTONS constant

provides the window ID for this set canvas control. This is in AHELLOW4.HPP.

AHELLOW4.H as follows:
...
#define WND_BUTTONS 0x1021 //Button Canvas Window ID
...

Use the setMargin and setPad member functions to set the canvas margins and pad to

zero. The following code, from the AHELLOW4.CPP file, shows how to do this:
...
 buttons.setMargin(ISize());
 buttons.setPad(ISize());
 addExtension(&buttons, IFrameWindow::belowClient,
 (unsigned long)buttons.minimumSize().height());
...

Defining the

Push Buttons

Now that you have a set canvas, define two push button data members in the

header file, ADIALOG4.HPP, as shown in the following code:
...
IPushButton pushButton1,
 pushButton2;
...

632 VisualAge C++ Open Class Library User's Guide

Hello World Version 4

Creating

Push Buttons

The ADIALOG4.HPP, file includes the IPUSHBUT.HPP library header file and

makes the IPushButton class available to version 4. You need the data members

defined in the AHELLOW4.HPP file to create three push buttons in the set canvas:

Left, Center, and Right. Use the following code to include the AHELLOW4.HPP

file: AHELLOW4.CPP file uses the following code to include the IPUSHBUT.HPP

file:
...
#ifndef _IPUSHBUT_
#include <ipushbut.hpp> //Include IPushButton Class Header

#endif
...

The following code creates a new instance of the Left push button control and

specifies that it uses the command processing associated with the MI_LEFT menu

item attribute to align the “Hello, World!!!” text string on the left side of the client

window. The following code comes from AHELLOW4.CPP:
...
,leftButton(MI_LEFT, &buttons, &buttons)
...

Other than the data member used (centerButton is used for the Center push button

and rightButton is used for the Right push button), the window ID is the only

difference in the code that is used to create all three push buttons. Specify the

MI_CENTER menu item window ID for the Center push button and MI_RIGHT for

the Right push button.

The set canvas control is identified as the owner and parent of the push button

control.

Setting Text

in Push

Buttons

The AHELLOW4.CPP file uses the setText member function to set text strings in

each push button. Here is the code that sets the text in the Left push button:
...
leftButton.setText(STR_LEFTB);
...

Other than the data member for which the text is set (centerButton is used for the

Center push button and rightButton is used for the Right push button), the only

difference between this code and the code that puts text in the other two push buttons

is the STR_LEFTB constant, which associates with the appropriate text string in the

AHELLOW4.RC file. Here are the text string associations for all three push buttons:
...
STR_LEFTB, "Left" //String for Left Button
STR_CENTERB,"Center" //String for Center Button
STR_RIGHTB, "Right" //String for Right Button
...

 Chapter 49. Adding Dialogs and Push Buttons 633

Hello World Version 4

634 VisualAge C++ Open Class Library User's Guide

Hello World Version 5

50 Adding Split Canvases, a List Box,

Native System Functions, and Help

Version 5 of the Hello World application shows you how to add the following:

¹ Split canvases for showing multiple control windows in the client window

¹ List box for selecting text for a static text window

¹ Native system functions to use in conjunction with User Interface Class Library

objects

¹ Help window to provide users with information about the frame window

The main window for version 5 of the Hello World application looks like this:

Figure 89. Version 5 of the Hello World Sample Application

Listing the Hello World Version 5 Files

The following files contain the code used to create version 5:

File Type of Code

AHELLOW5.CPP Source code for main procedure and AHelloWindow class

AHELLOW5.HPP Class header file for AHelloWindow

 Copyright IBM Corp. 1993, 1995 635

Hello World Version 5

File Type of Code

AHELLOW5.H Symbolic definitions file for HELLO5.EXE

ADIALOG5.CPP Source code for the ATextDialog class

ADIALOG5.HPP Class header file for ATextDialog

AEARTHW5.CPP Source code for the AEarthWindow class

AEARTHW5.HPP Class header file for AEarthWindow

AHELLOW5.RC Resource file for HELLO5.EXE

AHELLOW5.ICO Icon file for HELLO5.EXE

AHELLOW5.IPF Help source file for HELLO5.EXE

The Primary Source Code File

The AHELLOW5.CPP file contains the source code for the main procedure and

AHelloWindow class functions. The tasks performed by this code are described in

the following sections.

The AHelloWindow Class Header File

The AHELLOW5.HPP file contains the class definition and interface specifications

for the AHelloWindow class, with a few modifications for version 5.

The Symbolic Definitions File

The AHELLOW5.H file contains the symbolic definitions for this application. These

symbols and their definitions provide the IDs for the application window components.

The Text Dialog Source Code File

The ADIALOG5.CPP file contains the source code for the ATextDialog class,

modified for help in version 5.

The ATextDialog Class Header File

The ADIALOG5.HPP file contains the class definition and interface specifications for

the ATextDialog class. The ADIALOG5.HPP file is the same as the

ADIALOG4.CPP file.

The Earth Window Source File

The AEARTHW5.CPP file contains the source code for the Earth window graphic

that is drawn using native-system graphics calls.

636 VisualAge C++ Open Class Library User's Guide

Hello World Version 5

The AEarthWindow Class Header File

The AEARTHW5.HPP file contains the class definition and interface specifications

for the AEarthWindow class.

The Resource File

Version 5 of the Hello World application provides a resource file, AHELLOW5.RC,

which contains all the resources from version 4, as well as additional resources,

including a help table.

The Icon File

The AHELLOW5.ICO file is used as the icon that displays when the application is

minimized. This icon is the same as for previous versions. Refer to Figure 84 on

page 605 to see how this icon appears.

The Help Window Source File

The AHELLOW5.IPF file contains the text and IPF tags used to produce the help

information for the Hello World application. IPF uses a tag language to format the

text that appears in a help window. For example, :p. is the paragraph tag, which you

use to start a new paragraph.

Refer to the OS/2 Information Presentation Facility Guide and Reference for

descriptions of other tags used in the help source file. The makefiles provided with

Hello World version 5 use the IPFC compiler, provided by the OS/2 Developer’s

Toolkit to compile the help file.

Exploring Hello World Version 5

The following sections describe each of the tasks performed by version 5 of the Hello

World application that were not described for previous versions.

Constructing the Client Window with Split Canvases

In previous versions of the Hello World application, the client window contained a

simple static text window. Version 5 provides an sample of a client window with

three visible windows:

¹ A static text window containing “Hello World!!!” from the previous versions

¹ A new static text window with a graphical view of the earth from space

¹ A new list box containing different language versions of the phrase, “Hello

World!!!”

The two new windows are described in detail in later sections of this chapter.

Use the ICanvas class for a common and easy-to-use method for placing multiple

windows into a client window. Version 5 places the two static text windows into a

 Chapter 50. Adding Split Canvases, a List Box, Native System Functions, and Help 637

Hello World Version 5

horizontal split canvas, called helloCanvas, and then places helloCanvas and the list

box into a vertical canvas called clientCanvas. It also places windows in a split

canvas by identifying the canvas as the control window’s parent. For example, the

split canvases in the client area of the Hello World main window are initialized in the

AHelloWindow constructor in the AHELLOW5.CPP file, as follows:
...
,clientWindow(WND_CANVAS, this, this)
,helloCanvas(WND_HCANVAS, &clientWindow, &clientWindow, IRectangle(),

IWindow::visible | ISplitCanvas::horizontal)
,hello(WND_HELLO, &helloCanvas, &helloCanvas)
,earthWindow(WND_EARTH, &helloCanvas)
,listBox(WND_LISTBOX, &clientWindow, &clientWindow, IRectangle(),
 IListBox::defaultStyle() |
 IControl::tabStop |
 IListBox::noAdjustPosition)
...

The order in which you place your child windows into a split canvas determines the

order that they will be seen. For example, the AHelloWindow::hello static text

window appears above the earthWindow static text window because it is created as

the first child of the helloCanvas window. Likewise, the helloCanvas window

appears to the left of the list box because it is created before the list box.

After initializing the canvases, the following statements from the AHELLOW5.CPP

file set the client window and the proportions for its child windows in the vertical

split canvas.
...
setClient(&clientWindow);
clientWindow.setSplitWindowPercentage(&helloCanvas, 60);
clientWindow.setSplitWindowPercentage(&listBox, 40);
...

Creating and Using a List Box

Hello World version 5 provides you with the ability to change the Hello World text

by selecting different language versions of the phrase “Hello World” from a list box.

The IListBox object in Hello World version 5 is called listBox and is initialized in

the AHelloWindow constructor in AHELLOW5.CPP as follows:
...
,listBox(WND_LISTBOX, &clientWindow, &clientWindow, IRectangle(),
 IListBox::defaultStyle() |
 IControl::tabStop |
 IListBox::noAdjustPosition)
...

The inherited tabStop style indicates that you can tab to the list box. The

noAdjustPosition style prevents the list box from being automatically resized when an

item in the list does not fit inside the current window.

638 VisualAge C++ Open Class Library User's Guide

Hello World Version 5

One way you can populate the newly created list box is to use the IListBox member

function, addAscending. This function adds a text string to the list box in ascending

alphabetical order. For example, Hello World version 5 uses the addAscending

function to load a variable number of strings from the resource file into the list box.
...
for (int i=0;i<HI_COUNT;i++)
 listBox.addAscending(HI_WORLD+i);
...

The strings are defined in the resource file, AHELLOW5.RC, as follows:
...
// Change HI_COUNT in ahellow5.h to change number of HIs used.
HI_WORLD, "Hello, World!" //English
HI_WORLD+1, "Hi, World!" //American
HI_WORLD+2, "Howdy, World!" //Southern American
HI_WORLD+3, "Alo, Mundo!" //Portuguese
HI_WORLD+4, "Ola, Mondo!" //Spanish
HI_WORLD+5, "Hallo wereld!" //Dutch
HI_WORLD+6, "Hallo Welt!" //German
HI_WORLD+7, "Bonjour le monde!" //French
HI_WORLD+8, "Put your language here!" //Add more items, too!
...

HI_WORLD is a symbolic definition for the constant string ID of the first string.

HI_COUNT is the symbolic definition for the constant number of strings to load. In

this sample, HI_COUNT is defined as 8. Therefore, only HI_WORLD through

HI_WORLD+7 are loaded. You can add another item to the list by changing the

HI_WORLD constant in the symbolic definition file, AHELLOW5.H, and adding

your strings to the HI_WORLD list.

Once you create the list box and fill it with items, define a select handler for

processing list box selections. Hello World version 5 provides a select handler class,

called ASelectHandler. (It is similar to the command handler added in Hello World

version 3.)

The three differences are:

¹ The handler function overridden is called selected, instead of command

¹ The event passed into the function is an IControlEvent, instead of an

ICommandEvent.

¹ The function being called processes selections made to our list box.

The ASelectHandler is defined in the AHelloWindow class header file,

AHELLOW5.HPP, using the following class definition:

 Chapter 50. Adding Split Canvases, a List Box, Native System Functions, and Help 639

Hello World Version 5

...
class ASelectHandler : public ISelectHandler {
public:
 ASelectHandler(AHelloWindow *helloFrame);
protected:
virtual Boolean
 selected(IControlEvent& ctlEvent);
private:
 AHelloWindow *frame;
};
...

The ASelectHandler::selected function and the AHelloWindow::setTextFromListBox

function provide the selection event handling for version 5. These functions are listed

below and can be found in the AHELLOW5.CPP file.
...
IBase::Boolean
ASelectHandler :: selected(IControlEvent & evt)

{
 frame->setTextFromListBox();
return (true); //Event is always processed

} /* end ASelectHandler :: selected(...) */
...
AHelloWindow &
AHelloWindow :: setTextFromListBox()

{
 IListBox::Cursor lbCursor(listBox);
 lbCursor.setToFirst();
 hello.setText(listBox.elementAt(lbCursor));
return (*this); //Return a reference to the frame

}; /* end AHelloWindow :: setTextFromListBox() */
...

The setTextFromListBox function introduces a new User Interface Class Library

class, IListBox::Cursor. Use a list box cursor to scan through the items in a list box.

The constructor used in Hello World version 5 for creating the lbCursor object

contains only one argument, the list box object to be scanned. You can also specify

an additional argument, called a filter, to specify if you want to scan all the items in

the list or only the items that are selected. Because the setTextFromListBox function

looks for the first item selected, the default filter type, selected, is used.

The IListBox::Cursor::setToFirst function positions the cursor to the first selected

item. Then, the IListBox::elementAt function uses the cursor to locate and return the

text string identified by the first selected item. Hello World version 5 uses the string

value to set the Hello World text.

Like the command handler in Hello World version 3, the ASelectHandler::selected

function is not called until you attach the handler to the proper window. In this case,

you attach the select handler to the list box using the ASelectHandler inherited

640 VisualAge C++ Open Class Library User's Guide

Hello World Version 5

IHandler function, handleEventsFor. This causes the ASelectHandler::selected

function to be called each time you select a list box item.

To stop handling selection events, use the stopHandlingEventsFor function, again

specifying the list box.

Using Native System Functions and a Paint Handler

The AEARTHW5.HPP and AEARTHW5.CPP files contain the class header and

implementation for a AEarthWindow class. Refer to the comments and code in these

files for examples of the following:

¹ Calling native system functions from within user interface member functions

¹ Providing system-specific function in a portable application using compiler

directives

¹ Displaying a graphics window using an IStaticText object

¹ Creating and using an IPaintHandler to repaint a static text window whenever it

is invalidated

¹ Representing geometric shapes using IRectangle and IPoint objects

¹ Using IColor objects as arguments to native function calls

Setting Up the Help Area

Use the following steps to create help information for your application:

1. Create a file containing the help information.

Create the source text that displays in your application’s help window using the

IPF format (.IPF file). Compile your IPF file into a help file (.HLP file) using

the IPFC compiler.

 Refer to the OS/2 Information Presentation Facility Guide and Reference for

descriptions of the tags you use to create the source .IPF file.

For an example of an IPF source file, refer to the Hello World version 5

AHELLOW5.IPF file, which is described in Chapter 50, “Adding Split Canvases,

a List Box, Native System Functions, and Help” on page 635.

2. Define the help window title and the help submenu in your resource file. In

Hello World version 5, the help window title and help submenu are defined in

the AHELLOW5.RC file, as follows:
...
STR_HTITLE, "C++ Hello World - Help Window" //Help window title string
...
SUBMENU "˜Help", MI_HELP, MIS_HELP //Help submenu
 BEGIN

MENUITEM "˜General help...", SC_HELPEXTENDED, MIS_SYSCOMMAND
MENUITEM "˜Keys help...", SC_HELPKEYS, MIS_SYSCOMMAND
MENUITEM "Help ˜index...", SC_HELPINDEX, MIS_SYSCOMMAND

 END
..

 Chapter 50. Adding Split Canvases, a List Box, Native System Functions, and Help 641

Hello World Version 5

.

MI_HELP is the help menu ID.

Normally, you specify MIS_HELP for a menu item to cause a help event, rather

than a command event, to be posted when the menu item is selected. OS/2 PM

ignores MIS_HELP specified on submenu items.

When MIS_SYSCOMMAND is specified with the predefined SC_HELP* IDs, a

system command event is generated. The default system command handler

recognizes the predefined IDs and shows the appropriate help panel, except for

SC_HELPKEYS, which by default does nothing. You can override this default

processing for SC_HELPKEYS, using an IHelpHandler, which is described in a

later step.

3. Define a help table in the resource file.

The help table defines the relationship between the window ID and the general or

contextual panel ID that is defined in the IPF file. The following help table is

defined in the resource file, AHELLOW5.RC, for Hello World version 5:

HELPTABLE HELP_TABLE
 BEGIN
 HELPITEM WND_MAIN, SUBTABLE_MAIN, 100
 HELPITEM WND_TEXTDIALOG, SUBTABLE_DIALOG, 200
 END

HELPSUBTABLE SUBTABLE_MAIN //Main window help subtable
 BEGIN //

HELPSUBITEM WND_HELLO, 100 //Hello static text help ID
HELPSUBITEM WND_LISTBOX,102 //List box help ID
HELPSUBITEM MI_EDIT, 110 //Edit menu item help ID
HELPSUBITEM MI_ALIGNMENT, 111 //Alignment menu item help ID
HELPSUBITEM MI_LEFT, 112 //Left command help ID
HELPSUBITEM MI_CENTER, 113 //Center command help ID
HELPSUBITEM MI_RIGHT, 114 //Right command help ID
HELPSUBITEM MI_TEXT, 199 //Text command help ID

 END //

HELPSUBTABLE SUBTABLE_DIALOG //Text dialog help subtable
 BEGIN //

HELPSUBITEM DID_ENTRY, 201 //Entry field help ID
HELPSUBITEM DID_OK, 202 //OK command help ID
HELPSUBITEM DID_CANCEL, 203 //Cancel command help ID

 END //

WND_HELLO and WND_LISTBOX are control IDs, MI_* are menu item IDs,

and the DID_* are push button IDs. Each window ID is related to a help panel

ID. In the preceding example, WND_MAIN and WND_HELLO both correspond

to help panel ID 100. That is, pressing the F1 key in the main window area

displays the same help panel as selecting General help... from the Help

submenu.

4. Create a help window object for your application window.

642 VisualAge C++ Open Class Library User's Guide

Hello World Version 5

Use the IHelpWindow class to associate help information with an application

window. Hello World version 5 defines the private data member, helpWindow,

as an IHelpWindow object. It is initialized in the AHelloWindow constructor in

AHELLOW5.CPP AHELLOW5.HPP.
...
class AHelpHandler : public IHelpHandler {
...
protected:
virtual Boolean
 keysHelpId(IEvent& evt);
};
...

5. Provide the overridden virtual function keysHelpId, which is called when keys

help is requested. The following code, from the Hello World version 5

AHELLOW5.CPP file, shows how to implement this function.
...
IBase::Boolean AHelpHandler :: keysHelpId(IEvent& evt)
{
evt.setResult(1000); //1000=keys help ID in

 // ahellow5.ipf file

return (true); //Event is always processed
} /* end AHelpHandler :: keysHelpId(...) */
...

In the preceding code, the help panel ID for the Hello World version 5 keys help

is set in the event result.

6. Start and stop help events processing.

Your help handler, previously described, does not begin handling help events

until the you use the handleEventsFor member function. For example, the

following code causes the helpHandler to begin processing help events for this

frame window:
...
helpHandler.handleEventsFor(this);
...

Typically, you include this statement in the constructor for the frame window.

KeyConcept.Note that the window which handles help events must be an

associated window. That is, you should identify the window as the associated

window on the IHelpWindow constructor or explicitly identify the window as an

associated window using the IHelpWindow::setAssociatedWindow function.

When you want to stop handling help events, for example, when you close your

frame window, use the stopHandlingEventsFor member function, as follows:

 Chapter 50. Adding Split Canvases, a List Box, Native System Functions, and Help 643

Hello World Version 5

...
helpHandler.stopHandlingEventsFor(this);
...

You typically include this statement in the destructor for the frame window.

7. Associate secondary frame windows with the parent window’s help window.

You can use an owner window’s help window for secondary frame windows by

using the IHelpWindow::setAssociatedWindow member function. This function

adds the secondary window to the help event chain for a specific help window.

Specify a pointer to the secondary window as the one argument to this function.

In many cases, you will want to make this association in the constructor of the

secondary frame window, but you will not be passed a pointer to the owner

window’s help window. To get a reference to the owner’s help window, use the

static IHelpWindow member function helpWindow, specifying the owner window

as the argument.

Hello World version 5 provides an example in the ADIALOG5.CPP file, as

follows:
...
IHelpWindow::helpWindow(ownerWnd)->setAssociatedWindow(this);
...

8. Attach the following special handler to child frame windows in your application.

This handler is needed so that help processes correctly for these windows.

class ChildFrameHelpHandler : public IHandler {
typedef IHandler Inherited;
/***
* This handler enables the OS/2 Help Manager to use help tables to display *
* contextual help for a child frame window (one whose parent window is not *
* the desktop). This handler should only be attached to child frame windows. *
***/
public:
virtual ChildFrameHelpHandler
 &handleEventsFor (IFrameWindow* frame),
 &stopHandlingEventsFor (IFrameWindow* frame);
protected:
virtual Boolean
 dispatchHandlerEvent (IEvent& evt);
ChildFrameHelpHandler
 &setActiveWindow (IEvent& evt, Boolean active = true);
private:
virtual IHandler
 &handleEventsFor (IWindow* window),
 &stopHandlingEventsFor (IWindow* window);
};

IBase::Boolean ChildFrameHelpHandler :: dispatchHandlerEvent (IEvent& evt)
{
switch (evt.eventId())

 {
 case WM_ACTIVATE:

644 VisualAge C++ Open Class Library User's Guide

Hello World Version 5

 setActiveWindow(evt, evt.parameter1().number1());
 break;
 case WM_HELP:
 setActiveWindow(evt, true);
 break;
 default:
 break;
} /* endswitch */

return false; // Never stop processing of event
}

ChildFrameHelpHandler&
ChildFrameHelpHandler :: setActiveWindow (IEvent& evt,

Boolean active)
{
IHelpWindow* help = IHelpWindow::helpWindow(evt.window());

 if (help)
 {

IFrameWindow* frame = 0;
 if (active)
 {

frame = (IFrameWindow*)evt.window();
 }
 help->setActiveWindow(frame, frame);
 }
 return *this;
}

ChildFrameHelpHandler&
ChildFrameHelpHandler :: handleEventsFor (IFrameWindow* frame)

{
IASSERTPARM(frame != 0);

 Inherited::handleEventsFor(frame);
 return *this;
}

ChildFrameHelpHandler&
ChildFrameHelpHandler :: stopHandlingEventsFor (IFrameWindow* frame)

{
IASSERTPARM(frame != 0);

 Inherited::stopHandlingEventsFor(frame);
 return *this;
}

IHandler& ChildFrameHelpHandler :: handleEventsFor (IWindow* window)
{ // private to hide version in IHandler
 ITHROWLIBRARYERROR(IC_MEMBER_ACCESS_ERROR,
 IErrorInfo::invalidRequest,
 IException::recoverable);
 return *this;
}

IHandler& ChildFrameHelpHandler :: stopHandlingEventsFor (IWindow* window)
{ // private to hide version in IHandler
 ITHROWLIBRARYERROR(IC_MEMBER_ACCESS_ERROR,
 IErrorInfo::invalidRequest,
 IException::recoverable);

 Chapter 50. Adding Split Canvases, a List Box, Native System Functions, and Help 645

Hello World Version 5

 return *this;
}

 Refer to the Open Class Library Reference for more information on IHelpWindow

and IHelpHandler.

646 VisualAge C++ Open Class Library User's Guide

Hello World Version 6

51 Adding a Font Dialog, a Pop-up Menu,

and a Notebook

Version 6 of the Hello World application shows you how to do the following:

¹ Use a font dialog to change the font for a static text window

¹ Use a pop-up menu and a menu handler

¹ Use a notebook with multiple controls for changing application settings

¹ Use the IProfile class to save and read user settings

¹ Use a combination box instead of an entry field

¹ Add your own handler class for handling a type of event

The main window for Version 6 of the Hello World application looks like this:

Figure 90. Version 6 of the Hello World Sample Application

Listing the Hello World Version 6 Files

The following files contain the code used to create version 6:

File Type of Code

AHELLOW6.CPP Source code for main procedure and AHelloWindow class

AHELLOW6.HPP Class header file for AHellowWindow

 Copyright IBM Corp. 1993, 1995 647

Hello World Version 6

File Type of Code

AHELLOW6.H Symbolic definitions file for HELLO6.EXE

ADIALOG6.CPP Source code for the ATextDialog class

ADIALOG6.HPP Class header file for ATextDialog

AEARTHW6.CPP Source code for the AEarthWindow class

AEARTHW6.HPP Class header file for AEarthWindow

ANOTEBW6.CPP Source code for the ANotebookWindow class

ANOTEBW6.HPP Class header file for ANotebookWindow

ATIMEHDR.CPP Source code for the ATimeHandler class

ATIMEHDR.HPP Class header file for ATimeHandler

AHELLOW6.RC Resource file for HELLO6.EXE

AHELLOW6.ICO Icon file for HELLO6.EXE

AHELLOW6.IPF Help file for HELLO6.EXE

Exploring Hello World Version 6

The following list describes the tasks performed by version 6 of the Hello World

application that are not already described for previous versions. The tasks are as

follows:

¹ Implementing a new time handler class derived from IHandler

Refer to ATIMEHDR.CPP and ATIMEHDR.HPP for an example of writing your

own handler. Hello World version 6 demonstrates writing your own handler by

implementing a simple time handler that posts a WM_TIMER event and calls

ATimeHandler::tick every second.

Note: This class demonstrates IHandler derivation; the timer functions might not

handle all cases and might break in a multithreaded environment.

 Refer to the AHELLOW6.CPP and AHELLOW6.HPP files for the

AHelloTimeHandler class. The AHelloTimeHandler class overrides the

ATimeHandler tick function to implement a running clock.

 You should also refer to the AEARTHW6.CPP and AEARTHW6.HPP files

for ATwinkleTimeHandler. The ATwinkleTimeHandler overrides the

ATimeHandler tick to provide stars that twinkle every second.

¹ Changing the status line in AHelloWindow to a split canvas with the status

alignment plus the current date and time

648 VisualAge C++ Open Class Library User's Guide

Hello World Version 6

Hello World version 6 also provides public functions for setting the date and time

formats.

¹ Adding a pop-up menu and a menu handler to the AHelloWindow class

Hello World version 6 derives a new class, APopUpHandler, from IMenuHandler,

and overrides the virtual function makePopUpMenu to provide pop-up menus for

the hello and earthWindow static text windows. This version also demonstrates

using static and dynamic pop-up menus.

¹ Adding a new Edit submenu item, Fonts...

This new menu item invokes the AHelloWindow::setHelloFont function that uses

a modal IFontDialog to change the font in the AHelloWindow::hello static text

window.

¹ Adding a new submenu to the Settings menu item

This new submenu contains Read, Open..., and Save menu items.

¹ Adding a new Settings submenu item, Open...

This new menu item invokes the AHelloWindow::openHelloSettings function that

dynamically creates a nonmodal ANotebookWindow frame window. The

nonmodal frame window lets you change AEarthWindow settings and date and

time formats using check boxes, a slider, and radio buttons from a notebook

window.

 Refer to ANOTEBW6.HPP and ANOTEBW6.CPP to see how the new

ANotebookWindow class is defined and implemented, and to AHELLOW6.CPP

for an example of its use.

¹ Adding a new Settings submenu item, Save

This new menu item invokes the AHelloWindow::saveHelloSettings function that

saves the hello font and the changeable user settings to an IProfile class file.

Hello World version 6 uses a message box to indicate that the save completed

successfully.

¹ Adding a new Settings submenu item, Read

This new menu item invokes the AHelloWindow::readHelloSettings function that

reads the hello font and the changeable user settings to an IProfile class file.

Hello World version 6 uses a message box to indicate that the read completed

successfully.

 Chapter 51. Adding a Font Dialog, a Pop-up Menu, and a Notebook 649

Hello World Version 6

¹ Enhancing the AEarthWindow function to include the following:

– Setting and querying the intensity of the stars

– Making the stars start and stop twinkling

– Setting and querying the number of atmosphere layers

– Setting and querying the color of the earth

 Refer to the AEARTHW6.CPP and AEARTHW6.HPP files for more

information.

650 VisualAge C++ Open Class Library User's Guide

Part 7. Appendices, Bibliography, Glossary, and Index

Appendix A. Class Hierarchy by Category 653

Appendix B. New Color Support . 665

Appendix C. Task and Samples Cross-Reference Table 673

Appendix D. Using Extended Style Support 677

Glossary . 701

Bibliography . 715

Index . 717

 Copyright IBM Corp. 1993, 1995 651

652 VisualAge C++ Open Class Library User's Guide

 A Class Hierarchy by Category

The following sections display the class hierarchies for each category of the User

Interface Class Library

Application Control Classes

Provide support for the application, threads, timers, profiles, and the resources used

by the applications you develop.

IBase
 ├─ICritSec
 ├─IHandle
 │ ├─IContextHandle
 │ ├─IProcessId
 │ ├─IProfileHandle
 │ ├─ISemaphoreHandle
 │ └─IThreadId
 ├─IProcedureAddress
 ├─IResourceId
 └─IVBase
 ├─IApplication
 │ └─ICurrentApplication
 ├─IClipboard
 ├─IClipboard::Cursor
 ├─IHandler
 │ └─IClipboardHandler
 ├─IProfile::Cursor
 ├─IProfile
 ├─IRefCounted
 │ ├─IThreadFn

│ │ └─IThreadMemberFn
 │ └─ITimerFn
 │ ├─ITimerMemberFn
 │ └─ITimerMemberFn0
 ├─IResource
 │ ├─IPrivateResource
 │ └─ISharedResource
 ├─IResourceLibrary
 │ └─IDynamicLinkLibrary
 ├─IResourceLock
 ├─IThread
 │ └─ICurrentThread
 ├─IThread::Cursor
 ├─ITimer
 └─ITimer::Cursor

 Copyright IBM Corp. 1993, 1995 653

Base Window, Menu, Handler, and Event Classes

Provide support for the basic windows, handlers, events, and menus used by the

applications you develop.

ISequence
 └─IFrameExtensions
IBase
 ├─IAccelerator
 ├─IBitFlag
 │ ├─IMenuItem::Attribute
 │ ├─IMenuDrawItemHandler::DrawFlag
 │ ├─IMenuItem::Style
 │ ├─IWindow::Style
 │ ├─IMessageBox::Style
 │ ├─IMenuBar::Style
 │ ├─IMenu::Style
 │ └─IFrameWindow::Style
 ├─ICoordinateSystem
 ├─IEventData
 ├─IEventParameter1
 ├─IEventParameter2
 ├─IEventResult
 ├─IFrameExtension
 ├─IHandle
 │ ├─IAccelTblHandle
 │ ├─IAnchorBlockHandle
 │ ├─IBitmapHandle
│ │ └─ISystemBitmapHandle
 │ ├─IDisplayHandle
 │ ├─IEnumHandle
 │ ├─IMenuHandle
 │ ├─IMessageQueueHandle
 │ ├─IModuleHandle
 │ ├─IPointerHandle
│ │ └─ISystemPointerHandle
 │ ├─IPresSpaceHandle
 │ ├─IStringHandle
 │ └─IWindowHandle
 ├─IHelpWindow::Settings
 ├─IHighEventParameter
 ├─ILowEventParameter
 ├─IMenuItem
 ├─ISWP
 ├─ISWPArray
 └─IVBase
 ├─IWindow::BidiSettings
 ├─IWindow::ChildCursor
 ├─ISubmenu::Cursor
 ├─IMenu::Cursor
 ├─IWindow::ExceptionFn
 └─IColor
 ├─IDeviceColor
 └─IGUIColor

654 VisualAge C++ Open Class Library User's Guide

Base Window, Menu, Handler, and Event Classes ...
IBase
 └─IVBase
 ├─IEvent
 │ ├─ICommandEvent
 │ ├─IControlEvent

│ │ └─IDrawItemEvent
 │ │ └─IMenuDrawItemEvent
 │ ├─IFrameEvent

│ │ └─IFrameFormatEvent
 │ ├─IHelpErrorEvent
 │ ├─IHelpHyperlinkEvent
 │ ├─IHelpMenuBarEvent
 │ ├─IHelpNotifyEvent
 │ ├─IHelpSubitemNotFoundEvent
 │ ├─IHelpTutorialEvent
 │ ├─IKeyboardEvent
 │ ├─IMenuEvent
 │ ├─IMouseEvent

│ │ └─IMouseClickEvent
 │ ├─IMousePointerEvent
 │ ├─IPaintEvent
 │ └─IResizeEvent
 ├─IHandler
 │ ├─ICommandHandler
 │ ├─IEditHandler
 │ ├─IFocusHandler
 │ ├─IFrameHandler
 │ ├─IHelpHandler
 │ ├─IKeyboardHandler
 │ ├─IMenuDrawItemHandler
 │ ├─IMenuHandler
 │ ├─IMouseHandler

│ │ └─IMousePointerHandler
 │ ├─IPaintHandler
 │ ├─IResizeHandler
 │ ├─ISelectHandler
 │ └─IWindowNotifyHandler
 │ ├─IFrameWindowNotifyHandler
 │ └─IMenuNotifyHandler
 ├─IMessageBox
 └─INotifier
 └─IWindow
 ├─IFrameWindow
 ├─IHelpWindow
 ├─IMenu
 │ ├─IMenuBar
 │ ├─IPopUpMenu
 │ ├─ISubmenu
 │ └─ISystemMenu
 └─IObjectWindow

 Appendix A. Class Hierarchy by Category 655

Standard Control Classes

Provide support for the basic controls, such as entry fields, static text, and buttons

used by the applications you develop.

IBase
 │ IBitFlag
 │ ├─I3StateCheckBox::Style
 │ ├─IBaseComboBox::Style
 │ ├─IBaseListBox::Style
 │ ├─IBaseSpinButton::Style
 │ ├─IButton::Style
 │ ├─ICheckBox::Style
 │ ├─IControl::Style
 │ ├─IEntryField::Style
 │ ├─IGroupBox::Style
 │ ├─IMultiLineEdit::Style
 │ ├─INumericSpinButton::Style
 │ ├─IOutlineBox::Style
 │ ├─IProgressIndicator::Style
 │ ├─IPushButton::Style
 │ ├─IRadioButton::Style
 │ ├─IScrollBar::Style
 │ ├─ISlider::Style
 │ ├─IStaticText::Style
 │ └─ITextSpinButton::Style
 └─IVBase
 ├─IBaseComboBox::Cursor
 ├─IBaseListBox::Cursor
 ├─ITextSpinButton::Cursor
 ├─IEvent
 │ ├─IControlEvent

│ │ ├─IDrawItemEvent
│ │ │ └─IListBoxDrawItemEvent
│ │ └─IListBoxSizeItemEvent

 │ └─IScrollEvent
 └─IHandler
 ├─IListBoxDrawItemHandler
 ├─IScrollHandler
 ├─IShowListHandler
 ├─ISliderArmHandler
 ├─ISliderDrawHandler
 ├─ISpinHandler
 └─IWindowNotifyHandler
 ├─IListBoxNotifyHandler
 ├─IScrollBarNotifyHandler
 ├─INumericSpinButtonNotifyHandler
 ├─ITextSpinButtonNotifyHandler
 └─ITextControlNotifyHandler
 ├─IButtonNotifyHandler
 │ └─ISettingButtonNotifyHandler
 ├─IEntryFieldNotifyHandler
 │ └─IComboBoxNotifyHandler
 ├─IMultiLineEditNotifyHandler
 └─ITitleNotifyHandler

656 VisualAge C++ Open Class Library User's Guide

Standard Control Classes ...
IBase
 └─IVBase
 └─INotifier
 └─IWindow
 └─IControl
 ├─IBaseListBox
 │ └─IListBox
 ├─IBaseSpinButton
 │ ├─INumericSpinButton
 │ └─ITextSpinButton
 ├─IOutlineBox
 ├─IProgressIndicator
 │ └─ISlider
 ├─IScrollBar
 └─ITextControl
 ├─IButton
 │ ├─IPushButton
 │ └─ISettingButton
 │ ├─I3StateCheckBox
 │ ├─ICheckBox
 │ └─IRadioButton
 ├─IEntryField
 │ └─IBaseComboBox
 │ └─IComboBox
 ├─IGroupBox
 ├─IMultiLineEdit
 ├─IStaticText
 └─ITitle

 Appendix A. Class Hierarchy by Category 657

Advanced Control, Dialog, and Handler Classes

Provide support for the advanced controls, such as container, notebook, and toolbar,

and for the font and file dialogs used by the applications you develop.

ISequence
 └─ICnrObjectSet
ISet
 └─ICnrControlList
IBase
 ├─IBitFlag
 │ ├─IContainerControl::Attribute
 │ ├─INotebook::PageSettings::Attribute
 │ ├─IAnimatedButton::Style
 │ ├─IBitmapControl::Style
 │ ├─ICanvas::Style
 │ ├─ICircularSlider::Style
 │ ├─IContainerControl::Style
 │ ├─ICustomButton::Style
 │ ├─IDrawingCanvas::Style
 │ ├─IFileDialog::Style
 │ ├─IFontDialog::Style
 │ ├─IGraphicPushButton::Style
 │ ├─IIconControl::Style
 │ ├─IMultiCellCanvas::Style
 │ ├─INotebook::Style
 │ ├─ISetCanvas::Style
 │ ├─ISplitCanvas::Style
 │ ├─IToolBar::Style
 │ ├─IToolBarButton::Style
 │ ├─IToolBarContainer::Style
 │ └─IViewPort::Style
 ├─ICnrAllocator
 ├─IFileDialog::Settings
 ├─IFontDialog::Settings
 ├─IHandle
 │ └─IPageHandle
 └─IVBase
 ├─IContainerControl::ColumnCursor
 ├─IContainerControl::CompareFn
 ├─INotebook::Cursor
 ├─IContainerControl::FilterFn
 ├─IToolBar::FrameCursor
 ├─IContainerColumn
 └─IContainerObject

658 VisualAge C++ Open Class Library User's Guide

Advanced Control, Dialog, and Handler Classes ...
IBase
 └─IVBase
 ├─IEvent
 │ ├─ICnrDrawBackgroundEvent
 │ ├─IControlEvent

│ │ ├─ICnrEvent
│ │ │ ├─ICnrEditEvent
│ │ │ │ ├─ICnrBeginEditEvent
│ │ │ │ ├─ICnrEndEditEvent
│ │ │ │ └─ICnrReallocStringEvent
│ │ │ ├─ICnrEmphasisEvent
│ │ │ ├─ICnrEnterEvent
│ │ │ ├─ICnrHelpEvent
│ │ │ ├─ICnrQueryDeltaEvent
│ │ │ └─ICnrScrollEvent
│ │ ├─ICustomButtonDrawEvent
│ │ ├─IDrawItemEvent
│ │ │ ├─ICnrDrawItemEvent
│ │ │ └─INotebookDrawItemEvent
│ │ └─IPageEvent

 │ │ ├─IPageHelpEvent
 │ │ ├─IPageRemoveEvent
 │ │ └─IPageSelectEvent
 │ └─IFileDialogEvent
 └─IHandler
 ├─ICnrDrawHandler
 ├─ICnrEditHandler
 ├─ICnrHandler
 ├─ICustomButtonDrawHandler
 ├─IFileDialogHandler
 ├─IFlyOverHelpHandler
 ├─IFontDialogHandler
 ├─IMenuHandler
 │ └─ICnrMenuHandler
 ├─IPageHandler
 ├─IShowListHandler
 ├─ISpinHandler
 └─IWindowNotifyHandler
 ├─INotebookNotifyHandler
 └─ITextControlNotifyHandler
 └─ICircularSliderNotifyHandler

 Appendix A. Class Hierarchy by Category 659

Advanced Control, Dialog, and Handler Classes ...
IBase
 └─IVBase
 ├─INotifier
 │ └─IWindow
 │ ├─IControl
 │ │ ├─IBaseListBox

│ │ │ └─ICollectionViewListBox
 │ │ ├─ICanvas

│ │ │ ├─IDrawingCanvas
│ │ │ ├─IMultiCellCanvas
│ │ │ ├─ISetCanvas
│ │ │ │ ├─IToolBar
│ │ │ │ └─IToolBarContainer
│ │ │ ├─ISplitCanvas
│ │ │ └─IViewPort

 │ │ ├─IContainerControl
 │ │ ├─INotebook
 │ │ └─ITextControl

│ │ ├─IButton
│ │ │ ├─ICustomButton
│ │ │ │ ├─IAnimatedButton
│ │ │ │ └─IToolBarButton
│ │ │ └─IPushButton
│ │ │ └─IGraphicPushButton
│ │ ├─ICircularSlider
│ │ ├─IEntryField

 │ │ └─IBaseComboBox
 │ │ └─ICollectionViewComboBox

│ │ ├─IFlyText
│ │ └─IStaticText

 │ │ ├─IBitmapControl
 │ │ │ └─IIconControl
 │ │ └─IInfoArea
 │ └─IFrameWindow
 │ ├─IFileDialog
 │ ├─IFontDialog
 │ └─IToolBarFrameWindow
 ├─IRefCounted
 │ └─IStringGeneratorFn
 │ ├─IStringGeneratorMemberFn
 │ └─IStringGeneratorRefMemberFn
 ├─IContainerControl::Iterator
 ├─IContainerControl::ObjectCursor
 ├─INotebook::PageSettings
 ├─IContainerControl::TextCursor
 └─IToolBar::WindowCursor

660 VisualAge C++ Open Class Library User's Guide

Direct Manipulation Classes

Provide support for the direct manipulation used by the applications you develop.

IDM
IBase
 ├─IBitFlag
 │ └─IDMImage::Style
 └─IVBase
 ├─IDMImage
 ├─IDMItemProvider
 │ └─IDMItemProviderFor
 ├─IDMRenderer
 │ ├─IDMSourceRenderer
 │ └─IDMTargetRenderer
 ├─IEvent
 │ └─IDMEvent
 │ ├─IDMSourceBeginEvent
 │ ├─IDMSourceDiscardEvent
 │ ├─IDMSourceEndEvent
 │ ├─IDMSourcePrintEvent
 │ ├─IDMSourceRenderEvent
 │ │ └─IDMSourcePrepareEvent
 │ ├─IDMTargetEndEvent
 │ ├─IDMTargetEvent
 │ │ ├─IDMTargetDropEvent
 │ │ ├─IDMTargetEnterEvent
 │ │ └─IDMTargetLeaveEvent
 │ └─IDMTargetHelpEvent
 ├─IHandler
 │ └─IDMHandler
 │ ├─IDMSourceHandler
 │ └─IDMTargetHandler
 └─IRefCounted
 ├─IDMItem
 │ ├─IDMCnrItem
 │ ├─IDMEFItem
 │ ├─IDMMenuItem
 │ ├─IDMMLEItem
 │ ├─IDMTBarButtonItem
 │ └─IDMToolBarItem
 └─IDMOperation
 ├─IDMSourceOperation
 └─IDMTargetOperation

 Appendix A. Class Hierarchy by Category 661

2D Graphic Classes

Provide support for the 2D graphic elements used by the applications you develop.

IBase
 ├─IGraphicBundle
 ├─IHandle
 │ └─IRegionHandle
 ├─ITransformMatrix
 └─IVBase
 ├─IGList::Cursor
 ├─IFont::FaceNameCursor
 ├─IFont
 ├─IGraphic
 │ ├─IG3PointArc
 │ ├─IGArc
 │ ├─IGBitmap
 │ ├─IGEllipse
 │ ├─IGLine
 │ ├─IGList
 │ ├─IGPie

│ │ └─IGChord
 │ ├─IGPolyline

│ │ └─IGPolygon
 │ ├─IGRectangle
 │ ├─IGRegion
 │ └─IGString
 ├─IGraphicContext
 └─IFont::PointSizeCursor

662 VisualAge C++ Open Class Library User's Guide

Dynamic Data Exchange Classes

Provide support for the Dynamic Data Exchange (DDE) used by the applications you

develop.

ISet
 ├─IDDEActiveServerSet
 └─IDDEClientHotLinkSet
IBase
 ├─IDDE
 ├─IDDEActiveServer
 └─IVBase
 ├─IEvent
 │ ├─IDDEBeginEvent
 │ ├─IDDEEndEvent

│ │ └─IDDEClientEndEvent
 │ └─IDDEEvent
 │ ├─IDDEAcknowledgeEvent
 │ │ ├─IDDEAcknowledgeExecuteEvent
 │ │ ├─IDDEAcknowledgePokeEvent
 │ │ ├─IDDEClientAcknowledgeEvent
 │ │ └─IDDEServerAcknowledgeEvent
 │ └─IDDESetAcknowledgeInfoEvent
 │ ├─IDDEClientHotLinkEvent
 │ ├─IDDEDataEvent
 │ ├─IDDEExecuteEvent
 │ ├─IDDEPokeEvent
 │ ├─IDDERequestDataEvent
 │ └─IDDEServerHotLinkEvent
 └─IHandler
 ├─IDDEClientConversation
 └─IDDETopicServer

 Appendix A. Class Hierarchy by Category 663

 Multimedia Classes

Provide support for the multimedia devices and controls used by the applications you

develop.

IBase
 ├─IMMAudioBuffer
 └─IVBase
 ├─IMMAudioCDContents::Cursor
 ├─IErrorInfo
 │ └─IMMErrorInfo
 ├─IEvent
 │ ├─IMMCuePointEvent
 │ ├─IMMDeviceEvent
 │ ├─IMMNotifyEvent
 │ ├─IMMPassDeviceEvent
 │ └─IMMPositionChangeEvent
 ├─IHandler
 │ ├─ICommandHandler

│ │ └─IMMPlayerPanelHandler
 │ └─IMMDeviceHandler
 │ └─IMMRemovableMediaHandler
 ├─IMMAudioCDContents
 ├─IMMSpeed
 ├─IMMTime
 │ ├─IMMHourMinSecFrameTime

│ │ ├─IMM24FramesPerSecondTime
│ │ ├─IMM25FramesPerSecondTime
│ │ └─IMM30FramesPerSecondTime

 │ ├─IMMHourMinSecTime
 │ ├─IMMMillisecondTime
 │ ├─IMMMinSecFrameTime
 │ └─IMMTrackMinSecFrameTime
 └─INotifier
 ├─IStandardNotifier
 │ ├─IMMDevice

│ │ ├─IMMAmpMixer
│ │ └─IMMPlayableDevice

 │ │ ├─IMMFileMedia
 │ │ │ ├─IMMRecordable

│ │ │ │ └─IMMConfigurableAudio
 │ │ │ │ ├─IMMDigitalVideo
 │ │ │ │ └─IMMWaveAudio
 │ │ │ └─IMMSequencer
 │ │ └─IMMRemovableMedia
 │ │ ├─IMMAudioCD
 │ │ └─IMMCDXA
 │ └─IMMMasterAudio
 └─IWindow
 └─IControl
 └─ICanvas
 └─IMultiCellCanvas
 └─IMMPlayerPanel

664 VisualAge C++ Open Class Library User's Guide

 B New Color Support

The User Interface Class Library has added new support for the setting, querying, and

resetting of colors. In the previous releases of the User Interface Class Library, each

class that supported the setting and querying of colors contained a ColorArea

enumeration along with an implementation of the Iwindow::setColor and

IWindow::color functions. We no longer advise using this enumeration and the two

corresponding functions and we have removed them from the interface. They still

exist for backward compatibility; however, they might be removed in a future release.

The User Interface Class Library defines a new set of functions for easier color

manipulation. For example, to set the background color of an IListBox control you

now use the following:

listBox->setBackgroundColor(IColor::red);

To query the background color of the same listbox:

IColor color = listBox->backgroundColor();

To set the list box back to its default color:

listBox->resetBackgroundColor();

These new functions for handling colors mean you no longer have to use different

ColorArea enumerators for each control class.

Notes: When you use these functions to implement colors, your controls inherit the

colors that you specify for their owners if their owners are also their parent.

You can override the inherited color by explicitly setting the color for the

specific area of a control.

Some classes use the color area name, such as foregroundColor, on an area of

the control that is not related to the name. For example, the system container

control does not support a border. However, it uses the border color for

specific areas of the control, such as the title separator color. Consult the

control documentation in your system reference guide for information on what

areas of a control use a specific color area name.

 Copyright IBM Corp. 1993, 1995 665

Table 14 (Page 1 of 7). Enumerators to New Color Member Functions

Class ColorArea enumerators New Color Member Functions

IButton foreground foregroundColor

setForegroundColor

resetForegroundColor

background backgroundColor

setBackgroundColor

resetBackgroundColor

disabledForeground disabledForegroundColor

setDisabledForegroundColor

resetDisabledForegroundColor

highlightForeground hiliteForegroundColor

setHiliteForegroundColor

resetHiliteForegroundColor

border borderColor

setBorderColor

resetBorderColor

ICanvas background backgroundColor

setBackgroundColor

resetBackgroundColor

IContainerControl foreground foregroundColor

setForegroundColor

resetForegroundColor

background backgroundColor

setBackgroundColor

resetBackgroundColor

border borderColor

setBorderColor

resetBorderColor

highlightForeground hiliteForegroundColor

setHiliteForegroundColor

resetHiliteForegroundColor

highlightBackground hiliteBackgroundColor

setHiliteBackgroundColor

resetHiliteBackgroundColor

IEntryField foreground foregroundColor

setForegroundColor

resetForegroundColor

666 VisualAge C++ Open Class Library User's Guide

Table 14 (Page 2 of 7). Enumerators to New Color Member Functions

Class ColorArea enumerators New Color Member Functions

background backgroundColor

setBackgroundColor

resetBackgroundColor

disabledForeground disabledForegroundColor

setDisabledForegroundColor

resetDisabledForegroundColor

highlightForeground hiliteForegroundColor

setHiliteForegroundColor

resetHiliteForegroundColor

border borderColor

setBorderColor

resetBorderColor

IFrameWindow foreground foregroundColor

setForegroundColor

resetForegroundColor

background backgroundColor

setBackgroundColor

resetBackgroundColor

disableBackground disabledBackgroundColor

setDisabledBackgroundColor

resetDisabledBackgroundColor

frameBorder borderColor

setBorderColor

resetBorderColor

shadow shadowColor

setShadowColor

resetShadowColor

activeBorder activeColor

setActiveColor

resetActiveColor

inactiveBorder inactiveColor

setInactiveColor

resetInactiveColor

IGroupBox foreground foregroundColor

setForegroundColor

resetForegroundColor

 Appendix B. New Color Support 667

Table 14 (Page 3 of 7). Enumerators to New Color Member Functions

Class ColorArea enumerators New Color Member Functions

border borderColor

setBorderColor

resetBorderColor

IListBox foreground foregroundColor

setForegroundColor

resetForegroundColor

background backgroundColor

setBackgroundColor

resetBackgroundColor

disabledForeground disabledForegroundColor

setDisabledForegroundColor

resetDisabledForegroundColor

highlightForeground hiliteForegroundColor

setHiliteForegroundColor

resetHiliteForegroundColor

border borderColor

setBorderColor

resetBorderColor

IMenu foreground foregroundColor

setForegroundColor

resetForegroundColor

background backgroundColor

setBackgroundColor

resetBackgroundColor

disableForeground disabledForegroundColor

setDisabledForegroundColor

resetDisabledForegroundColor

disableBackground disabledBackgroundColor

setDisabledBackgroundColor

resetDisabledBackgroundColor

highlightForeground hiliteForegroundColor

setHiliteForegroundColor

resetHiliteForegroundColor

highlightBackground hiliteBackgroundColor

setHiliteBackgroundColor

resetHiliteBackgroundColor

668 VisualAge C++ Open Class Library User's Guide

Table 14 (Page 4 of 7). Enumerators to New Color Member Functions

Class ColorArea enumerators New Color Member Functions

border borderColor

setBorderColor

resetBorderColor

IMultiLineEdit foreground foregroundColor

setForegroundColor

resetForegroundColor

background backgroundColor

setBackgroundColor

resetBackgroundColor

bordercolor borderColor

setBorderColor

resetBorderColor

INotebook pageBackground pageBackgroundColor

setPageBackgroundColor

resetPageBackgroundColor

majorTabForeground majorTabForegroundColor

setMajorTabForegroundColor

resetMajorTabForegroundColor

majorTabBackground majorTabBackgroundColor

setMajorTabBackgroundColor

resetMajorTabBackgroundColor

minorTabForeground minorTabForegroundColor

setMinorTabForegroundColor

resetMinorTabForegroundColor

minorTabBackground minorTabBackgroundColor

setMinorTabBackgroundColor

resetMinorTabBackgroundColor

notebookWindowBackground backgroundColor

setBackgroundColor

resetBackgroundColor

notebookOutline borderColor

setBorderColor

resetBorderColor

statusLineText foregroundColor

setForegroundColor

resetForegroundColor

 Appendix B. New Color Support 669

Table 14 (Page 5 of 7). Enumerators to New Color Member Functions

Class ColorArea enumerators New Color Member Functions

selectionCursor hiliteBackgroundColor

setHiliteBackgroundColor

resetHiliteBackgroundColor

IOutlineBox fillRegion foregroundColor

setForegroundColor

resetForegroundColor

IProgressIndicator foreground foregroundColor

setForegroundColor

resetForegroundColor

background backgroundColor

setBackgroundColor

resetBackgroundColor

border borderColor

setBorderColor

resetBorderColor

IScrollBar shaft foregroundColor

setForegroundColor

resetForegroundColor

scrollBox hiliteForegroundColor

setHiliteForegroundColor

resetHiliteForegroundColor

border borderColor

setBorderColor

resetBorderColor

ISetCanvas background backgroundColor

setBackgroundColor

resetBackgroundColor

ITextSpinButton

INumericSpinButton

foreground foregroundColor

setForegroundColor

resetForegroundColor

disabledForeground disabledForegroundColor

setDisabledForegroundColor

resetDisabledForegroundColor

highlightForeground hiliteForegroundColor

setHiliteForegroundColor

resetHiliteForegroundColor

670 VisualAge C++ Open Class Library User's Guide

Table 14 (Page 6 of 7). Enumerators to New Color Member Functions

Class ColorArea enumerators New Color Member Functions

border borderColor

setBorderColor

resetBorderColor

ISplitCanvas splitBarEdge splitBarEdgeColor

setSplitBarEdgeColor

resetSplitBarEdgeColor

splitBarMiddle splitBarMiddleColor

setSplitBarMiddleColor

resetSplitBarMiddleColor

IStaticText foreground foregroundColor

setForegroundColor

resetForegroundColor

background backgroundColor

setBackgroundColor

resetBackgroundColor

fill fillColor

setFillColor

resetFillColor

ITitle activeFill activeColor

setActiveColor

resetActiveColor

inactiveFill inactiveColor

setInactiveColor

resetInactiveColor

activeTextForeground activeTextForegroundColor

setActiveTextForegroundColor

resetActiveTextForegroundColor

inactiveTextForeground inactiveTextForegroundColor

setInactiveTextForegroundColor

resetInactiveTextForegroundColor

activeTextBackground activeTextBackgroundColor

setActiveTextBackgroundColor

resetActiveTextBackgroundColor

inactiveTextBackground inactiveTextBackgroundColor

setInactiveTextBackgroundColor

resetInactiveTextBackgroundColor

 Appendix B. New Color Support 671

Table 14 (Page 7 of 7). Enumerators to New Color Member Functions

Class ColorArea enumerators New Color Member Functions

border borderColor

setBorderColor

resetBorderColor

IViewPort fillBackground backgroundColor

setBackgroundColor

resetBackgroundColor

672 VisualAge C++ Open Class Library User's Guide

 C Tasks and Samples

Cross-Reference Table

The following table contains a list of User Interface Class Library tasks and

cross-references them to the samples and examples in the User Interface Class

Library User’s Guide that show you how to complete the task.

Tasks Sample or Example Class Usage

Create a basic frame window

with a line of text centered in

the middle of the window

Hello World version 1 IFrameWindow

IStaticText

Align a text string within a

static text control

Hello World version 2 IStaticText

Display information about an

application in an information

area below the client

window.

Hello World version 2 IFrameExtension

IInfoArea

Title your application using a

.RC file

Hello World version 3 IFrameWindow

Display application status in

a status area.

Hello World version 3 IFrameExtension

IFrameWindow

IStaticText

Process menu bar items Hello World version 3 ICommandHandler

IMenuBar

Let the user perform

functions using accelerator

keys

Hello World version 4 IFrameWindow

IMenuBar

Request text information

from users using a modal

dialog

Hello World versions 4, 5,

and 6

IFrameWindow

Display multiple controls in a

client area using a canvas

control

Hello World version 5

Split Canvas Sample

IListBox

ISplitCanvas

IStaticText

Display information to a user

in a list

Hello World version 5

List Box Sample

IListBox

Perform an action when a

user selects an item from a

list

Hello World version 5 IListBox

IListBox::Cursor

ISelectHandler

 Copyright IBM Corp. 1993, 1995 673

Tasks Sample or Example Class Usage

Display and repaint a static

text window.

Hello World version 5 IPaintHandler

IStaticText

Add help to an application

(requires use of IPFX/X on

AIX)

Hello World version 5 IHelpHandler

IHelpWindow

Perform an action when an

user selects an item from a

combo box in a dialog

window.

Hello World version 6 IComboBox

ICommandHandler

IFrameWindow

Show multiple components

on a status line

Hello World version 6 IFrameExtension

ISplitCanvas

Display a digital clock (long

and short form)

Hello World version 6 IString

ITime

Display the date (long and

short form)

Hello World version 6 IDate

IString

Let the user dynamically

change the font of an

application using a font

dialog

Hello World version 6 IFontDialog

Customize an application

using a notebook control

Hello World version 6 ICommandHandler

IFrameWindow

INotebook

Customize an application

using a pop-up menu

Hello World version 6 IMenuHandler

IPopUpMenu

Record a user’s settings of an

application

Hello World version 6 IProfile

Customize a control See the Adding Styles

section.

IBitFlag

IWindow

Creating a Message Box See Specifying Message

Box Information

Message Box Sample

IMessageBox

Save data from a user-edited

control to a file

See Viewing and Editing

Multiple-Line Edit (MLE)

Fields.

IMultiLineEdit

Display a list of choices to a

user

See Creating and Using

List Controls.

IListBox

ISelectHandler

Displaying a discrete set of

choices to a user

See Creating and Using

List Controls.

INumericSpinButton

ITextSpinButton

674 VisualAge C++ Open Class Library User's Guide

Tasks Sample or Example Class Usage

Arrange child controls in

rows or columns

See Creating and Using

Canvas Controls.

Set Canvas Sample

ISetCanvas

Arrange child controls in a

grid of rows and columns

See Understanding

Multiple-Cell Canvas

Multi-Cell Canvas Sample

IMultiCellCanvas

Provide a scrollable view

area

See Understanding View

Ports.

View Port Sample

IViewPort

Let the user make a file

selection using a file dialog

control

See Creating and Using

File and Font Dialogs.

IFileDialog

IFileDialog::Settings

Create pop-up menus See Creating Menu Bars

and Pull-Down Submenus.

IMenuHandler

IPopUpMenu

Create and populate a

container control

See Creating and Using

Containers.

Container Sample

ICNRAllocator

IContainerControl

IContainerObject

Enabling direct manipulation

support

See Supporting Direct

Manipulation.

IDM* classes

Enable direct manipulation

for an entry field or an MLE

control.

Direct Manipulation

Sample 1

IDmHandler

IEntryField

IMultiLineEdit

Enabling a bitmap control as

a drop target.

Direct Manipulation

Sample 2

IBitmapControl

IDMHandler

IDMItem

IDMItemProviderFor

IDMTargetDropEvent

IDMTargetEvent

Enable direct manipulation

for intra-process (source and

target containers in the same

process) container support.

Direct Manipulation

Sample 3

IContainerColumn

IContainerControl

IContainerObject

IDMHandler

Enable direct manipulation

for inter-process (source and

target containers in the

separate processes) container

support.

Direct Manipulation

Sample 4

IContainerControl

IContainerObject

IDMCnrItem

IDMHandler

IDMSourceDiscardEvent

IDMSourceOperation

IDMTargetDropEvent

 Appendix C. Task and Samples Cross-Reference Table 675

Note: All samples are located in the following directory:

\ibmcpp\samples\ioc

Tasks Sample or Example Class Usage

Enabling a static text control

as a drag source

See Enabling a Control as

a Drag Source.

IDMHandler

IDMItem

IDMItemProvider

IDMItemProviderFor

IDMSourceOperation

IStaticText

Process different events (time

changes on a clock)

See Extending Event

Handling.

IHandler

Adding mouse handlers See Handling Mouse

Events.

IMouseHandler

Using clipboards in your

applications

See Adding Clipboard

Support.

Container Clipboard

Sample

IClipboardHandler

IClipboard

Provide toolbars that the user

can manipulate and

customize

See Adding Tool Bars.

Tool Bar Sample

IToolBar

IFlyOverHelp

Adding 2-dimensional

graphics support to your

applications

See Using Graphics in Your Application.

2D Graphics Sample

IG* Classes

Create a remote control

interface using multimedia

classes.

See Creating and Using

Multimedia Controls.

Multimedia Sample 1

IMM* classes

Create a stereo interface

using multimedia classes.

See Creating and Using

Multimedia Controls.

Multimedia Sample 2

IMM* classes

Use a multi-line entry field to

create a simple editor.

Multi-line Entry Field

Sample

ICommandHandler

IFileDialog

IFontDialog

IFrameWindow

IHandler

IMenuHandler

IMultiLineEdit

Use a view port canvas

displaying a bitmap as a page

in a notebook control

Notebook Sample IBitmapControl

IBitmapHandle

INotebook

IViewPort

676 VisualAge C++ Open Class Library User's Guide

 D Using Extended Style Support

The extended style support provides solutions to a number of window style issues

when using the User Interface Class Library:

¹ Overlapping style bit definitions for both OS/2 Presentation Manager

¹ User Interface Class Library usage of reserved window style bits in the Os/2

Version 2.x operating system (that may be used in a future release of the

platform)

¹ Usage of unused window style bits to represent other style bits (for example,

IStaticText).

¹ Extended style support implemented directly within the class (for example, the

canvas classes)

¹ No simple method to extend existing control set and add extended style support,

such as building a composite custom control.

 ¹ Portability concerns

The objectives of the new extended style support are as follows:

¹ No breakage of the existing styles support

¹ Easy integration with the existing styles support

¹ Reserved published ranges for the User Interface Class Library, as well as

customer extended styles bits

¹ Assist porting efforts

The key function convertToGUIStyle(const IBitFlag& style, Boolean extended)

allows the individual classes to accept a style object, and resolve the base and

extended styles that it contains into a window style. You pass this window style to

the underlying platform during window creation.

The key parameter, const IBitFlag& style, exposes the IBitFlag class, because you

cannot truly inherit a style class. For example, ICanvas derived classes use IControl

styles due to friendship, not inheritance.

Currently, we reserve the extended style bits as follows:

Bits 0-23 are reserved for the User Interface Class Library

Bits 24-31 are open for your usage

The User Interface Class Library requires 24-Bits due to the proliferation of styles in

ISetCanvas and ISetCanvas derived classes such as the tool bar classes.

 Copyright IBM Corp. 1993, 1995 677

Base styles are those window styles that are predefined for each control on the

supported platform. An example of a base style would be the OS/2 Presentation

Manager window style, WS_VISIBLE. WS_VISIBLE is exposed in the User

Interface Class Library as IWindow::visible.

The following is an example of initializing a base style:

const IWindow::Style IWindow::visible = WS_VISIBLE;

Extended styles define styles that you do not see predefined for the supported

platform. The User Interface Class Library has enhanced the extended styles

definitions to handle the following scenarios:

¹ Definition of an extended style where the base style is defined to be 0. An

example is the OS/2 Presentation Manager button style, BS_PUSHBUTTON.

The User Interface Class Library defines a unique nonzero bit value that allows

you to safely use the bitwise operator, &, to test for the existence of this

extended style rather than using a masking and comparison technique that you

would normally perform against the base style.

¹ Definition of an extended style where the base style bit value overlaps with

another style. An example is the OS/2 Presentation Manager entryfield style,

ES_MIXED. The User Interface Class Library defines a unique bit value that

allows you to safely use the bitwise operator, &, to test for the existance of this

extended style rather than using a comparison technique that you would normally

perform against the base style. Note also that the overlapping bits create bitwise

testing problems for the entryfield styles that they overlap: ES_SBCS and

ES_DBCS.

The following is an example of initializing an extended style:

const ISetCanvas::Style ISetCanvas::packTight (0, ICNV_PACKTIGHT);

The following sections discuss the classes that we modified to add the extended styles

support.

 IBitFlag

The IBitFlag class was modified to accommodate the extended styles support. The

following function is added:

asExtendedULong

Converts the upper 32-Bits of the object to an unsigned long value.

For example:

 unsigned long
asExtendedUnsignedLong () const;

678 VisualAge C++ Open Class Library User's Guide

Additionally, the protected IBitFlag constructor was modified to add a parameter to

represent the extended style, extendedValue. Note how a default value is being

assigned to allow existing style implementations to work:

IBitFlag (unsigned long value,
unsigned long extendedValue = 0);

The protected function, setValue, was modified to support extended styles as well.

Again, note the default value assigned to the parameter, extendedValue, that allow

existing style implementations to work:

 IBitFlag
&setValue (unsigned long value ,

unsigned long extendedValue = 0);

 IWindow

To parallel the functions style and setStyle, two new protected functions are added to

support extended styles:

extendedStyle

Returns an unsigned long representing the window’s extended style.

setExtendedStyle

Sets the extended window style.

 virtual IWindow
&setExtendedStyle (unsigned long extendedStyle);
virtual unsigned long

 extendedStyle () const;

To use extended styles, use the following steps in your constructors to properly save

the extended styles:

1. Query the existing existing extended styles using IWindow::extendedStyle. Use

IMenuItem::extendedStyle for menu items.

2. Use the bitwise OR operator (|) to include your extended styles with the existing

extended styles.

3. Set the new extended styles using IWindow::setExtendedStyle. Use

IMenuItem::setExtendedStyle for menu items.

For example:

FooClass :: FooClass(unsigned long ulId,
 IWindow* pParent,
 IWindow* pOwner,

const IRectangle& rectInit,
 const Style& style)

: IControl()

 Appendix D. Using Extended Style Support 679

 {
// Save the extended style to make sure a copy of it stored
setExtendedStyle(extendedStyle() | style.asExtendedUnsignedLong());

...
 }

To support both the base and extended styles, another virtual function was added that

has the ability to convert the base or extended styles into a style that can be

understood by the underlying platform:

convertToGUIStyle

Use this function to convert style bits into the style value that can be

processed by the GUI. The default action is to return the base GUI style

for the platform. Extended styles which are defined by the User Interface

Class Library, can be returned by setting the extended parameter to true.

For example:

virtual unsigned long
convertToGUIStyle (const IBitFlag& style,

Boolean extended = false) const;

The first parameter is a reference to a style object that you pass on various User

Interface Class Library constructors. Use the second parameter to return the style

information from the extended portion of the style object. The second parameter can

simplify processing of the extended style in your classes. An User Interface Class

Library example is IFrameWindow, as we use it to return information on the frame

control flags which are passed as an extended style.

The intent of convertToGUIStyle is to allow you to override it throughout the

IWindow class hierarchy to allow your classes to parse style information that is

pertinent to the creation of your window. Note that we implement the

convertToGUIStyle function in this fashion within the User Interface Class Library,

and have listed our classes below.

For example:

FooClass :: FooClass(unsigned long ulId,
 IWindow* pParent,
 IWindow* pOwner,

const IRectangle& rectInit,
 const Style& style)

: IControl()
 {

// Save the extended style to make sure a copy of it stored
setExtendedStyle(extendedStyle() | style.asExtendedUnsignedLong());

680 VisualAge C++ Open Class Library User's Guide

 //
IWindowHandle whFooControl =

 create(ulId,
 0,

convertToGUIStyle(style),
 "FooWindow"
 pParent->handle(),

(pOwner == 0) ? IWindowHandle(0) : pOwner->handle(),
 rectInit,
 0,
 0);
...
 }
...
unsigned long FooClass :: convertToGUIStyle(const IBitFlag& guiStyle,

Boolean bExtOnly) const
 {

// Obtain the style from the class (IControl) that we inherit from
unsigned long ulStyle = Inherited::convertToGUIStyle(guiStyle, bExtOnly);

 if (bExtOnly)
 {

// Use mask to only return extended styles in the user defined range
ulStyle |= extendedStyle() & IS_EXTMASK;

 }
 else
 {

// Mask out FOO_
ulStyle |= guiStyle.asUnsignedLong() & FOO_MASK;

 }

return(ulStyle);
 }
...

 IMenuItem

The class IMenuItem is a special case. We implement the extended styles support in

IMenuItem that is present in IWindow. IMenuItem is not derived from IWindow.

Therefore, the extended styles implementation we describe for IWindow applies to

IMenuItem as well.

Classes that Implement or Override the convertToGUIStyle Function

IFileDialog

IFontDialog

IFrameWindow

IMenu

IMenuBar

 Appendix D. Using Extended Style Support 681

IMenuItem

IWindow

I3StateCheckBox

IBitmapControl

ICanvas

ICheckBox

IComboBox

IDrawingCanvas

IEntryField

IGraphicPushButton

IGroupBox

IIconControl

IListBox

IMultiCellCanvas

IMultiLineEdit

INotebook

IOutlineBox

IPushButton

IRadioButton

IScrollBar

ISetCanvas

IProgressIndicator

INumericSpinButton

ITextSpinButton

ISplitCanvas

IStaticText

IViewPort

IContainerControl

IAnimatedButton

ICustomButton

IToolBar

IToolBarButton

IToolBarContainer

ICircularSlider

682 VisualAge C++ Open Class Library User's Guide

 E Obsolete and Ignored Members

Cross-Reference Tables

This appendix contains the following cross-reference tables:

“Obsolete Classes and Members”

Lists obsolete classes and members, and their replacements, if any.

“Ignored Classes and Members” on page 686

Lists classes and members that the User Interface Class Library for AIX does

not support and subsequently ignores.

Obsolete Classes and Members

Lists obsolete classes and members, and their replacements, if any.

The User Interface Class Library has added new support for the setting, querying, and

resetting of colors. See Appendix B, “New Color Support” on page 665 for

information on obsolete and replacement members for colors.

Class Member Replacement

IAccelerator unset reset

IContainerColumn isHeadingReadOnly

isReadOnly

isHeadingWriteable

isWriteable

IContainerControl detailObjectRectangle

 (both versions)

isReadOnly

detailsObjectRectangle

isWriteable

IContainerObject iconOffset

iconTextOffset

isReadOnly

None

None

isWriteable

ICurrentThread initializePM

isPMInitialized

terminatePM

initializeGUI

isGUIInitialized

terminateGUI

IDMTargetOperation setContainerNoRefresh

setContainerRefresh

IDMOperation::setContainerRefreshOff

IDMOperation::setContainerRefreshOn

IEntryField isReadOnly isWriteable

IFont enum Direction bottomTop

enum Direction leftRight

enum Direction rightLeft

enum Direction topBottom

enum Direction bottomToTop

enum Direction leftToRight

enum Direction rightToLeft

enum Direction topToBottom

 Copyright IBM Corp. 1993, 1995 683

Class Member Replacement

IFrameWindow flagsFrom

styleFrom

convertToGUIStyle

convertToGUIStyle

IHelpHandler hypertextSelect hyperlinkSelect

IHelpHypertextEvent IHelpHyperlinkEvent

IHelpWindow associateWindow

helpForWindow

setAssociatedWindow

None

IListBox setHeight setItemHeight

IListBoxDrawItemHandler draw

drewSelected

highlight

setHeight

unhighlight

drawItem

setSelectionStateDrawn

selectItem

setItemSize

deselectItem

IMenu addAt

addNextAt

isItemDisabled

isVerticalFlip

setVerticalFlip

verticalFlip

add

addAsNext

isItemEnabled

None

None

None

IMouseClickHandler IMouseHandler

IMultiLineEdit cursor

disableRefresh

enableRefresh

isReadOnly

removeChangedFlag

setCursorAt

setCursorAtLine

cursorPosition

disableUpdate

enableUpdate

isWriteable

resetChangedFlag

setCursorPosition

setCursorLinePosition

IPushButton disableBorder

enableBorder

isBorder

removeBorder

addBorder

hasBorder

ISpinButton IBaseSpinButton

INumericSpinButton

ITextSpinButton

ISubmenu addAt

addNextAt

add

addAsNext

IThread autoInitPM

defaultAutoInitPM

setAutoInitPM

setDefaultAutoInitPM

autoInitGUI

defaultAutoInitGUI

setAutoInitGUI

setDefaultAutoInitGUI

684 VisualAge C++ Open Class Library User's Guide

Class Member Replacement

ITitle setViewNum

viewNum

setViewNumber

viewNumber

IWindow handleWithId

isDisabled

windowWithId

handleWithParent

isEnabled

windowWithOwner

 Appendix E. Obsolete and Ignored Members Cross-Reference Tables 685

Ignored Classes and Members

Lists classes and members that the User Interface Class Library for AIX does not

support and subsequently ignores.

A single asterisk (*) means this member is overloaded and you must look it up to

determine which overload the AIX release ignores.

A double asterisk (**) means this class is not ported to the AIX platform.

Table 15 (Page 1 of 14). Ignored members in Motif

Class Member

I3StateCheckBox **

I3StateCheckBox::Style **

IAccelerator handle

isSet

remove

reset

set *

IAccelTblHandle

IAnchorBlockHandle

IBaseSpinButton alignment

setAlignment

IButton allowsMouseClickFocus

disableMouseClickFocus

enableMouseClickFocus

highlight

isHighlighted

unhighlight

ICnrBeginEditEvent **

ICnrDrawBackgroundEvent **

ICnrDrawHandler **

ICnrDrawItemEvent **

ICnrEditEvent **

ICnrEditHandler **

ICnrEndEditEvent **

ICnrEnterEvent

686 VisualAge C++ Open Class Library User's Guide

Table 15 (Page 2 of 14). Ignored members in Motif

Class Member

ICnrHandler cursoredChanged

deltaReached

inuseChanged

windowScrolled

ICnrMenuHandler addSourceEmphasis

removeSourceEmphasis

ICnrQueryDeltaEvent ** atBottomDelta

atFirstObject

atLastObject

atTopDelta

ICnrQueryDeltaEvent

˜ICnrQueryDeltaEvent

ICnrReallocStringEvent **

ICnrScrollEvent amount

ICnrScrollEvent

isHorizontal

isLeftDetails

isRightDetails

isVertical

˜ICnrScrollEvent

IContainerColumn dataAttributes

disableDataUpdate

disableHeadingUpdate

displayWidth

enableDataUpdate

enableHeadingUpdate

headingIcon

hideSeparators

horizontalDataAlignment

horizontalHeadingAlignment

isHeadingIconHandle

isHeadingReadOnly

isHeadingString

isHeadingWriteable

isReadOnly

isWriteable

 Appendix E. Obsolete and Ignored Members Cross-Reference Tables 687

Table 15 (Page 3 of 14). Ignored members in Motif

Class Member

IContainerColumn (cont.) justifyData

justifyHeading

setDataAttributes

setDisplayWidth

setHeadingIcon *

setTitleAttributes

showSeparators

titleAttributes

verticalDataAlignment

verticalHeadingAlignment

IContainerControl areDetailsViewTitlesVisible

closeEdit

collapse

collapseTree

columnUnderPoint

convertToWorkspace

currentEditColumn

currentEditMLE

currentEditObject

cursoredObject

detailObjectRectangle *

detailsObjectRectangle *

detailsTitleRectangle

detailsViewPortOnWindow

detailsViewPortOnWorkspace

detailsViewSplit

disableCaching

disableDataUpdate

disableDrawBackground

disableDrawItem

disableDrop

disableTitleUpdate

editColumnTitle

688 VisualAge C++ Open Class Library User's Guide

Table 15 (Page 4 of 14). Ignored members in Motif

Class Member

IContainerControl (cont.) editContainerTitle

editObject

enableCaching

enableDataUpdate

enableDrawBackground

enableDrawItem

enableDrop

enableTitleUpdate

expand

expandTree

hasMixedTargetEmphasis

hasNormalTargetEmphasis

hasOrderedTargetEmphasis

hideSourceEmphasis *

hideSplitBar

hideTitle

hideTitleSeparator

iconRectangle

iconSize

isCachingEnabled

isCollapsed

isColumnRight

isCursored

isDrawBackgroundEnabled

isDrawItemEnabled

isDropOnAble

isExpanded

isInUse

isReadOnly

isRefreshOn

isSource

isTarget

isTitleSeparatorVisible

isTitleVisible

isTitleWriteable

isVisible *

isWriteable

lineSpacing

moveIconTo

objectAt *

 Appendix E. Obsolete and Ignored Members Cross-Reference Tables 689

Table 15 (Page 5 of 14). Ignored members in Motif

Class Member

IContainerControl (cont.) objectUnderPoint

refresh *

refreshAllContainers

removeInUse

scroll

scrollDetailsHorizontally

scrollHorizontally

scrollToObject *

scrollVertically

setCursor

setDetailsViewSplit

setEditColumn

setEditMLE

setEditObject

setIconSize

setInUse

setLineSpacing

setMixedTargetEmphasis

setNormalTargetEmphasis

setOrderedTargetEmphasis

setRefreshOff

setRefreshOn

setTitle *

setTitleAlignment

setTreeExpandIconSize

showSourceEmphasis *

showSplitBar

showTitle

showTitleSeparator

splitBarOffset

textRectangle

title

titleRectangle

viewPortOnWindow

viewPortOnWorkspace

690 VisualAge C++ Open Class Library User's Guide

Table 15 (Page 6 of 14). Ignored members in Motif

Class Member

IContainerObject disableDataUpdate

disableDrop

enableDataUpdate

enableDrop

handleCursoredChange

handleInuseChange

iconOffset

iconTextOffset

isDropOnAble

isInUse

isReadOnly

isRefreshOn

isWriteable

refresh

removeInUse

setInUse

setRefreshOff

setRefreshOn

IControl disableGroup

disableTabStop

enableGroup

enableTabStop

isGroup

isTabStop

ICurrentThread remainingStack

suspend

waitFor

waitForAllThreads

waitForAnyThread

IDDEAcknowledgeEvent **

IDDEAcknowledgeExecuteEvent **

IDDEAcknowledgePokeEvent **

IDDEActiveServer **

IDDEActiveServerSet **

IDDEBeginEvent **

IDDEClientAcknowledgeEvent **

IDDEClientConversation **

IDDEClientEndEvent **

 Appendix E. Obsolete and Ignored Members Cross-Reference Tables 691

Table 15 (Page 7 of 14). Ignored members in Motif

Class Member

IDDEClientHotLinkEvent **

IDDEClientHotLinkSet **

IDDEDataEvent **

IDDEEndEvent **

IDDEEvent **

IDDEExecuteEvent **

IDDEPokeEvent **

IDDERequestDataEvent **

IDDEServerAcknowledgeEvent **

IDDEServerHotLinkEvent **

IDDESetAcknowledgeInfoEvent **

IDDETopicServer **

IDeviceColor

IDMCnrItem **

IDMEFItem **

IDMEvent **

IDMHandler **

IDMImage **

IDMItem **

IDMItemProvider **

IDMItemProviderFor **

IDMMLEItem **

IDMOperation **

IDMRenderer **

IDMSourceBeginEvent **

IDMSourceDiscardEvent **

IDMSourceEndEvent **

IDMSourceHandler **

IDMSourceOperation **

692 VisualAge C++ Open Class Library User's Guide

Table 15 (Page 8 of 14). Ignored members in Motif

Class Member

IDMSourcePrepareEvent **

IDMSourcePrintEvent **

IDMSourceRenderer **

IDMSourceRenderEvent **

IDMTargetDropEvent **

IDMTargetEndEvent **

IDMTargetEnterEvent **

IDMTargetHandler **

IDMTargetHelpEvent **

IDMTargetLeaveEvent **

IDMTargetOperation **

IDMTargetRenderer **

IDrawItemEvent **

IDynamicLinkLibrary

IEntryField setAlignment

setCharType

IEnumHandle

IFileDialog::Settings addDrive

addFileType

setInitialDrive

setInitialFileType

IFont isOutline

isStrikeout

isUnderscore

setCharHeight

setCharSize

setCharWidth

setDirection

setFontAngle

setFontShear

setOutline

setStrikeout

setUnderscore

IFont::FaceNameCursor

 Appendix E. Obsolete and Ignored Members Cross-Reference Tables 693

Table 15 (Page 9 of 14). Ignored members in Motif

Class Member

IFont::PointSizeCursor

IFontDialog fontWeight

fontWidth

IFontDialog::Settings setDisplayPS

setPrinterPS

IFrameFormatEvent clientRect

IFrameFormatEvent

setClientRect

swpArray

˜IFrameFormatEvent

IFrameHandler deactivated

draw

format

positionExtensions

IFrameWindow addToWindowList

beginFlashing

borderHeight

borderSize

borderWidth

endFlashing

isFlashing

isMaximized

maximize

maximizeRect

minimizeRect

nextShellRect

removeFromWindowList

restore

restoreRect

setBorderHeight

setBorderSize *

setBorderWidth

setRestoreRect

shareParentDBCSStatus

usesDialogBackground

IGraphicPushButton disableSizeToGraphic

enableSizeToGraphic

marginSize

setMarginSize

694 VisualAge C++ Open Class Library User's Guide

Table 15 (Page 10 of 14). Ignored members in Motif

Class Member

IGroupBox calcMinimumSize

defaultStyle

foregroundColor

moveSizeTo

position

rect

setDefaultStyle

setText *

size

IGroupBox::Style

IGUIColor

IHelpHandler openLibrary

showContents

showCoverPage

showHistory

showIndex

showPage

showSearchList

swapPage

IInfoArea setResourceLibrary *

IListBox disableNoAdjustPosition

enableNoAdjustPosition

isNoAdjustPosition

IListBoxDrawItemEvent **

IListBoxDrawItemHandler **

IListBoxDrawItemHandler::DrawFlag **

IMenu removeConditionalCascade

setConditionalCascade

IMenuDrawItemEvent **

IMenuDrawItemHandler **

IMenuDrawItemHandler::DrawFlag **

 Appendix E. Obsolete and Ignored Members Cross-Reference Tables 695

Table 15 (Page 11 of 14). Ignored members in Motif

Class Member

IMenuItem isDrawItem

isFramed

isHighlighted

isNoDismiss

setDrawItem

setFramed

setHighlighted

setNoDismiss

IMessageQueueHandle

IModuleHandle

IMultiCellCanvas disableDragLines

disableGridLines

enableDragLines

enableGridLines

hasDragLines

hasGridLines

IMultiLineEdit isUndoable

setTab

undo

INotebook hiliteBackgroundColor

resetBackgroundMajorColor

resetBackgroundMinorColor

resetBackgroundPageColor

resetForegroundMajorColor

resetForegroundMinorColor

setMajorTabSize

setMinorTabSize

setPageButtonSize

setTabShape

tabShape

INotebookDrawItemEvent **

INotifier

IPageHandler help

remove

resize

IPageHelpEvent helpWindow

IPageHelpEvent *

notebook

pageHandle

˜IPageHelpEvent

696 VisualAge C++ Open Class Library User's Guide

Table 15 (Page 12 of 14). Ignored members in Motif

Class Member

IPageRemoveEvent IPageRemoveEvent *

notebook

pageWindow

tabBitmap

˜IPageRemoveEvent

IProcedureAddress

IProfile numberOfApplications

IProgressIndicator disableDrawItem

enableDrawItem

isDrawItemEnabled

setShaftPosition

IRadioButton disableAutoSelect

disableCursorSelect

enableAutoSelect

enableCursorSelect

isAutoSelect

isCursorSelect

IRegionHandle

ISlider addDetent

detentPosition

removeDetent

setArmSize

ISliderDrawHandler **

ISpinButton alignment

setAlignment

ISplitCanvas resetSplitBarEdgeColor

resetSplitBarMiddleColor

setSplitBarEdgeColor

splitBarEdgeColor

ISWP

ISWPArray

ISystemBitmapHandle **

ISystemMenu ISystemMenu *

 Appendix E. Obsolete and Ignored Members Cross-Reference Tables 697

Table 15 (Page 13 of 14). Ignored members in Motif

Class Member

IThread adjustPriority

defaultQueueSize

defaultStackSize

priorityClass

priorityLevel

queueSize

resume

setDefaultQueueSize

setDefaultStackSize

setPriority

setQueueSize

setStackSize

stackSize

suspend

ITitle activeColor

activeTextBackgroundColor

activeTextForegroundColor

borderColor

inactiveColor

inactiveTextBackgroundColor

inactiveTextForegroundColor

resetActiveTextBackgroundColor

resetActiveTextForegroundColor

resetInactiveTextBackgroundColor

resetInactiveTextForegroundColor

setActiveTextBackgroundColor

setActiveTextForegroundColor

setInactiveTextBackgroundColor

setInactiveTextForegroundColor

698 VisualAge C++ Open Class Library User's Guide

Table 15 (Page 14 of 14). Ignored members in Motif

Class Member

IWindow activeColor

disabledBackgroundColor

disabledForegroundColor

dispatch

hiliteBackgroundColor

hiliteForegroundColor

inactiveColor

resetActiveColor

resetBackgroundColor

resetBorderColor

resetDisabledBackgroundColor

resetDisabledForegroundColor

resetForegroundColor

resetHiliteBackgroundColor

resetHiliteForegroundColor

resetInactiveColor

resetShadowColor

setActiveColor

setDisabledBackgroundColor

setDisabledForegroundColor

setHiliteBackgroundColor

setHiliteForegroundColor

setId

setInactiveColor

setParent

setShadowColor

setStyle

shadowColor

style

 Appendix E. Obsolete and Ignored Members Cross-Reference Tables 699

700 VisualAge C++ Open Class Library User's Guide

abstract class ¹audio track

 Glossary

This glossary defines terms and abbreviations that are used in

this book. If you do not find the term you are looking for,

refer to the IBM Dictionary of Computing, New

York:McGraw-Hill, 1994.

This glossary includes terms and definitions from the

American National Standard Dictionary for Information

Systems, ANSI X3.172-1990, copyright 1990 by the

American National Standards Institute (ANSI). Copies may

be purchased from the American National Standards Institute,

1430 Broadway, New York, New York 10018.

A
abstract class. (1) A class with at least one pure virtual

function that is used as a base class for other classes. The

abstract class represents a concept; classes derived from it

represent implementations of the concept. You cannot

construct an object of an abstract class. See also base class.

(2) A class that allows polymorphism.

abstract data type. A mathematical model that includes a

structure for storing data and operations that can be

performed on that data. Common abstract data types include

sets, trees, and heaps.

abstraction (data). See data abstraction.

access. An attribute that determines whether or not a class

member is accessible in an expression or declaration. It can

be public, protected, or private.

access declaration. A declaration used to adjust access to

members of a base class.

access function. A function that returns information about

the elements of an object so that you can analyze various

elements of a string.

access resolution. The process by which the accessibility of

a particular class member is determined.

access specifier. One of the C++ keywords public, private,

or protected.

ambiguous derivation. A derivation where the class is

derived from two or more base classes that have members

with the same name.

amplifier. A device that increases the strength of input

signals. Also referred to as an amp.

amplifier-mixer. A combination amplifier and mixer that is

used to control the characters of an audio signal from one or

more audio sources. Also referred to as an amp-mixer.

animate. Make or design in such a way as to create

apparently spontaneous, lifelike movement.

animation rate. The number of thousandths of a second that

pass before the next bitmap is displayed for a button while it

is animated.

anonymous union. A union that is declared within a

structure or class and that does not have a name.

area. In computer graphics, a filled shape, such as a solid

rectangle.

array. An aggregate that consists of data objects, with

identical attributes, each of which may be uniquely referenced

by subscripting.

array implementation. (In Collection Class Library)

Implementation of an abstract data type using an array. Also

called a tabular implementation.

ASCII (American National Standard Code for

Information Interchange). The standard code, using a

coded character set consisting of 7-bit coded characters (8

bits including parity check), that is used for information

interchange among data processing systems, data

communication systems, and associated equipment. The

ASCII set consists of control characters and graphic

characters.

Note: IBM has defined an extension to ASCII code

(characters 128-255).

audio. Pertaining to the portion of recorded information that

can be heard.

audio attributes. The standard audio attributes are: mute,

volume, balance, treble, and bass.

audio formats. The way the audio information is stored and

interpreted.

audio track. (1) The audio (sound) portion of the program.

(2) The physical location where the audio is places beside the

image. (A system with two sound tracks can have either

 Copyright IBM Corp. 1993, 1995 701

automatic storage ¹character array

stereo sound or two independent sound tracks.) Synonymous

with sound track.

automatic storage. Storage that is allocated on entry to a

routine or block and is freed on the subsequent return.

Sometimes referred to as stack storage or dynamic storage.

automatic storage management. The process that

automatically allocates and deallocates objects in order to use

memory efficiently.

auxiliary classes. Classes that support other classes.

Auxilliary classes in the Collection Class Library include

classes for cursors, pointers and iterators.

AVL tree. A balanced binary search tree that does not allow

the height of two siblings to differ by more than one.

B
B*-tree (B star tree). A tree in which only the leaves

contain whole elements. All other nodes contain keys.

background color. The color in which the background of a

graphic primitive is drawn.

balance. (1) For audio, refers to the relative strength of the

left and right channels. A balance level of 0 is left channel

only. A balance level of 100 is right channel only (2) A

state of equilibrium, usually between treble and bass.

base class. A class from which other classes are derived. A

base class may itself be derived from another base class. See

also abstract class.

based on. A relationship between two classes in which one

class is implemented through the other. A new class is

“based on” an existing class when the existing class is used

to implement it.

bass. The lower half of the whole vocal or instrumental

tonal range.

bit field. A member of a structure or union that contains a

specified number of bits.

bit mask. A pattern of characters used to control the

retention or elimination of portions of another patterns of

characters.

bits-per-sample. The number of bits of audio data that is to

represent each sample of each channel (right or left). This is

the resolution of the audio data. CD quality needs to be 16

bits-per-sample.

boundary alignment. The position in main storage of a

fixed-length field (such as byte or doubleword) on an integral

boundary for that unit of information.

For the Class Library example, a word boundary is a storage

address evenly divisible by two.

bounded collection. A collection that has an upper limit on

the number of elements it can contain.

brightness. The level of luminosity of the video signal. A

brightness level of 0 produces a maximally white signal. A

brightness level of 100 produces a maximally black signal.

built-in. A function that the compiler automatically puts

inline instead of generating a call to the function.

C
camcorder. A compact, hand-held video camera with

integrated videotape recorder.

canvas. Canvases are windows with a layout algorithm that

manage child windows. The canvas classes are a set of

window classes which allow you to implement dialog-like

windows (that is, a window with several child controls).

These windows are used for showing views of objects as both

pages in a notebook and as windows that gather information

to run an action. The different canvases can manage the size

and position of child windows, provide moveable split bars

between windows, and support the ability to scroll a window.

The canvases include the base class, ICanvas, and its four

derived classes: IMultiCellCanvas, ISetCanvas, ISplitCanvas,

and IViewport.

cast. A notation used to express the conversion of one type

to another.

catch block. A block associated with a try block that

receives control when a C++ exception matching its argument

is thrown.

CD. Compact disc

CD-ROM. Compact disc-read-only memory

CD-XA. Compact disc-extended architecture

channel mapping. The translation of a MIDI channel

number for a sending device to an appropriate channel for a

receiving device.

character array. An array of type char.

702 VisualAge C++ Open Class Library User's Guide

child ¹C/2

child. A node that is subordinate to another node in a tree

structure. Only the root node of a tree is not a child.

child class. See derived class.

child window. A window derived from another window and

drawn relative to it.

circular slider control. A 360-degree knob-like control that

simulates the buttons on a TV, a stereo, or video components.

By rotating the slider arm, the user can set, display, or

modify a value, such as the balance, bass, volume, or treble.

class. A user-defined type. Classes can be defined

hierarchically, allowing one class to be an expansion of

another, and classes can restrict access to their members.

class hierarchy. A tree-like structure showing relationships

among classes. It places one abstract class at the top (a base

class) and one or more layers of derived classes below it.

class library. A collection of classes.

class template. A blueprint describing how a set of related

classes can be constructed.

client area window. An intermediate window between an

IFrameWindow and its controls and other child windows.

client program. A program that uses a class. The program

is said to be a client of the class.

collection. (1) In a general sense, an implementation of an

abstract data type for storing elements. (2) An abstract class

without any ordering, element properties, or key properties.

All abstract Collection Classes are derived from Collection.

Collection Classes. A set of classes that implement abstract

data types for storing elements.

color palette. A set of all the colors that can be used in a

displayed image.

compact disc (CD). (1) A disc, usually 4.75 inches in

diameter, from which data is read optically by means of a

laser. (2) A disc with information stored in the form of pits

along a spiral track. The information is decoded by a

compact-disc player and interpreted as digital audio data,

which most computers can process.

compact disc-extended architecture (CD-EX). A storage

format that accommodates interleaved storage of audio, video,

and standard file system data.

compact disc-read-only memory (CD-ROM). (1) An

optical storage medium (2) High-capacity, read-only memory

in the form of an optically read compact disc.

Complex Mathematics library. A C++ class library that

provides the facilities to manipulate complex numbers and

perform standard mathematical operations on them.

composite. The combination of two or more film, video, or

electronic images into a single frame or display.

computer-controlled device. An external video source

device with frame-stepping capability, usually a videodisc

player, whose output can be controlled by the multimedia

subsystem.

concrete class. A class that implements an abstract data

type but does not allow polymorphism.

const. (1) An attribute of a data object that declares that the

object cannot be changed. (2) An attribute of a function that

declares that the function will not modify data members of its

class.

constructor. A special class member function that has the

same name as the class and is used to construct and possibly

initialize objects of its class type. A return type is not

specified.

containment function. A function that determines whether a

collection contains a given element.

copy constructor. A constructor used to make a copy of an

object from another object of the same type.

critical section. Code that must be executed by one thread

while all other threads in the process are suspended.

cursor. A reference to an element at a specific position in a

data structure.

cursor iteration. The process of repeatedly moving the

cursor to the next element in a collection until some condition

is satisfied.

cursored emphasis. When the selection cursor is on a

choice, that choice has cursored emphasis.

C/2. A version of the C language designed for the OS/2

environment.

 Glossary 703

daemon ¹double-byte character set (DBCS)

D
daemon. A program that runs unattended to perform a

service for other programs.

data abstraction. A data type with a private representation

and a public set of operations. The C++ language uses the

concept of classes to implement data abstraction.

DBCS (Double-Byte Character Set). See double-byte

character set.

deck. A line of child windows in a set canvas that is

direction-independent. A horizontal deck is equivalent to a

row and a vertical deck is equivalent to a column.

declaration. Introduces a name to a program and specifies

how the name is to be interpreted.

declare. To specify the interpetation that C++ gives to each

identifier.

default argument. An argument that is declared with a

default value in a function prototype or declaration. If a call

to the function omits this argument, the default value is used.

Arguments with default values must be the trailing arguments

in a function prototype argument list.

default class. A class with preprogrammed definitions that

can be used for simple implementations.

default constructor. A constructor that takes no arguments,

or a constructor for which all the arguments have default

values.

default implementation. One of several possible

implementation variants offered as the default for a specific

abstract data type.

default operation class. A class with preprogrammed

definitions for all required element and key operations for a

particular implementation.

degree. The number of children of a node.

delete. (1) A C++ keyword that identifies a free-storage

deallocation operator. (2) A C++ operator used to destroy

objects created by operator new.

deque. A queue that can have elements added and removed

at both ends. A double-ended queue.

dequeue. An operation that removes the first element of a

queue.

derivation. (1) The creation of a new or derived class from

an existing base class. (2) The relationship between a class

and the classes above or below it in a class hierarchy.

derived class. A class that inherits from a base class. You

can add new data members and member functions to the

derived class. You can manipulate a derived class object as

if it were a base class object. The derived class can override

virtual functions of the base class.

Synonym for child class and subclass.

destructor. A special member function that has the same

name as its class, preceded by a tilde (˜), and that “cleans up”

after an object of that class, for example, by freeing storage

that was allocated when the object was created. A destructor

has no arguments, and no return type is specified.

difference. Given two sets A and B, the difference (A-B) is

the set of all elements contained in A but not in B.

digital audio. Audio data that has been converted to digital

form.

digital video. Material that can be seen and that has been

converted to digital form.

digital video device. A full-motion video device that can

record or play files (or both) containing digitally stored video.

diluted array. An array in which elements are deleted by

being flagged as deleted, rather than by actually removing

them from the array and shifting later elements to the left.

diluted sequence. A sequence implemented using a diluted

array.

direct manipulation. A user interface technique whereby

the user initiates application functions by manipulating the

objects, represented by icons, on the Presentation Manager

(PM) or Workplace Shell desktop. The user typically

initiates an action by:

1. Selecting an icon

2. Pressing and holding down a mouse button while

“dragging” the icon over another object’s icon on the

desktop

3. Releasing the mouse button to “drop” the icon over the

target object.

Thus, this technique is also known as “drag and drop”

manipulation.

double-byte character set (DBCS). A set of characters in

which each character is represented by 2 bytes. Languages

such as Japanese, Chinese, and Korean, which contain more

704 VisualAge C++ Open Class Library User's Guide

doubleword ¹eyecatcher

symbols than can be represented by 256 code points, require

double-byte character sets.

Because each character requires 2 bytes, you need hardware

and supporting software that are DBCS-enabled to enter,

display, and print DBCS characters.

doubleword. A contiguous sequence of bits or characters

that comprises two computer words and can be addressed as a

unit. For the C Set++ for AIX compiler, a doubleword is 32

bits (4 bytes).

drag after. A target enter event that occurs in a container

where its orderedTargetEmphasis or mixedTargetEmphasis

attribute is set and the current view is name, text, or details.

drag item. A “proxy” for the object being manipulated.

drag over. A target enter event that occurs in a container

where its orderedTargetEmphasis attribute is not set and the

current view is icon or tree view.

drop offset. The location where the next container object

that is dropped will be positioned (if the target operation’s

drop style is not IDM::dropPosition). The position is based

upon the last object that was dropped as an offset of that

object relative to the drop style.

E
EBCDIC (extended binary-coded decimal interchange

code). A coded character set of 256 8-bit characters.

element. The component of an array, subrange, enumeration,

or set.

element equality. A relation that determines whether two

elements are equal.

element function. A function, called by a member function,

that accesses the elements of a class.

encapsulation. The hiding of the internal representation of

objects and implementation details from the client program.

enqueue. An operation that adds an element as the last

element to a queue.

enumeration constant. An identifier that is defined in an

enumeration and that has an associated constant integer value.

You can use an enumeration constant anywhere an integer

constant is allowed.

enumeration data type. A type that represents integers and

a set of enumeration constants. Each enumeration constant

has an associated integer value.

equality collection. (1) An abstract class with the property

of element equality. (2) In general, any collection that has

element equality.

equality key collection. An abstract class with the

properties of element equality and key equality.

equality key sorted collection. An abstract class with the

properties of element equality, key equality, and sorted

elements.

equality sequence. A sequentially ordered flat collection

with element equality.

equality sorted collection. An abstract class with the

properties of element equality and sorted elements.

exception. (1) A user or system error detected by the

system and passed to an OS/2 or user exception handler.

(2) For C++, any user, logic, or system error detected by a

function that does not itself deal with the error but passes the

error on to a handling routine (also called “throwing the

exception”).

exception handler. (1) A function that is invoked when an

exception is detected, and that either corrects the problem and

returns execution to the program, or terminates the program.

(2) In C++, a catch block that catches a C++ exception when

it is thrown from a function in a try block.

exception handling. A type of error handling that allows

control and information to be passed to an exception handler

when an exception occurs. Under the OS/2 operating system,

exceptions are generated by the system and handled by user

code. In C++, try, catch, and throw expressions are the

constructs used to implement C++ exception handling.

external data definition. A definition appearing outside a

function. The defined object is accessible to all functions

that follow the definition and are located within the same

source file as the definition.

eyecatcher. A recognizable sequence of bytes that

determines which parameters were passed in which registers.

This sequence is used for functions that have not been

prototyped or have a variable number of parameters.

 Glossary 705

file descriptor ¹hit testing

F
file descriptor. A small positive integer that the system uses

instead of the file name to identify an open file.

file scope. A name declared outside all blocks and classes

has file scope and can be used after the point of declaration

in a source file.

filter. A command whose operation consists of reading data

from standard input or a list of input files and writing data to

standard output. Typically, its function is to perform some

transformation on the data stream.

first element. The element visited first in an iteration over a

collection. Each collection has its own definition for first

element. For example, the first element of a sorted set is the

element with the smallest value.

flat collection. A collection that has no hierarchical

structure.

font. A particular size and style of typeface that contains

definitions of character sets, marker sets, and pattern sets.

frame. (1) A complete television picture that is composed

of two scanned fields, one of the even lines and one of the

odd lines. In the NTSC system, a frame has 525 horizontal

lines and is scanned in 1/30th of a second. (2) A border

around a window.

frame extension. A control you can add if it is not available

in the basic Presentation Manager frame windows.

frame number. (1) The number used to identify a frame.

(2) The location of a frame on a videodisc or in a video file.

On videodisc, frames are numbered sequentially from 1 to

54,000 on each side and can be accessed individually; on

videotape, the numbers are assigned by way of the SMPTE

time code.

frame rate. The speed at which the frames are scanned.

For a videodisc player, the speed at which frames are scanned

is 30 frames per second for NTSC video. For most videotape

devices, the speed is 24 frames per second.

friend class. A class in which all the member functions are

granted access to the private and protected members of

another class. It is named in the declaration of the other

class with the prefix friend.

friend function. A function that is granted access to the

private and protected parts of a class. It is named in the

declaration of the class with the prefix friend.

full-motion video. (1) Video playback at 30 frames per

second on NTSC signals. (2) A digital video compression

technique that operates in real time.

G
gain. The ability to change the audibility of the sound, such

as during a fade in or fade out of music.

graphic attributes. Attributes that apply to graphic

primitives. Examples are color, line type, and shading-pattern

definition.

graphic primitive. A single item of drawn graphics, such as

a line, arc, or graphics text string.

graphical user interface (GUI). Type of computer interface

consisting of a visual metaphor of a real-world scene, often

of a desktop.

graphics. A picture defined in terms of graphic primitives

and graphic attributes.

GUI. Graphical user interface.

H
halftone. The reproduction of continuous-tone artwork, such

as a photograph, by converting the image into dots of various

sizes.

hash function. A function that determines which category,

or bucket, to put an element in. A hash function is needed

when implementing a hash table.

hash table. A data structure that divides all elements into

(preferably) equal-sized categories, or buckets, to allow quick

access to the elements. The hash function determines which

bucket an element belongs in.

header file. A file that can contain system-defined control

information or user data and generally consists of

declarations.

heap. An unordered flat collection that allows duplicate

elements.

height of a tree. The length of the longest path from the

root to a leaf.

hit testing. The means of identifying which graphic object

the mouse is pointing to.

706 VisualAge C++ Open Class Library User's Guide

implementation class ¹key sorted set

I
implementation class. A class that implements a concrete

class. Implementation classes are never used directly.

incomplete class declaration. A class declaration that does

not define any members of a class. Typically, you use an

incomplete class declaration as a forward declaration.

indirection. A mechanism for connecting objects by storing,

in one object, a reference to another object.

inheritance. (1) A mechanism by which a derived class can

use the attributes, relationships, and member functions

defined in more abstract classes related to it (its base classes).

See also multiple inheritance. (2) An object-oriented

programming technique that allows you to use existing

classes as bases for creating other classes.

initializer. An expression used to initialize objects.

inlined function. A function call that the compiler replaces

with the actual code for the function. You can direct the

compiler to inline a function with the inline keyword.

input stream. A stream used to read input.

instance number. A number that the operating system uses

to keep track of all of the instances of the same type of

device. For example, the amplifier-mixer device name is

AMPMIX plus a 2-digit instance number. If a program

creates two amplifier-mixer objects, the device names could

be AMPMIX01 and AMPMIX02.

integral object. A character object, an object having an

enumeration type, an object having variations of the type int,

or an object that is a bit field.

interactive graphics. Graphics that a user at a terminal can

move or manipulate.

interactive video. The process of combining video and

computer technology so that the user’s actions, choices, and

decisions affect the way in which the program unfolds.

interrupt. A temporary suspension of a process caused by

an external event, performed in such a way that the process

can be resumed.

intersection. Given collections A and B, the set of elements

that is contained in both A and B.

intrinsic function. A function supplied by a program as

opposed to a function supplied by the compiler.

inverted colors. Opposite colors in the light spectrum.

iteration. The process of repeatedly applying a function to a

series of elements in a collection until some condition is

satisfied.

iteration order. The order in which elements are accessed

when iterating over a collection. In ordered collections, the

element at position 1 will be accessed first, then the element

at position 2, and so on. In sorted collections, the elements

are accessed according to the ordering relation provided for

the element type. In collections that are not ordered the

elements are accessed in an arbitrary order. Each element is

accessed exactly once.

iterator class. A class that provides iteration functions.

I/O Stream Library. A class library that provides the

facilities to deal with many varieties of input and output.

K
key access. A property that allows elements to be accessed

by matching keys.

key bag. An unordered flat collection that uses keys and can

contain duplicate elements.

key collection. (1) An abstract class that has the property of

key access. (2) In general, any collection that uses keys.

key equality. A relation that determines whether two keys

are equal.

key() function. When used on a flat collection, a function

that returns a reference to the key of an element.

key-type function. Any of several functions of an element

type, that are used by the Collection Class Library member

functions to manipulate the keys of a class.

key set. An unordered flat collection that uses keys and

does not allow duplicate elements.

key sorted bag. A sorted flat collection that uses keys and

allows duplicate elements.

key sorted collection. An abstract class with the properties

of key equality and sorted elements.

key sorted set. A sorted flat collection that uses keys and

does not allow duplicate elements.

 Glossary 707

keyword ¹multibyte character set (MBCS)

keyword. (1) A predefined word reserved for the C or C++
language that you cannot use as an identifier. (2) A symbol

that identifies a parameter.

L
last element. The element accessed last in an iteration over

a collection. Each collection has its own definition for last

element. For example, the last element of a sorted set is the

element with the largest value.

latched. The state of a button. A button in its latched state

is held in its pressed position until the user clicks on it to

release (unlatch) it.

leaves. In a tree, nodes without children. Synonymous with

terminals.

library. (1) A collection of functions, function calls,

subroutines, or other data. (2) A set of object modules that

can be specified in a link command.

linkage editor. Synonym for linker.

linked implementation. An implementation in which each

element contains a reference to the next element in the

collection. Pointer chains are used to access elements in

linked implementations. Linked implementations are also

called linked list implementations.

linked sequence. A sequence that uses a linked

implementation.

linker. A program that resolves cross-references between

separately compiled object modules and then assigns final

addresses to create a single executable program.

locale. The definition of the subset of a user's environment

that depends on language and cultural conventions.

lvalue. An expression that represents an object that can be

both examined and altered.

M
manipulator. A value that can be inserted into streams or

extracted from streams to affect or query the behavior of the

stream.

mask. A pattern of bits or characters that controls the

keeping, deleting, or testing of portions of another pattern of

bits or characters.

MBCS. See multibyte character set

member. Data, functions, or types contained in classes,

structures, or unions.

member function. An operator or function that is declared

as a member of a class. A member function has access to the

private and protected data members and member functions of

objects of its class.

message. A request from one object that the receiving object

implement a method. Because data is encapsulated and not

directly accessible, a message is the only way to send data

from one object to another. Each message specifies the name

of the receiving object, the method to be implemented, and

any parameters the method needs for implementation.

method. Synonym for member function.

MIDI. Musical Instrument Digital Interface. A standard

used in the music industry for interfacing digital musical

instruments.

mix. (1) An attribute that determines how the foreground of

a graphic primitive is combined with the existing color of

graphics output. Also known as foreground mix. Contrast

with background mix. (2) The combination of audio or

video sources during postproduction.

mixer. A device used to simultaneously combine and blend

several inputs into one or two outputs.

mode. A collection of attributes that specifies a file's type

and its access permissions.

motion video. Video that displays real motion.

mount. (1) To place a data medium in a position to operate.

(2) To make recording media accessible.

Moving Pictures Experts Group (MPEG). (1) A group

that is working to establish a standard for compressing and

storing motion video and animation in digital form. (2) The

compression standard of video and audio data that is stored

on mass media.

MPEG. Moving Pictures Experts Group.

multibyte character set (MBCS). A character set whose

characters consist of more than 1 byte. Used in languages

such as Japanese, Chinese, and Korean, where the 256

possible values of a single-byte character set are not sufficient

to represent all possible characters.

708 VisualAge C++ Open Class Library User's Guide

multimedia ¹ordering relation

multimedia. Computer-controlled presentations combining

any of the following: text, graphics, animation, full-motion

images, still video images, and sound.

multiple inheritance. (1) An object-oriented programming

technique implemented in C++ through derivation, in which

the derived class inherits members from more than one base

class. (2) The structuring of inheritance relationships among

classes so a derived class can use the attributes, relationships,

and functions used by more than one base class.

See also inheritance and class lattice.

multitasking. A mode of operation that allows concurrent

performance or interleaved execution of more than one task

or program.

multithread. Pertaining to concurrent operation of more

than one path of execution within a computer.

N
n-ary tree. A tree that has an upper limit, n, imposed on the

number of children allowed for a node.

National Television Standard Committee (NTSC). (1) A

committee that sets the standard for color television

broadcasting and video in the United States (currently in use

also in Japan). (2) The standard set by the NTSC committee

(the NTSC standard).

native. The rendering mechanism and format (RMF) that

best represents the object and is the best one for rendering.

For example, a native of Cincinnati understands the streets in

the area better than someone who has just moved there.

Therefore, a Cincinnati native can get from point A to point

B quicker than a newcomer. Likewise, a native RMF can get

the data transferred from point A to point B more efficiently

than the additional RMFs. We can use additional RMFs

when we cannot use the native, or optimal, approach.

nested class. A class defined within the scope of another

class.

new. (1) A C++ keyword identifying a free storage

allocation operator. (2) A C++ operator used to create class

objects.

new-line character. A control character that causes the print

or display position to move to the first position on the next

line. This control character is represented by \n in the C

language.

node. In a tree structure, a point at which subordinate items

of data originate.

NTSC. National Television Standard Committee.

NTSC format. The specifications for color television as

defined by the NTSC, which include: (a) 525 scan lines, (b)

broadcast bandwidth of 4 megaHertz, (c) line frequency of

15.75 kiloHertz, (d) frame frequency of 30 frames per

second, and (e) color subcarrier frequency of 3.58 megaHertz.

null character (\0). The ASCII or EBCDIC character with

the hex value 00 (all bits turned off).

O
object. (1) A collection of data and member functions that

operate on that data, which together represent a logical entity

in the system. In object-oriented programming, objects are

grouped into classes that share common data definitions and

functions. Each object of the class is said to be an instance

of the class. (2) Each object has the same properties,

attributes, and member functions as other objects of the same

class, though it has unique values has unique values assigned

to assigned to its attributes.

object-oriented programming. A programming approach

based on the concepts of data abstraction and inheritance.

Unlike procedural programming techniques, object-oriented

programming concentrates on what data objects comprise the

problem and how they are manipulated, not on how

something is accomplished.

operation class. A class that defines all required element

and key operations required by a specific collection

implementation.

operator function. An overloaded operator that is either a

member of a class or that takes at least one argument that is a

class type or a reference to a class type. See overloading.

optical reflective disc. An optical videodisc that is read by

means of the reflection of a laser beam from the shiny

surface on the disc.

ordered collection. (1) An abstract class that has the

property of ordered elements. (2) In general, any collection

that has its elements arranged so that there is always a first

element, last element, next element, and previous element.

ordering relation. A property that determines how the

elements are sorted. Ascending order is an example of an

ordering relation.

 Glossary 709

overflow ¹profiling

overflow. A condition that occurs when a portion of the

result of an operation exceeds the capacity of the intended

unit of storage.

overloading. An object-oriented programming technique

where one or more function declarations are specified for a

single name in the same scope.

owner window. A window similar to a parent window, but

it does not affect the behavior or appearance of the window.

The owner coordinates the activity of a window.

P
pad. To fill unused positions in a field with data, usually

0’s, 1’s, or blanks.

parameter declaration. A description of a value that a

function receives. A parameter declaration determines the

storage class and the data type of the value.

parent node. A node to which one or more other nodes are

subordinate.

parent window. A window that provides the child window

information on how and where to draw it. The parent

window also defines the relationship that the child window

has with other windows in the system.

pause. To temporarily halt the medium. The halted visual

should remain displayed but no audio should be played.

pel. The smallest area of a display screen capable of being

addressed and switched between visible and invisible states.

Synonym for pixel and picture element.

picture element. Synonym for pel.

pitch. The ability to change the key or keynote of the

sound. For example, in music, the different pitches of

people’s voices are soprano, alto, tenor, baritone, and bass,

arranged from the highest to lowest pitch.

pixel. Picture element. Synonym for pel.

pointer. A variable that holds the address of a data object or

function.

pointer class. A class that implements pointers.

pointer to member. An operator used to access the address

of nonstatic members of a class.

polymorphic function. A function that can be applied to

objects of more than one data type. C++ implements

polymorphic functions in two ways:

1. Overloaded functions (calls are resolved at compile time)

2. Virtual functions (calls are resolved at run time)

polymorphism. The technique of taking an abstract view of

an object or function and using any concrete objects or

arguments that are derived from this abstract view.

positioning property. The property of an element that is

used to position the element in a collection. For example, the

value of the key may be used as the positioning property.

precondition. A condition that a function requires to be true

when it is called.

predicate function. A function that returns an IBoolean

value of true or false. (IBoolean is an integer-represented

Boolean type.)

preparation. Any activity that the source performs before

rendering the data. For example, the drag item may require

that the source create a secondary thread for the source

rendering to take place in. The system remains responsive to

users so that they can do other tasks.

preprocessor. A phase of the compiler that examines the

source program for preprocessor statements, which are then

executed, resulting in the alteration of the source program.

preroll. To prepare a device to begin a playback or

recording function with minimal delay.

primitive. See graphic primitive.

primitive attribute. A specifiable characteristic of a graphic

primitive. See graphic attributes.

priority queue. A queue that has a priority assigned to its

elements. When accessing elements, the element with the

highest priority is removed first. A priority queue has a

largest-in, first-out behavior.

private. Pertaining to a class member that is accessible only

to member functions and friends of that class.

process. A program running under OS/2, along with the

resources associated with it (memory, threads, file system

resources, and so on).

profiling. The process of generating a statistical analysis of

a program that shows processor time and the percentage of

program execution time used by each procedure in the

program.

710 VisualAge C++ Open Class Library User's Guide

program ¹SMPTE time code

program. (1) One or more files containing a set of

instructions conforming to a particular programming language

syntax. (2) A self-contained, executable module. Multiple

copies of the same program can be run in different processes.

property function. A function that is used to determine

whether the element it is applied to has a given property or

characteristic. A property function can be used, for example,

to remove all elements with a given property.

protected. Pertaining to a class member that is only

accessible to member functions and friends of that class, or to

member functions and friends of classes derived from that

class.

prototype. A function declaration or definition that includes

both the return type of the function and the types of its

arguments.

public. Pertaining to a class member that is accessible to all

functions.

pure virtual function. A virtual function that has a function

initializer of the form = 0;.

Q
queue. A sequence with restricted access in which elements

can only be added at the back end (or bottom) and removed

from the front end (or top). A queue is characterized by

first-in, first-out behavior and chronological order.

R
reference class. A class that links a concrete class to an

abstract class. Reference classes make polymorphism

possible with the Collection Classes.

relation. An unordered flat collection class that uses keys,

allows for duplicate elements, and has element equality.

renderer. An object that renders data using a particular

mechanism, such as using files or shared memory. It

contains definitions of supported rendering mechanisms and

formats and types. Renderers are maintained positionally

(1-based).

rendering. The transfer or re-creation of the dragged object

from the source window to the target window.

rendering format. Identifies the actual format of the data

being rendered in a direct manipulation operation.

rendering mechanism. Identifies the actual format of the

data being rendered in a direct manipulation operation.

resource file. A file that contains data used by an

application, such as text strings and icons.

returned element. An element returned by a function as the

return value.

RGB. Red, green, blue. A method of processing color

images according to their red, green, and blue color content.

RMFs. Rendering mechanisms and formats.

root. A node that has no parent. All other nodes of a tree

are descendants of the root.

S
samples-per-second. The number of times per second that

the audio card records data from the audio input. For

example, 44 kiloHertz is CD quality; 22 kiloHertz is FM

music quality; and 11 kiloHertz is voice quality.

SBCS. See single-byte character set

scan. To search backward and forward at high speed on a

CD audio device. Scanning is analogous to fast forwarding.

scope. That part of a source program in which an object is

defined and recognized.

scope operator (::). An operator that defines the scope for

the argument on the right. If the left argument is blank, the

scope is global; if the left argument is a class name, the

scope is within that class. Also called a scope resolution

operator.

scroll increment. The number by which the current value of

the circular slider is incremented or decremented when a user

presses one of the circular slider control buttons.

sequence. A sequentially ordered flat collection.

sequential collection. An abstract class with the property of

sequentially ordered elements.

siblings. All the children of a node are said to be siblings of

one another.

single-byte character set (SBCS). A set of characters in

which each character is represented by a 1-byte code.

SMPTE time code. A frame-numbering system developed

by SMPTE that assigns a number to each frame of video.

 Glossary 711

sorted bag ¹thread

The 8-digit code is in the form HH:MM:SS:FF (hours,

minutes, seconds, frame number). The numbers track elapsed

hours, minutes, seconds, and frames from any chosen point.

sorted bag. A sorted flat collection that allows duplicate

elements.

sorted collection. (1) An abstract class with the property of

sorted elements. (2) In general, any collection with sorted

elements.

sorted map. A sorted flat collection with key and element

equality.

sorted relation. A sorted flat collection that uses keys, has

element equality, and allows duplicate elements.

sorted set. A sorted flat collection with element equality.

sound track. Synonymous with audio track.

sprite. A small graphic that can be moved independently

around the screen, producing animated effects.

stack. A data structure in which new elements are added to

and removed from the top of the structure. A stack is

characterized by Last-In-First-Out (LIFO) behavior.

standard error. An output stream usually intended to be

used for diagnostic messages.

standard input. An input stream usually intended to be

used for primary data input. Standard input comes from the

keyboard unless redirection or piping is used, in which case

standard input can be from a file or the output from another

command.

standard output. An output stream usually intended to be

used for primary data output. When programs are run

interactively, standard output usually goes to the display

unless redirection or piping is used, in which case standard

output can go to a file or to another command.

step backward. In multimedia applications, to move the

medium backward one frame or segment at a time.

step forward. In multimedia applications, to move the

medium forward one frame or segment at a time.

step frame. A function of devices such as digital video and

videodisc players that enables a user to move frame-by-frame

in either direction.

stream. (1) A continuous stream of data elements being

transmitted, or intended for transmission, in character or

binary-digit form, using a defined format. (2) A file access

object that allows access to an ordered sequence of

characters, as described by the ISO C standard. A stream

provides the additional services of user-selectable buffering

and formatted input and output.

stream buffer. A stream buffer is a buffer between the

ultimate consumer, ultimate producer, and the I/O Stream

Library functions that format data. It is implemented in the

I/O Stream Library by the streambuf class and the classes

derived from streambuf.

string. A contiguous sequence of characters.

structure. A construct that contains an ordered group of

data objects. Unlike an array, the data objects within a

structure can have varied data types.

subclass. See derived class.

subscript. One or more expressions, each enclosed in

brackets, that follow an array name. A subscript refers to an

element in an array.

subtree. A tree structure created by arbitrarily denoting a

node to be the root node in a tree. A subtree is always part

of a whole tree.

superclass. See base class and abstract class.

superset. Given two sets A and B, A is a superset of B if

and only if all elements of B are also elements of A. That is,

A is a superset of B if B is a subset of A.

T
tabular implementation. An implementation that stores the

location of elements in tables. Elements in a tabular

implementation are accessed by using indices to arrays.

tabular sequence. A sequence that uses a tabular

implementation.

template. A family of classes or functions where the code

remains invariant but operates with variable types.

terminals. Synonym for leaves.

this. A C++ keyword that identifies a special type of pointer

in a member function, one that references the class object

with which the member function was invoked.

this collection. The collection to which a function is

applied.

thread. A unit of execution within a process.

712 VisualAge C++ Open Class Library User's Guide

throw expression ¹video graphics adapter (VGA)

throw expression. An argument to the C++ exception being

thrown.

time code. See SMPTE time code.

tool bar. The area under the title bar that displays the tools

available.

transparency. Refers to when a selected color on a graphics

screen is made transparent to allow the video behind it to

become visible.

transparent color. (1) A clear color used to indicate the

part of the bitmap that is not drawn for the bitmap. The area

under the bitmap is not overpainted for areas of the bitmap

that are set to the transparent color. (2) Video information is

considered as being present on the video plane that is

maintained behind the graphics plane. When an area on the

graphics plane is painted with a transparent color, the video

information in the video plane is made visible.

trap. An unprogrammed conditional jump to a specified

address that is automatically activated by hardware. A

recording is made of the location from which the jump

occurred.

treble. (1) The upper half of the whole vocal or

instrumental tonal range. (2) The higher portion of the audio

frequency range in sound recording.

tree. A hierarchical collection of nodes that can have an

arbitrary number of references to other nodes. A unique path

connects every two nodes.

true and additional. The most accurate or most descriptive

(primary) type of an object (true) and the other or secondary

types (additional). For example, if the object is a text file, its

true type is text; if the file was a C source code file, its true

type is C code.

try block. A block in which a known C++ exception is

passed to a handler.

typed implementation class. A class that implements a

concrete class and provides an interface that is specific to a

given element type. This interface allows the compiler to

verify that, for example, integers cannot be added to a set of

strings.

typeless implementation class. A class that implements a

concrete class and provides an interface that is not specific to

a given element type.

U
ultimate consumer. The target of data in an I/O operation.

An ultimate consumer can be a file, a device, or an array of

bytes in memory.

ultimate producer. The source of data in an I/O operation.

An ultimate producer can be a file, a device, or an array of

byes in memory.

unbounded collection. A collection that has no upper limit

on the number of elements it can contain.

undefined cursor. A cursor that may or may not be valid,

and that may or may not refer to a different element of the

collection from the element it referred to before the function

call that resulted in its becoming undefined. An undefined

cursor may refer to no element of the collection, and still be

a valid cursor.

underflow. (1) A condition that occurs when the result of

an operation is less than the smallest possible nonzero

number. (2) Synonym for arithmetic underflow, monadic

operation.

union. (1) Structures that can contain different types of

objects at different times. Only one of the member objects

can be stored in a union at any time. (2) Given the sets A

and B, all elements of A, B, or both A and B.

unique collection. A collection in which the value of an

element only occurs once; that is, there are no duplicate

elements.

unload. To eject the medium from the device.

unordered collection. A collection that has no order to its

elements.

V
VCR. Videocassette recorder.

VGA. Video graphics adapater.

video. Pertaining to the portion of recorded information that

can be seen.

video attributes. The standard video attributes are:

brightness, contrast, freeze, hue, saturation, and sharpness.

video graphics adapter (VGA). A graphics controller for

color displays. The pel resolution of the video graphics

adapter is 4:4.

 Glossary 713

videocassette recorder (VCR) ¹(::) (double colon)

videocassette recorder (VCR). A device for recording or

playing back videocassettes.

videodisc. A disc on which programs have been recorded

for playback on a computer or a television set; a recording on

a videodisc. The most common format in the United States

and Japan is an NTSC signal recorded on the optical

reflective format.

videodisc player. A device that provides video playback for

prerecorded videodiscs.

virtual function. A function of a class that is declared with

the keyword virtual. The implementation that is executed

when you make a call to a virtual function depends on the

type of the object for which it is called. This is determined

at run time.

volatile. An attribute of a data object that indicates the

object is changeable beyond the control or detection of the

compiler. Any expression referring to a volatile object is

evaluated immediately, for example, assignments.

volume. The intensity of sound. A volume of 0 is minimum

volume. A volume of 100 is maximum volume.

W
white space. Space characters, tab characters, form feed

characters, and new-line characters.

wide character. A character whose range of values can

represent distinct codes for all members of the largest

extended character set specified among the supporting locales.

Numerics
24-bit color. A digital standard that uses 24 bits of

information to describe each color pixel, providing up to 16.7

million colors in one image (the highest digital standard

currently available).

8-bit color. A digital standard that uses 8 bits of

information to describe each color pixel, providing up to 256

colors in one image (the standard for VGA displays).

Special Characters
(::) (double colon). Scope operator. An operator that

defines the scope for the argument on the right. If the left

argument is blank, the scope is global; if the left argument is

a class name, the scope is within that class. Also called a

scope resolution operator.

714 VisualAge C++ Open Class Library User's Guide

 Bibliography

This bibliography lists the publications that make up the IBM VisualAge C++ library and publications of related IBM products

referenced in this book. The list of related publications is not exhaustive but should be adequate for most VisualAge C++ users.

The IBM VisualAge C++ Library

The following books are part of the IBM VisualAge C++

library.

¹ Read Me First!, S25H-6956

¹ Welcome to VisualAge C++, S25H-6957

 ¹ User's Guide, S25H-6961

 ¹ Programming Guide, S25H-6958

¹ Visual Builder User's Guide, S25H-6960

¹ Visual Builder Parts Reference, S25H-6967

¹ Building Visual Builder Parts for Fun and Profit,

S25H-6968

¹ Open Class Library User's Guide, S25H-6962

¹ Open Class Library Reference, S25H-6965

 ¹ Language Reference, S25H-6963

¹ C Library Reference, S25H-6964

The IBM VisualAge C++
BookManager Library

The following documents are available in VisualAge C++ in

BookManager format.

¹ Read Me First!, S25H-6956

¹ Welcome to VisualAge C++, S25H-6957

 ¹ User's Guide, S25H-6961

 ¹ Programming Guide, S25H-6958

¹ Visual Builder User's Guide, S25H-6960

¹ Visual Builder Parts Reference, S25H-6967

¹ Building Visual Builder Parts for Fun and Profit,

S25H-6968

¹ Open Class Library User's Guide, S25H-6962

¹ Open Class Library Reference, S25H-6965

 ¹ Language Reference, S25H-6963

¹ C Library Reference, S25H-6964

C and C++ Related Publications

¹ Portability Guide for IBM C, SC09-1405

¹ American National Standard for Information Systems /

International Standards Organization — Programming

Language C (ANSI/ISO 9899-1990[1992])

¹ Draft Proposed American National Standard for

Information Systems — Programming Language C++

(X3J16/92-0060)

IBM OS/2 2.1 Publications

The following books describe the OS/2 2.1 operating system

and the Developer's Toolkit 2.1.

¹ OS/2 2.1 Using the Operating System, S61G-0703

¹ OS/2 2.1 Installation Guide, S61G-0704

¹ OS/2 2.1 Quick Reference, S61G-0713

¹ OS/2 2.1 Command Reference, S71G-4112

¹ OS/2 2.1 Information and Planning Guide, S61G-0913

¹ OS/2 2.1 Keyboard and Codepages, S71G-4113

¹ OS/2 2.1 Bidirectional Support, S71G-4114

¹ OS/2 2.1 Book Catalog, S61G-0706

¹ Developer's Toolkit for OS/2 2.1: Getting Started,

S61G-1634

IBM OS/2 3.0 Publications

¹ User's Guide to OS/2 Warp, G25H-7196-01

The following books make up the OS/2 3.0 Technical Library

(G25H-7116).

¹ Control Program Programming Guide, G25H-7101

¹ Control Program Programming Reference, G25H-7102

¹ Presentation Manager Programming Guide - The Basics,

G25H-7103

¹ Presentation Manager Programming Guide - Advanced

Topics, G25H-7104

 Copyright IBM Corp. 1993, 1995 715

¹ Presentation Manager Programming Reference,

G25H-7105

¹ Graphics Programming Interface Programming Guide,

G25H-7106

¹ Graphics Programming Interface Programming

Reference, G25H-7107

¹ Workplace Shell Programming Guide, G25H-7108

¹ Workplace Shell Programming Reference, G25H-7109

¹ Information Presentation Facility Programming Guide,

G25H-7110

¹ OS/2 Tools Reference, G25H-7111

¹ Multimedia Application Programming Guide, G25H-7112

¹ Multimedia Subsystem Programming Guide, G25H-7113

¹ Multimedia Programming Reference, G25H-7114

¹ REXX User's Guide, S10G-6269

 ¹ REXX Reference, S10G-6268

 Multimedia Books

The following books are available as part of IBM Multimedia

Presentation Manager/2 Version 1.1 (MMPM/2). The IBM

User Interface Class Library multimedia classes encapsulate

and extend many of the MMPM/2 functions.

¹ The OS/2 Multimedia Advantage, S71G-2220

¹ Application Programming Guide, S71G-2221

 ¹ Programming Reference, S71G-2222

¹ Subsystem Development Guide, S71G-2223

¹ Guide to Multimedia User Interface Design, S41G-2922

Other Books You Might Need

The following list contains the titles of IBM books that you

might find helpful. These books are not part of the

VisualAge C++ or OS/2 libraries.

BookManager READ/2 Publications

¹ IBM BookManager READ/2: General Information,

GB35-0800

¹ IBM BookManager READ/2: Getting Started and Quick

Reference, SX76-0146

¹ IBM BookManager READ/2: Displaying Online Books,

SB35-0801

¹ IBM BookManager READ/2: Installation, GX76-0147

 Non-IBM Publications

Many books have been written about the C++ language and

related programming topics. The authors use varying

approaches and emphasis. The following is a sample of some

non-IBM C++ publications that are generally available. This

sample is not an exhaustive list. IBM does not specifically

recommend any of these books, and other C++ books may be

available in your locality.

¹ The Annotated C++ Reference Manual by Margaret A.

Ellis and Bjarne Stroustrup, Addison-Wesley Publishing

Company.

¹ C++ Primer by Stanley B. Lippman, Addison-Wesley

Publishing Company.

¹ Object-Oriented Design with Applications by Grady

Booch, Benjamin/Cummings.

¹ Object-Oriented Programming Using SOM and DSOM by

Christina Lau, Van Nostrand Reinhold.

¹ OS/2 C++ Class Library: Power GUI Programming with

C Set ++ by Kevin Leong, William Law, Robert Love,

Hiroshi Tsuji, and Bruce Olson, Van Nostrand Reinhold.

Suggested Reading for Collection Classes

These books contain explanations of data structures that may

help you understand the data structures in the Collection

Classes:

¹ Data Structures and Algorithms by Aho, Hopcroft, and

Ullman, Addison-Wesley Publishing Company.

¹ The Art of Computer Programming, Vol. 3: Sorting and

Searching, D.E. Knuth, Addison-Wesley Publishing

Company.

¹ C++ Components and Algorithms by Scott Robert Ladd,

M&T Publishing Inc.

¹ A Systematic Catalogue of Reusable Abstract Data Types

by Juergen Uhl and Hans Albrecht Schmit, Springer

Varlag.

716 VisualAge C++ Open Class Library User's Guide

 Index

Special Characters
#include statement 295

#pragma priority 305

A
absolute value of complex numbers 9

abstract Collection Classes

based-on concept 126

class hierarchy 91

coupling with concrete classes 140

cursor class used with 99

key collection

restriction on replacing elements 98

naming convention 93

polymorphism 139

relationship to other classes 90

accelerator

table resource 462

tables 461, 462

accessing elements 84, 100

accessor functions 472

add() Collection Class function

behavior of 96

example of behavior 86

properties of 85

role of 96

using to copy a collection 97

addAsFirst() Collection Class function 97

addAsLast() Collection Class function 97

addAsNext() Collection Class function 97

addAsPrevious() Collection Class function 97

adding elements to collections

effect on cursors 99

overview 96—97

addition of complex numbers 9

addOrReplaceElementWithKey() Collection Class

function 85

Advanced Controls, Dialogs, and their Handlers 290

overview 290

allElementsDo() Collection Class function 103

allStacked 453

anonymous streams 30

IApplication 298

application classes

application classes (continued)

description 298

overview 289

applications

#include statement 295

#pragma priority 305

compiling 300, 302

creating 295

creating a C++ source file 297

defining resources 459

example 297

files 295

linking to the User Interface Class Library 300, 302

main function 295

structuring 295

window constructor 295

applicator 69

assignment (Collection Class Library)

using member functions 108

using operation classes 112

using separate functions 109

AT&T C++ Language System Release 1.2

history of class libraries 1

auxiliary class 80, 87

B
bag

deque 75

description 75

implementation variant explained 128

iteration example 104

properties of 81

IBase class 194

base() streambuf function 33

based-on concept in Collection Class Library

overview 125—127

Basic Control Classes 290

overview 290

binary conversion in IString class 207

IBitFlag 315

AND 316

description 315

EQUALS 315

NOT 316

OR 315

 Copyright IBM Corp. 1993, 1995 717

bitmaps, drawing 521

bitwise operators

AND 316

description 315

EQUALS 315

NOT 316

OR 315

books, related

BookManager 716

OS/2 715

portability 715

VisualAge C++ 715

bounded collections 96

button types 332

C
C++

file structure 606

recommendations 291

calcMinimumSize 366

canvas classes

description 361

IMultiCellCanvas 371, 373

ISetCanvas 366

ISplitCanvas 361

IViewPort 377

multiple-cell canvas example 373

set canvas example 367

split canvas example 362

view port example 377

case change of IString objects 210

cerr predefined stream 29

check box control

description 339, 341

events 469

example 340

handlers 469

ISelectHandler 339

IChildAlreadyExistsException 147

children of a tree node 87

cin predefined stream 29, 35

class

categories of Collection Classes 88—93

general types of Collection Classes 80

hierarchy

abstract collections 91

Collection Class Library 92

Complex Mathematics 2

data type classes 191

exception classes 191

class (continued)

hierarchy (continued)

I/O Stream Classes 27

illustrations 2

User Interface Class Library 2

client window

constructing 637

setting static text as 610

clipboard operations 330

clog predefined stream 29

closed figures 519

collection

copying 97, 105

cursor association 98

iterating over 101—105

modifying 96—98

referencing 105

using polymorphism with 139—140

Collection Class Library

categories of classes 88—93

implementation strategy 88

reasons for using 79

steps for using 95

structure of library 90

types of collections 80

color support, new 665

ColorArea color support 665

combination-box control

description 348

example 349

combo box control, events and handlers 469

command line arguments, recording and querying 300

command processing 618, 620

ICommandEvent 332

ICommandHandler 473

compare() function

Collection Class Library

using operation classes 112

using separate functions 109

comparison

of IDate objects 226

of ITime objects 228

compiling an application 300, 302

complex class

conversion functions 18

mathematical functions 16

mathematical operators 13

review of complex numbers 9

trigonometric functions 17

718 VisualAge C++ Open Class Library User's Guide

Complex Mathematics Library 9, 10

complex.h header file 10

concatenation of IString objects 202

concrete classes

coupling with abstract classes 140

cursors with 99

deriving 91

relationship to other classes 90

concrete implementations 91, 126

conjugates of complex numbers 9

constant iterator class 102—105

constructors

Collection Class Library

errors 187

restriction on defining 108

use in object definition 95

IDate class 225

IString class 199

IStringTest class 212

ITime class 227

IContainerControl

adding objects 406, 407

changing views 414

columns 415

creating 405

creating a pop-up menu in 417

creating objects 406

cursor example 412

description 405

details view 415

direct manipulation 431

enableDragFrom 431

enableDragOn 431

events 469

filter example 411

FilterFn 411

filtering objects 411

handlers 469

IContainerColumn 415

IContainerColumn example 415

IContainerObject 406

IContainerObject example 406

isMemberOf 411

isSelected 411

object cursor 412

ObjectCursor 412

removing objects 409

showIconView 414

showTreeView 414

styles 405

containers

adding objects 406, 407

changing views 414

columns 415

creating 405

creating a pop-up menu in 417

creating objects 406

cursor example 412

description 405

details view 415

direct manipulation 431

enableDragFrom 431

enableDragOn 431

events 469

filter example 411

FilterFn 411

filtering objects 411

handlers 469

IContainerColumn 415

IContainerColumn example 415

IContainerObject 406

IContainerObject example 406

isMemberOf 411

isSelected 411

make pop-up menu event 469

object cursor 412

ObjectCursor 412

removing objects 409

showIconView 414

showTreeView 414

styles 405

containment function 85

contextual help, description 267

IControl::tabStop 333

controls

button 332

buttons 331

check box 339

check box example 340

combination box 348

containers 405

creating text controls 321

description 321

entry field 322, 323

information area control 313

multiple-line edit fields (MLE) 326

notebook 397, 400

push button 332

radio button 333

radio button example 334

 Index 719

controls (continued)

slider 350, 352

spin button 356, 357

static text 321

text 321

three-state check box 341

conventions

data member names 269

file names 268

function arguments 270

function return types 269

global type names 269

Hello World 595

maximum characters 268

member function names 269

numerations 269

type names 269

conversion functions

complex class 18

IString class 199, 207

copying

collections 97, 105

IString class 200

cout predefined stream 29, 38

cpp files, description 268

CPP.NDX 268

CPP*.DLL

how to rebuild 303

linking an application 302

rebuilding 303

CPP*.INF 268

CPPBRS.NDX 268

CPPOM30I.LIB 302

CPPOOB3.DEF 268

CPPOOB3.DLL 268

CPPOOC3.LIB 268, 302

CPPOOC3I.LIB 268, 302

CPPOOC3U.MSG 268

CPPOOD3.DEF 268

CPPOOD3.DLL 268

CPPOOM3.DEF 268

CPPOOM3.DLL 268

CPPOOU3.DEF 268

CPPOOU3.DLL 268

ICurrentApplication

argc 300

argv 300

description 298

recording and querying command line arguments 300

setArgs 300

ICurrentApplication (continued)

setUserResourceLibrary 299

ICurrentApplication::run 296

ICursorInvalidException 148

cursors

accessing elements with 100

adding to a container 412

association with a collection 98

classes 99

description 98—100, 318

effect of removing elements 97

effect of replacing elements 98

iteration 101—102

locating elements with 100

positioning in an MLE 329

properties that may cause an exception 148

reasons for using 99

removing elements with 97

sample code 318

setCursorAtLine 329

unexpected results 181

validity 99, 148

customizing an implementation 125—138

D
Data Access Builder

using C++ Programs 238

compiling a part 238

using SOM Programs 244, 245

compiling the IDL 245

using the generated code and classes 233

using Visual Builder Programs 233

compiling a part 233

data member names, conventions 269

Data Type classes

introduction 191

I0String class 197—211

IBase class 191

IBuffer class 191

IDate class 225—230

IDBCSBuffer class 191

IErrorInfo class 191

IString class 197—211

IStringTest class 212

ITime class 225—230

IVBase class 194

data types

overview 289

styles 465

720 VisualAge C++ Open Class Library User's Guide

IDate class 225—230

DBCS 195

applications, creating 464

 description 464

member functions 465

using canvas classes 464

decimal conversion in IString class 207

deck 366

def files 303

default classes in Collection Class Library

instantiation 95

introduction 90

naming convention 93

relationship to other classes 90

strategy for using 88

tutorial on using 179

default constructors 181

default support 421

IDefine... macros 126, 130

deleting substrings of IString objects 204

deque 86

design recommendations 291

destructors

Collection Class Library

restriction on defining 108

details view 415

dialogs

creating 628

creating a file dialog 382

creating file and font dialogs 381

file dialog 381

font dialog 384

templates 460

diluted implementation 131, 132

diluted sequence 131, 132

Direct Manipulation Classes 290

overview 290

dispatchHandlerEvent 468, 475

IDMImage styles 453

IDMItemProvider 425

IDMItemProviderFor 447

double-byte character set 195, 198

drag image 453

drawing attributes 515

drawing lines and arcs 518

Dynamic Data Exchange Classes 290

dynamic link libraries 302

CPPOOB3.DLL 302

CPPOOD3.DLL 302

CPPOOM3.DLL 302

dynamic link libraries (continued)

CPPOOU3.DLL 302

E
eback() streambuf function 33

ebuf() streambuf function 33

egptr() streambuf function 33

element equality 80, 83—84

elementAt() function

accessing elements with 100

replacing elements using 100

role in Collection Class Library 98

versions of 100

elements in Collection Class Library

accessing 84, 100

adding 86, 96—97

effect on cursors 99

functions

errors 182

introduction 107

methods for providing 108

relationship to derived classes 114

using element operation classes 110

using member functions 108

using pointers with 115

using separate functions 109

iterating 101—105

locating 85, 100

See also locate... functions

occurrence 97

operation classes 110

polymorphism 139

removing 97—98

effect on cursors 99

replacing 98

using elementAt() function 100

value 97

elementWithKey() Collection Class function 100

IEmptyException 148

enableDragDropFor 430

enableGroup 334

enableTabStop 334

endl manipulator 40

entry field control

description 322

direct manipulation 430

events 469

example 323

handlers 469

 Index 721

entry field control (continued)

styles example 317

epptr() streambuf function 33

equality relation 82

equality sequence 75, 81

equality test

in Collection Class Library

using member functions 108

using operation classes 112

using separate functions 109

in complex class 14

error

determination in Collection Class Library 181

handling

by math.h for complex class 20

stream input 54

event

command 469

control 469

enter 469

focus 469

keyboard 469

make pop-up menu 469

menu item highlighted 469

menu removed 469

menu showing 469

paint window 469

pop-up menu requested 469

resize 469

selected 469

system command 469

event handler

description 467

extending 475

summary table 469

writing a handler 473

event processing 298

exception

IAccessError exception 214

IAssertionFailure exception 214

IChildAlreadyExistsException 147

ICursorInvalidException 148

IDeviceError exception 214

IEmptyException 148

IException class 149

IFullException 96, 148

hierarchy 149

IIdenticalCollectionException 148

in Collection Class Library 145—150

IInvalidParameter exception 214

exception (continued)

IInvalidReplacementException 148

IInvalidRequest exception 214

IKeyAlreadyExistsException 148

INotBoundedException 96, 148

INotContainsKeyException 148

IOutOfMemory exception 214

IOutOfSystemResource exception 214

IOutOfWindowResource exception 214

IPositionInvalidException 149

IPreconditionViolation 149

IResourceExhausted exception 149, 214

IRootAlreadyExistsException 149

tracing 181, 186

violated precondition in Collection Class Library 145

IException class 149, 181, 213—221

trace function 186

Exception classes

introduction 191

IException class 213—221

ITrace class 221—223

exportSelectedTextToFile 329

exportToFile 329

extended style support 677

extraction operator

See operator >>

F
file dialog

creating 382

description 381

example 382

fileName 382

openFile 382

pressedOK 382

setFileName 382

setOpenDialog 382

setPosition 382

setSaveAsDialog 382

Settings 382

file input 43

file output 46

filebuf class

header files 28

fileName 382

files

class library conventions 268

defining DLL resources 459

defining string resources 459

722 VisualAge C++ Open Class Library User's Guide

files (continued)

Hello World version 1 597

Hello World version 2 604

Hello World version 3 614

Hello World version 4 622

Hello World version 5 635

Hello World version 6 647

hpp files 268

inl files 268

lib files 268

maximum characters 268

structure 606

user resource 299

FilterFn 411

filters in I/O Stream Classes 47

firstElement() Collection Class function 100

flat collection classes

overview 80—86

with restricted access 86

flush manipulator 40

fly over help 588

font dialog

creating 385

description 384

IFontDialog 384

fonts

constructing 487

description 487

example 487

forCursor Collection Class macro 101

format state

mutually exclusive flags 59

formatting

of IString objects 210

of output streams 56

frame extensions

information area 313

menu bar 311

minimized icon 310

title bar 310

frame window

description 307

example 309

information area 313

IResourceID 308

IWindow::show 310

menu bar 311

minimized 309

minimized icon 310

showModally 310

frame window (continued)

styles 307

title bar 310

update the window 310

IFrameWindow

introduction 296

fstream class

assigning to cin and cout 47

file input 43

file output 46

header files 28

IFullException 96, 148

function arguments, conventions 270

function return types, conventions 269

G
generateSourceItems 447

get pointer 33

getline() istream function 37

global names, conventions 269

gptr() streambuf function 33

graphic bundle 514

graphics, two-dimensional 513

presentation space 513

primitives 513

Gregorian calendar 225

H
h files, description 268

handleEventsFor 475

handler

child frame window help handler 586, 644

command 469

container menu 469

description 475

dispatchHandlerEvent 468

edit 469

event 475

focus 469

ISelectHandler 333, 339

keyboard 469

menu 469

overview 289

paint 469

resize 469

select 469

setAssociatedWindow 586, 644

suppressing drawing of windows 309

 Index 723

handler (continued)

writing a handler 473

hashing

description 137

restriction on replacing elements 98

restrictions on defining 108

using operation classes 112

using separate functions 109

header files

define... macros 130

I/O Stream Classes 28

heap

description 76

properties of 81

replacing elements 98

Hello World — Version 2 603

primary source code file 604

Hello World samples

conventions 595

description 595

overview 595

Hello World version 1

aligning static text control 600

creating static text control 599

creating the main window 599

example 297

files 597

overview 597

primary source code file 598

setting a text string 600

setting focus and showing the main window 601

setting main window size 600

setting static text control as client window 600

starting event processing 601

Hello World version 2

AHelloWindow class header file 604

constructing the AHelloWindow object 608

creating a static text control 609

creating an information area 611

creating the main window 606

files 604

icon file 605

overview 603

primary source code file 604

resource file 604

setting a text string 610

setting information area text 611

setting static text control as client window 610

starting event processing 608

symbolic definitions file 604

Hello World version 3

adding command processing 620

adding text for a status line 619

AHelloWindow class header file 614

aligning a text string 618

constructing the AHelloWindow object 615

creating a menu bar 616

creating a status line 616

destructing the AHelloWindow object 618

files 614

icon file 615

overview 613

primary source code file 614

resource file 614

setting ACommandHandler as command handler 619

setting an initial check mark 617

specifying status area location and height 616

symbolic definitions file 614

Hello World version 4

adding a cascaded menu 624

adding a modal dialog window 626

adding a pull-down menu choice 625

adding keyboard accelerators 624

AHelloWindow class header file 622

ATextDialog class header file 623

constructing the dialog window 628

creating push buttons 633

creating the dialog window 628

creating the set canvas 632

defining push buttons 632

deleting the dialog window 631

files 622

icon file 623

invoking the dialog window 628

overview 621

primary source code file 622, 636

processing the dialog window 630

resource file 623

setting push buttons in a set canvas 632

setting text in push buttons 633

setting the dialog window controls 629

symbolic definitions file 622

text dialog source code file 623

Hello World version 5

AEarthWindow class header file 637

AHelloWindow class header file 636

ATextDialog class header file 636

constructing the client window with split canvases 637

creating and using a list box 638

Earth window source file 636

724 VisualAge C++ Open Class Library User's Guide

Hello World version 5 (continued)

files 635

help window source file 637

icon file 637

overview 635

resource file 637

setting up the help area 641

symbolic definitions file 636

text dialog source code file 636

using native system functions and a paint handler. 641

Hello World version 6

files 647

overview 647

help, fly over 588

hexadecimal conversion in IString class 207

hierarchy

See class — hierarchy

horizontalSplit 362

hpp files, description 268

I
Note: Most classes beginning with an uppercase ‘I’ are

indexed under their second letter.

I/O Stream Classes

class hierarchy 27

header files 28

predefined streams 29

stream buffers 32

ibmp2X tool 461

ID_CUT_ITEM 331

 id=event'.event

IIdenticalCollectionException 148

ifstream class

file input 43

header files 28

IGBitmap 521

ignored classes and members 683

IGraphic 514

IGraphicBundle 515

IGString 520

imaginary part of a complex number 9

implementation in Collection Class Library

basic 125

choosing 128

concrete 91

instantiating the default 95

provided by Collection Class Library 128

replacing the default 125

tailoring 125—138

implementation variant

choosing 128, 130

features of 130

provided by Collection Class Library 128

importFromFile 329

include statement 295

indexing of strings 198

inequality operator for complex class 14

information area

creating 611

description 313

example 313

setting text 611

inheritance in Collection Class Library 139

initial check mark, setting 617

inl files, description 268

input

correcting errors 54

from files 43

from standard input 35

IString class 202

white space in 37

inserting substrings into IString objects 204

insertion operator

See operator <<

IInvalidReplacementException 148

iomanip.h header file 28

ios class

header files 28

iostream class

header files 28

Iostream Library 1

See also ‘I/O Stream’, at start of ‘I’ entries

iostream_withassign class

example of using 47

header files 28

iostream.h header file

classes defined 28

ipmrc2X tool 463

is... methods of IString class 208

isFull() Collection Class function 96

isMemberOf 411

isSelected 411

istream class

header files 28

input operator

for class types 50

multiple types in an input statement 36

pointers to char 36

white space 37

 Index 725

istream_withassign class

header files 28

IString... classes

See entries for IString... under S

istrstream class

header files 28

isValid() function

limitation 99

role of 148

iteration

over collections 101—105

restrictions 101

using exceptions 146

iterator class 102—105

ITransformMatrix 514

J
Julian date format 225

K
key access 110

basic properties of flat collections 80

description 82

errors 181, 183, 184

overview 82—85

restriction on defining 108

using operation classes 112

using separate functions 109

key bag 76, 81, 86

key collection 98

restriction on replacing elements 98

key equality 82—84

key set

adding elements 86

description 76

properties of 81

key sorted bag 76, 81

key sorted set 77, 81

key-type functions

errors 181, 182, 185

global 185

introduction 107

methods for providing 108

relationship to derived classes 114

using element operation classes 110

using member functions 108

using pointers with 115

using separate functions 109

IKeyAlreadyExistsException 148

keyboard accelerators, adding 624

keysHelpId 584, 642

L
lib files, description 268

linked implementation 99

linked sequence

description 132

reasons for using 131

template with element operation class 111

linking to the User Interface Class Library 300, 302

list box control

adding or deleting 344

creating 344

cursor sample code 318

description 343

events 469

example 344

handlers 469

noAdjustPosition 361

styles within a split canvas 361

using 343

locateOrAddElementWithKey() Collection Class function 85

locating elements 100

lowercase and IString objects 210

M
macros for the exception classes 218

magnitude of complex numbers 9

main function 296

main window

creating 599, 606

example 297, 599, 600, 601

setting focus and showing the main window 601

setting size 600

makefile 300

makePopUpMenu 387

managed pointer class 80, 88

relationship to derived classes 114

map 77

mathematical functions for complex class 15

matherr() library function 20

maxNumberOfElements() Collection Class function 96

MBCS

member function names, conventions 269

memory management

restriction on defining 108

726 VisualAge C++ Open Class Library User's Guide

memory management (continued)

using operation classes 112

using separate functions 109

menu bar

adding a cascaded menu 624

creating 616

description 311

example 311

menus

cascaded 624

description 387

events 469

handlers 469

help menu 583, 641

makePopUpMenu 387

menu bar 311, 387

menu item highlighted 469

menu removed event 469

menu showing event 469

pop-up menu 387

pop-up menu example 388, 391

pop-up menu requested 469

pull-down submenu 387

setting an initial check mark 617

system menu 395

types 387

message box

description 318

displayButtonStatus 319

example 319

setTitle 319

message IDs, reserved 467

miminumSize 366

minimized icon, description 310

MLE

clipboard 330

clipboard example 331

creating 326

cursors 329

description 326

direct manipulation 430

events 469

example 326

exportSelectedTextToFile 329

exportToFile 329

handlers 469

importFromFile 329

loading and saving a file 329

modality 310

modifying a collection 96—98

mouse events 481

IMultiLineEdit

clipboard 330

clipboard example 331

creating 326

cursors 329

description 326

direct manipulation 430

events 469

example 326

exportSelectedTextToFile 329

exportToFile 329

handlers 469

importFromFile 329

loading and saving a file 329

multimedia books 716

Multimedia Classes 290

overview 290

multimedia classes, using 541

class hierarchy 582

prerequisites 541

related books 716

samples 582

multiple collections 81, 84—86

multiple inheritance in Collection Class Library 139

multiple-cell canvas

addToCell 373

description 371

example 373

top left cell coordinate 371

multiple-line edit (MLE) fields

clipboard 330

clipboard example 331

creating 326

cursors 329

description 326

direct manipulation 430

events 469

example 326

exportSelectedTextToFile 329

exportToFile 329

handlers 469

importFromFile 329

loading and saving a file 329

multiplication of complex numbers 9

mutually exclusive format flags 59

 Index 727

N
n-ary tree class 87

naming conventions 93, 127

data member names 269

file names 268

function arguments 270

function return types 269

global type names 269

Hello World 595

maximum characters 268

member function names 269

numerations 269

type names 269

national language support

description 464

National Language Support (NLS) 195

native renderer 428

newCursor() function

abstract classes 99

NLS 195

noAdjustPosition 361

node of a tree 87

INotBoundedException 96, 148

INotContainsKeyException 148

notebook

creating 400

default styles 397

description 397, 401

example 400

major and minor tabs 399

null character 202

numerations, conventions 269

numeric conversion in IString class 207

O
object cursor 412

object definition, default implementation 95

obsolete classes and members 683

obsolete functions 1

ofstream class

file output 46

header files 28

openFile 382

operation classes

template naming conventions 127

operations classes

using 110—114

operator +

complex class 9

IString class 202

operator <

Collection Class Library 108

operator <<

defining for class types 52

in I/O Stream Classes 25

ostream class 68

IString class 202

ITime class 228

operator =

Collection Class Library 108

operator ==

Collection Class Library 108

complex class 14

operator >>

defining for class types 50

in I/O Stream Classes 25

istream class 68

multiple types in an input statement 36

pointers to char 36

IString class 202

ordered collection

multiple inheritance 139

removing an element 97

ordering relation

as a collection property 80

possible orderings of collections 82

restriction on replacing elements 98

sorted collections 82

using member functions 108

ostream class

header files 28

output operator

for class types 52

multiple types in an output statement 39

ostream_withassign class

ostrstream class

header files 28

IOutOfMemory exception 149

output

to files 46

P
padding IString objects 210

parameterized manipulators

and simple manipulators 67

example 70

728 VisualAge C++ Open Class Library User's Guide

parameterized manipulators (continued)

for your own types 69

introduction 67

parent in a tree 87

pbase() streambuf function 33

pointer class

managed

See managed pointer class

relationship to derived classes 114

role of 80

using with element and key-type functions 115

polar representation of complex numbers 9

polymorphism

avoiding virtual function calls 91

introduction 139—140

using 88

using pointers to elements 115

pop-up menu 388

creating in a container 417

description 387

example 388, 391

styles 401

portability

conversion tools 302

publications 715

positioning property 98

IPositionInvalidException 149

pptr() streambuf function 33

pragma priority 305

precondition

violated 145—147

IPreconditionViolation exception 149

predefined streams

assigning fstream objects to 47

defined by iostream.h 29, 35, 38

predicate functions in Collection Class Library 97

pressedOK 382

priority queue 77, 86

problem determination

Collection Class Library 181

processing events 468

IProgressIndicator 350, 352

provideEnterSupport 425, 446

pull-down menu

adding a choice 625

setting an initial check mark 617

pull-down submenu 387

push button control

creating 633

defining 632

push button control (continued)

description 332

events 469

example 333

handlers 469

ICommandEvent 332

IControl::tabStop 333

ISysCommandEvent 332

setting text in 633

setupButtons 333

put pointer 33

putback 33

Q
queue 77

queue collection 86

R
radio button control

description 333

enableGroup 334

enableTabStop 334

events 469

example 334

handlers 469

ISelectHandler 333

ISettingButton::select 334

real part of a complex number 9

rebuilding DLLs 303

reference class 91

naming convention 93

relationship to other classes 90

using 140

referencing a collection 105

relation 77

remove() function

Collection Class Library

behavior of 97

role of 96

removeAll() function

notes on using 97

removeFirst() Collection Class function 97

removeLast() Collection Class function 97

removing elements

See also remove... functions for collections

effect on cursors 99

overview 97—98

 Index 729

renderer 426

rendering format 428

rendering mechanism 427

replace() Collection Class function 96, 98

replaceAt() function

role of 98

replacing

substrings of IString objects 204

replacing elements 98

See also replace... functions for collections

using elementAt() function 100

requirements

IResourceID 308

resources

bit-map 460

converting 463

icon 460

window 459

IRootAlreadyExistsException 149

RSP files 303

running an application 298

S
sample

directory location 266, 270, 439, 595

Hello World application 595

information area 611

information area text 611

main window 599, 606

main window size 600

menu bar 616

setting focus and showing the main window 601

static text control 599, 600, 609, 610, 611

static text control as client window 600

status area location and height 616

status line 616, 619

text string 600, 618

samples of multimedia class usage 582

SBCS, description 464

ISelectHandler 333, 339

separate functions in Collection Class Library 109—110

sequence 78

sequential collections

replacing elements 98

set 78

set canvas 366

calcMinimumSize 366

creating 632

deck 366

set canvas (continued)

description 366

example 367

minimumSize 366

positioning controls 366

push button control 632

setAlignment 321

setColor

color support 665

setCursorAtLine 329

setFileName 382

setFont 385, 487

setImageStyle 453

setOpenDialog 382

setPosition 382

setResult 472

setSaveAsDialog 382

setText 321

Setting classes

ISettingButton::select 334

settings

description 382

settings class

description 382

setTitle 319

setToFirst 318

setupButtons 333

setUserResourceLibrary 299

shortcut keys, adding 624

showModally 310

simple manipulators 67

slider control

description 350

events 469

handlers 469

sorted bag 78, 81

sorted collections

multiple inheritance 139

ordering relation 82

sorted map

description 78

properties of 81

restrictions for adding elements 85

Sorted Relation 78

sorted relation

properties of 81

sorted set 78, 81

specifying the resource library 308

spin button control

creating 357

730 VisualAge C++ Open Class Library User's Guide

spin button control (continued)

description 356

spin button control, handlers 469

split canvas

description 361

example 362, 367

horizontalSplit 362

noAdjustPosition 361

verticalSplit 362

ISplitCanvas 361

Stack 79, 86

stack3AndFade 455

standard error 38

standard input 35

standard output 38

static text control

aligning 600, 611

alignment styles 321

creating 609

description 321

example 321, 599, 600

sample code 321

setAlignment 321

setText 321

setting 600

setting a text string 610

setting as client window 600, 610

status area

adding text for status line 619

creating a status line 616

specifying location and height 616

status line

adding 619

creating 616

stderr 38

stdin 35

stdiobuf class

header files 28

stdiostr.h 28

stdiostream class

header files 28

stdout 38

stopHandlingEventsFor 475

stream buffers

definition 32

implementation 32

purpose 32

Stream Library 1

stream.h header file 28

streambuf class

header files 28

member functions 33

string buffers 198

IString class

binary conversion 207

concatenating objects of 202

decimal conversion 207

deleting a substring 204

formatting 210

hexadecimal conversion 207

indexing of strings 198

inserting a substring 204

is... methods of IString class 208

numeric conversion 207

padding 210

replacing a substring 204

string length 205

testing characteristics of IString objects 208

using 197—211

word count 205

string input 36

strings 520

IStringTest class 211—212

IStringTestMemberFn class 212

stripping blanks from IString objects 210

strstrea.h 28

strstream class

header files 28

possible uses of 64

strstreambuf class

header files 28

style classes

styles

classDefaultStyle 314

combining 315

containers 405

copying 315

description 314

examples 317

extended styles 677

frame window 307

generic 314

IBitFlag 315

multiple-line edit fields (MLE) 326

negating 316

notebooks 401

push button 332

setDefaultStyle 314

slider example 352

 Index 731

styles (continued)

static text control 321

testing 316

substrings

creating from IString objects 201

deleting in IString objects 204

finding within IString objects 203

subtraction of complex numbers 9

support classes

ISysCommandEvent 332

system failures 146

system menu

description 395

system restrictions 146

T
tables, accelerator 461, 462

tabular implementation 99

tabular sequence 131

tailoring an implementation 125—138

task and samples cross-reference 673

templates

arguments

declaration errors 181, 186, 187

linking with 188

operation class inheritance 112

text controls 321

text string

aligning 618

aligning in a window 321

for static text control 610

setAlignment 321

setText 321

setting in a window 321

ITextControl 321

threads

ITime class 225—230

title bar, description 310

tool bar 503

IToolBar 503

tools

ibmp2X 461

ipmrc2X 463

ITrace class 213—223

trace macros 221

transformation 514

tree 80, 87

trigonometric functions for complex class 17

tutorials 151—180

Two-Dimensional Graphic Classes 290

two-dimensional graphics 513

type names, conventions 269

typed implementation class

naming convention 93

purpose 91

typeless implementation class

purpose 92

relationship to other classes 90

U
ultimate consumer 32

ultimate producer 32

unbounded collections 96

unique collections

adding elements 96

compared to multiple collections 81

description 84—86

Unix System Laboratories C++ Language System 1

unordered collections

characteristics 82

cursor iteration drawbacks 102

uppercase and IString objects 210

User Interface Class Library

conventions 268

recommendations 292

user resource files 299

user-defined input operator 35, 50

user-defined output operator 39, 52

userResourceLibrary 299

V
variant classes

See also implementation variant

description 90—91

naming convention 93

strategy for using 88

tailoring a collection with 125—138

IVBase class 194

verticalSplit 362

viewport

description 377

example 377

virtual functions in Collection Class Library

VisualAge C++
void* type 97

732 VisualAge C++ Open Class Library User's Guide

W
white space

in IString objects 210

in string input 37

window classes

creating 307

cursors 318

events 469

file dialog 381

font dialog 384

handlers 469

help information 583

message box 318

message box example 319

pop-up menu 387

pop-up menu example 388

styles 314

IWindow::show 310

windows

defining layout with canvas classes 361

dialog windows 381

sizing with canvas classes 361

word index 198

words

finding within IString objects 203

X
XAPPLRESDIR 464

 Index 733

Communicating Your Comments to IBM

IBM VisualAge C++ for OS/2
Open Class Library User's Guide

Version 3.0

Publication No. S25H-6962-00

If there is something you like—or dislike—about this book, please let us know. You can use one of the
methods listed below to send your comments to IBM. If you want a reply, include your name, address,
and telephone number. If you are communicating electronically, include the book title, publication number,
page number, or topic you are commenting on.

The comments you send should only pertain to the information in this book and its presentation. To
request additional publications or to ask questions or make comments about the functions of IBM products
or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the United States, you can
give it to the local IBM branch office or IBM representative for postage-paid mailing.

¹ If you prefer to send comments by mail, use the RCF at the back of this book.

¹ If you prefer to send comments by FAX, use this number:

– United States and Canada: 416-448-6161

– Other countries: (+1)-416-448-6161

¹ If you prefer to send comments electronically, use the network ID listed below. Be sure to include
your entire network address if you wish a reply.

 – Internet: torrcf@vnet.ibm.com
 – IBMLink: toribm(torrcf)
 – IBM/PROFS: torolab4(torrcf)
 – IBMMAIL: ibmmail(caibmwt9)

Readers' Comments — We'd Like to Hear from You

IBM VisualAge C++ for OS/2
Open Class Library User's Guide

Version 3.0

Publication No. S25H-6962-00

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø

Complete Ø Ø Ø Ø Ø

Easy to find Ø Ø Ø Ø Ø

Easy to understand Ø Ø Ø Ø Ø

Well organized Ø Ø Ø Ø Ø

Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
S25H-6962-00 ÉÂÔÙ

Fold and Tape Please do not staple Fold and Tape

PLACE
POSTAGE
STAMP
HERE

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 EGLINTON AVENUE EAST
NORTH YORK ONTARIO CANADA M3C 1H7

Fold and Tape Please do not staple Fold and Tape

S25H-6962-00

ÉÂÔÙ

Part Number: 25H6962

Program Number: 30H1664

 30H1665

 30H1666

Printed in U.S.A.

25
H6
96
2

S25H-6962-00

