IBM VisualAge C++ for OS/2 S2H-6902-00

Open Class Library User's Guide

Version 3.0

IBM VisualAge C++ for OS/2 S2H-6902-00

Open Class Library User's Guide

Version 3.0

Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page Xix.

First Edition (May 1995)

This edition applies to Version 3.0 of IBM VisualAge C++ for OS/2 (Programs 30H1664, 30H1665, and 30H1666) and to all
subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for
the level of the product. Consult the latest edition of the applicable IBM system bibliography for current information on this
product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked
at the address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your comments
to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR

1150 Eglinton Avenue East

North York, Ontario, Canada. M3C 1H7

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments electronically to
IBM. Please see “Communicating Your Comments to IBM” for a description of the methods. This page immediately precedes
the Readers’ Comment Form at the back of this publication.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices Xix
Programming Interface Information Xix
Trademarks and Service Marks Xix
About This Book XXi
Who Should Use This Book XXi
How to Use This Book XXii

How to Find Class or Function Descriptions XXii
A Note about Examples xxiii
Icons Used in This Book xxiii
Related Documentation XXiV
Chapter 1. Introduction to IBM Open Class Library 1
History of IBM Open Class Library 1
Hierarchies of the Class Libraries 2
Including IBM Open Class Library 5
Part 1. Complex Mathematics 7
Chapter 2. Using the Complex Mathematics Classes 9
Review of Complex Numbers 9
Header Files and Constants for complex and c_exception 10
Constructing complex Objects 11
Complex Mathematics Input and Output 11
Mathematical Operators for complex 13

Equality and Inequality Operators Test for Absolute Equality 14

Assignment Operators Do Not Produce an Ivalue 15
Friend Functions for complex 15

Mathematical Functions for complex 15

Trigonometric Functions for complex 17

Magnitude Functions for complex 17

Conversion Functions for complex 17
Using the c_exception Class to Handle Complex Mathematics Errors 18

Defining a Customized complex_error Function 19
Errors Handled Outside of the Complex Mathematics Library 20
Linking to the Complex Library 20
An Example of Using the Complex Mathematics Library 20
Part 2. The I/O Stream Library 23

© Copyright IBM Corp. 1993, 1995 ii

Chapter 3. Introduction to the I/O Stream Classes 25

Linking to the I/O Stream Classes 25
The I/O Stream Classes and stdio.h 25
Overview of the I/O Stream Classes 25
Combining Input and Output of Different Types 26
Input and Output for User-Defined Classes 26
The I/O Stream Class Hierarchy 27
The I/O Stream Header Files 28
Predefined Streams L 29
Anonymous Streams 30
Stream Buffers 32
What Does a Stream Buffer Do? 32
Why Use a Stream Buffer? 32
How Is a Stream Buffer Implemented? 32
Format State Flags 34
Chapter 4. Getting Started with the I/O Stream Library 35
Receiving Input from Standard Input 35
Multiple Variables in an Input Statement 36
String Input 36
White Space in String Input 37
Incorrect Input and the Error State of the Input Stream 38
Using Input Streams Other Thancin 38
Displaying Output on Standard Output or Standard Error 38
Multiple Variables in an Output Statement 39
Using Output Streams Other Than cout, cerr, and clog 40
Flushing Output Streams with endl and flush 40
Placing endl or flush in an Output Stream 41
Parsing Multiple Inputs 42
Opening a File for Input and Reading from the File 43
Constructing an fstream or ifstream Object for Input 44
Reading Input froma File, . 45
Opening a File for Output and Writing to the File 46
Chapter 5. Advanced I/O Stream Topics 47
Associating a File with a Standard Input or Output Stream 47
Using filebuf Functions to Move Through aFile 48
Defining an Input Operator for a Class Type 50
Using the cin Stream in a Class Input Operator 50
Displaying Prompts in Input Operator Code 51
Defining an Output Operator for a Class Type 52
Class Output Operators and the Format State 52
Correcting Input Stream Errors 54

iv VisualAge C++ Open Class Library User's Guide

Changing the Formatting of Stream Output 56

ios Methods and Manipulators 56
Using setf, unsetf, and flags 57
Changing the Notation of Floating-Point Values 59
Changing the Base of Integral Values 60
Setting the Width and Justification of Output Fields 61
Defining Your Own Format State Flags 62
Using the strstream Classes for String Manipulation 64
Chapter 6. Manipulators, . 67
Introduction to Manipulators 67
Simple Manipulators and Parameterized Manipulators 67
Creating Simple Manipulators for Your Own Types 68
Creating Parameterized Manipulators for Your Own Types 69
Part 3. The Collection Class Library 73
Chapter 7. Overview of the Collection Class Library 75
Concrete Classes Provided by the Library 75
Benefits of the Collection Class Library 79
Types of Classes in the Collection Class Library 80
Flat Collections 80
Ordering of Collection Elements 82
Access by Key 82
Equality for Keys and Elements 82
Uniqueness of Entries 84
Restricted Access 86
Trees . . . o 87
Auxiliary Classes 87
The Overall Implementation Structure 88
Categories of Classes 89
Default Classes 90
Variant Classes 90
Abstract Classes 91
Reference Classes 91
Support Classes for Visual Builder for C++ 91
Typed and Typeless Implementation Classes 91
Class Template Naming Conventions 93
Linking to the Collection Classes 93
Chapter 8. Instantiating and Using the Collection Classes 95
Instantiation and Object Definition 95
Bounded and Unbounded Collections 96

Contents V

vi

Adding, Removing, and Replacing Elements 96

Adding Elements 96
Removing Elements 97
Replacing Elements 98
CUursors 98
Using Cursors for Locating and Accessing Elements 100
Iterating over Collections 101
Iteration Using Cursors 101
Iteration Using Iterators 102
Copying and Referencing Collections 105
Chapter 9. Element Functions and Key-Type Functions 107
Introduction to Element Functions and Key-Type Functions 107
Using Member Functions 108
Using Separate Functions 109
Using Element Operation Classes 110
Memory Management with Element Operation Classes 114
Functions for Derived Element Classes 114
Using Pointer Classes 115
Overview of Pointer Classes 116
Element Pointers 118
Managed Pointers 119
Automatic Pointers Lo 119
Constructing Pointers from the Pointer Classes 121
Chapter 10. Tailoring a Collection Implementation 125
Introduction 125
Replacing the Default Implementation 125
The Based-On Concept 126
Provided Implementation Variants 128
Features of Provided Implementation Variants 130
Sequences 131
Trees 133
Hash Table 137
Chapter 11. Polymorphic Use of Collections 139
Introduction to Polymorphism 139
Using Reference Classes 140
Chapter 12. Support for Visual Builder for C++ 141
Header Files for Visual Builder Support 142
Example for IVSequence<IString> 142

VisualAge C++ Open Class Library User's Guide

Chapter 13. Exception Handling 145

Introduction to Exception Handling 145
Exceptions Caused by Violated Preconditions 145
Exceptions Caused by System Failures and Restrictions 146

Precondition and Defined Behavior 146

Levels of Exception Checking 147

List of Exceptions 147

The Hierarchy of Exceptions 149

Chapter 14. Collection Class Library Tutorials 151

Preparing for the Lessons 152

Lesson 1: Defining a Simple Collection of Integers 153

Lesson 2: Adding, Listing, and Removing Elements 156

Lesson 3: Changing the Element Type 161

Lesson 4: Changing the Collection 167

Lesson 5: Changing the Implementation Variant 176

Errors When Compiling or Running the Lessons 179

Other Tutorials 179
Using the Default Classes 179
Advanced Use 180
Source Files for the Tutorials 180

Chapter 15. Solving Problems in the Collection Class Library 181

Cursor Usage 182

Element Functions and Key-Type Functions 182

Key Access Function - How to Return the Key (1) 184

Key Access Function - How to Return the Key (2) 185

Definition of Key-Type Functions 185

Exception Tracing 186

Declaration of Template Arguments and Element Functions (1) 186

Declaration of Template Arguments and Element Functions (2) 186

Declaration of Template Arguments and Element Functions (3) 187

Default Constructor 187

Considerations when Linking with Templates 188

Part 4. Data Type and Exception Class Library 189

Chapter 16. Data Types and Exceptions 191

Organization of Classes 191

IBase Class 194

IVBase Class 194

String and Buffer Classes 195

DBCS and National Language Support 195

Contents Vil

Chapter 17. String Classes 197

Introduction to the String Classes 197
String Buffers 198
Double-Byte Character Set Support 198
Indexing of Strings 198
What You Can Do with Strings, 199
Creating and Copying Strings 199
Doing String Input and Output 202
Concatenating Strings 202
Finding Words or Substrings within Strings 203
Replacing, Inserting, and Deleting Substrings 204
Determining String Lengths and Word Counts 205
Extending Strings 206
Converting between Strings and Numeric Data 206
Converting between Strings and Different Base Notations 207
Testing the Characteristics of Strings 208
Formatting Strings 210
Other IString Capabilities 211
IStringTest Class 211
Chapter 18. Exception and Trace Classes 213
Introduction to the Exception Classes 213
Characteristics of the Exception Classes 213
Derivation of the Exception Classes 214
Situations in Which the Exception Classes Are Used 214
Catching Exceptions Thrown by Class Library Functions 215
An Example of the new Operator Throwing an Exception 215
An Example of the Subscript Operator Throwing an Exception 216
Throwing Your Own Exceptions Using the Exception Classes 217
Macros Used with the Exception Classes 218
Why Use the Macros? 219
Using the ITrace Class 221
Using the Trace Macros to Control Trace Output 221
An Example of Using ITrace 222
Chapter 19. Date and Time Classes 225
IDate Class 225
Creating an IDate Object 225
Changing an IDate Object 226
Information Functions for IDate Objects 226
Testing and Comparing IDate Objects 226
ITime Class 227
Creating an ITime Object 227

VisualAge C++ Open Class Library User's Guide

Changing an ITime Object 227

Information Functions for ITime Objects 228
Comparing ITime Objects 228
Writing an ITime Object to an Output Stream 228
Simple Combined Date and Time Example 229
Part 5. The Database Access Class Library 231
Chapter 20. Using the Database Access Class Library 233
Using Visual Builder Programs 233
Compiling a Database Part 233
Using Database Parts in Visual Builder 234
Accessing the DB/2 Table 235
Accessing Data in the DB/2 Table 236
Using C++ Programs 238
Compiling a Database Part 238
Accessing the Data in the DB2/2 Table 240
Using SOM Programs 244
Compiling the IDL 245
Accessing the Data in the DB2/2 Table 246

Chapter 21. Constructing Applications Using Data Access Builder and the

Visual Builder 255
Sample Applications Description 255
The CarBrws Application 255
The CarEdit Application 255
Creating the Sample Database and the Table 256
Running the Samples 256
Running CarBrws 256
Running CarEdit 256
Generating the Database Parts 257
Compiling the Database Parts 258
Building the CarBrws Application 258
Building the CarEdit Application 258

Chapter 22. Constructing an Application Using Data Access Builder and

CHt e 259
Running the C++ Stock Sample from a Project 259
Creating the Database and the Table 259
Generating the Database Classes 259
Compiling the Database Classes 260
Running the Application 260

Contents IX

Chapter 23. Constructing an Application Using Data Access Builder and

SOM . 261
Running the SOM Stock Sample from a Project 261
Creating the Database and the Table 261
Generating the Database Classes 261
Compiling the Database Classes 262
Running the Application 262
Part 6. The User Interface Class Library 263
Chapter 24. Using the User Interface Class Library 265
The Contextual Help Feature 267
User Interface Class Library Conventions 268
File Names 268
Class Names and Member Names 269
Function Return Types and Function Arguments 269

A Note about Samples and Examples 270
Chapter 25. Summary of Changes 271
New and Enhanced Classes 271
New and Enhanced Member Functions 275
Enhanced Member Functions, 283
Additional Library Enhancements 287
New Styles 288
Extended Styles Support 288
Chapter 26. Introducing the User Interface Class Library 289
Creating Your Own Classes 290
Understanding the Design Recommendations 291
Reviewing C++ Recommendations 291
Understanding the User Interface Class Library Recommendations 292
Chapter 27. Creating User Interface Class Library Applications 295
Understanding a User Interface Class Library Application 297
Creating a C++ Source File 297
Starting Event Processing 298
Loading Resources into an Application 299
Recording and Querying Command Line Arguments 300
Compiling and Linking Your User Interface Class Library Application 300
Using the Conversion Tools 302
Linking an Application to the Open Class Library 302
Rebuilding the Open Class Library DLLs 303
How to Rebuild 303

X VisualAge C++ Open Class Library User's Guide

Reserved Pragma Priority Values 305

Chapter 28. Creating and Using Windows 307
Creating a Frame Window, 307
Changing the Title Bar 310
Adding aMenu Bar 311
Creating an Information Area 313
Adding Styles 314
Copying Styles 315
Combining Styles 315
Testing Styles 316
Negating Styles 316
Setting Window Styles 317
Using Cursor Classes 318
Specifying Message Box Information 318
Creating a Message Box 319
Chapter 29. Creating and Using Text Controls 321
Creating a Static Text Control 321
Understanding Entry Fields 322
Creating an Entry Field 323
Viewing and Editing Multiple-Line Edit (MLE) Fields 326
Creatingan MLE 326
Loading and Saving a File 329
Positioning the Cursor 329
Performing Clipboard Operations 330
Creating Buttons 331
Understanding Button Types 332
Creating a Push Button 332
Creating a Radio Button 333
Creating a Check Box 339
Creating a Three-State Check Box 341
Chapter 30. Creating and Using List Controls 343
Understanding List Box Controls 343
Using List Boxes 343
Creating a List Box 344
Adding or Deleting a List Box Item 344
Understanding Combination Box Controls 348
Creating a Combination Box, 349
Understanding Slider Controls 350
Creating a Slider Control 352
Understanding Spin Buttons 356

Contents XI

Creating a Spin Button 357

Chapter 31. Creating and Using Canvas Controls 361
Understanding Split Canvases 361
Creating a Split Canvas 362
Understanding Set Canvases 366
Creating a Set Canvas 367
Understanding Multiple-Cell Canvas 371
Creating a Multiple-Cell Canvas 373
Understanding View Ports 377
Creating a View Port 377
Chapter 32. Creating and Using File and Font Dialogs 381
Specifying File Dialog Information 381
Creating a File Dialog 382
Specifying Font Dialog Information 384
Creating a Font Dialog 385
Chapter 33. Creating Menus 387
Creating Menu Bars and Pull-Down Submenus 387
Understanding Pop-Up Menus 387
Creating Pop-Up Menus 388
System Menu 395
Chapter 34. Creating and Using Notebooks 397
Understanding the Default Notebook Styles 397
Creating a Notebook 400
Specifying Notebook Styles 401

Removing Notebook Pages 403

Changing Notebook Colors 403
Chapter 35. Creating and Using Containers 405
Understanding Containers 405
Creating Container Objects 406
Adding and Removing Container Objects 407

Sharing Objects Among Containers 409
Filtering Container Objects 411
Accessing Container Objects Using an Object Cursor 412
Changing Views in a Container 414
Defining the Details View Using Container Columns 415
Creating a Pop-Up Menu in a Container 417
Chapter 36. Supporting Direct Manipulation 419

VisualAge C++ Open Class Library User's Guide

Using Default Direct Manipulation Support
Using Defaults for Entry Fields and MLEs
Using Defaults for Containers
Enabling Default Support
Using Defaults for Tool Bars
Understanding Drag Items
Understanding Drag Item Provider
Using Rendering Mechanisms and Formats

Using Drag Item Types

Enabling Direct Manipulation for an Entry Field or MLE

Enabling Direct Manipulation for a Container

Enabling Drag and Drop

Enabling a Control as a Drop Target

Enabling a Control as a Drag Source

Enabling a Control as a Drag Source and a Drop Object

Enabling a Control to Support a Workplace Shell Shredder Object

Enabling a Control to Support a Workplace Shell Printer Object

Enabling a Control for Workplace Shell File Support

Setting and Querying the Drag Operation

Adding Images to Drag Items
Drag Image Resources for stack3AndFade

Setting the Target Emphasis

Debugging Direct Manipulation within an Application

Chapter 37. Defining Application Resources
Using Window Resources,
Understanding Dialog Templates
Accessing Bitmap and Icon Resources
Adding Keyboard Accelerators

Understanding Accelerator Tables
Creating an Accelerator-Table Resource
Converting Resource Files,
Supporting Double-Byte Character Set and Multiple Languages

Creating DBCS-Enabled Applications

Chapter 38. Adding Events and Event Handlers
Processing Events Using Handlers
Extracting Information from Events 0L
Writing an Event Handler
Extending Event Handling

Understanding More About Writing Handlers
Handling Mouse Events

Contents

xiii

Chapter 39. Understanding Fonts 487

Constructing Fonts 487
Creating an [Font Object with a Specific Name 487
Creating an IFont Object Using a Window’s Font 487

Chapter 40. Adding Clipboard Support 489

Creating the Clipboard 490
Moving Data Using the Clipboard 492
Clipboard Example 493

Chapter 41. Adding Tool Bars 503

Creating a Tool Bar 504

Customizing Your Tool Bar, .. 506
Tool Bar Example 506

Chapter 42. Using Graphics in Your Application 513

Adding Graphic Primitives to Your Applications 514
Setting Attributes for Drawing Primitives 515
Drawing Lines and Arcs 518
Displaying Areas, Polygons, and Regions 519
Using Character Strings 520
Working with Bitmaps 521

Grouping Graphic Objects 528

Defining a Transformation Matrix 528

Using the Drawing Functions 529

Adding Handlers to Graphical Objects 529

Two-dimensional Graphics Samples 529

Chapter 43. Creating and Using Multimedia Controls 541

Understanding Multimedia 542

Understanding Multimedia Device Classes 542
Understanding Base Device Classes 542
Understanding Abstract Device Classes 543
Using the User Interface Class Library Base Class for Multimedia 543

Creating and Using Audio Devices 544
Creating Audio Devices 545
Playing Audio Compact Discs 551
Using Audio Devices 558

Creating and Using Video Devices 574
Understanding Video Concepts 574
Creating Video Devices 574
Using Video Devices 575

Using Additional Multimedia User Interface Class Library Class Features . . . 580

Xiv VisualAge C++ Open Class Library User's Guide

Notifying Observer Objects 580

Controlling Position, Time, and Speed 580
Multimedia Class Hierarchy 582
Multimedia Samples 582
Subdirectory Structure L 582
Chapter 44. Providing Help Information 583
Creating Help Information 583
Adding Fly Over Help 588
Displaying Fly Over Help Information 589
Attaching Handlers to Provide Context-Sensitive Help 590
Dynamically Adding Help Text to Windows 591
Setting Time Intervals 591
Creating Timers 592
Using the Abstract and Template Classes 592
Chapter 45. Introducing the Sample Application 595
About the Hello World Application 595
Running the Hello World Files 595
Reviewing the Conventions Used in the Samples 595
Chapter 46. Creating a Main Window 597
Listing the Hello World Version 1 Files 597
The Primary Source Code File 598
Exploring Hello World Version 1 598
Creating the Main Window 599
Creating a Static Text Control 599
Setting the Size of the Main Window 600
Setting the Focus and Showing the Main Window 601
Starting Event Processing 601
Chapter 47. Adding a Resource File and Frame Extensions 603
Listing the Hello World Version 2 Files 604
The Primary Source Code File 604
The AHelloWindow Class Header File 604
The Symbolic Definitions File 604
The Resource File 604
The Icon File 605
Discussing the Advantages of the C++ File Structure 606
Exploring Hello World Version 2 606
Creating the Main Window 606
Starting Event Processing 608
Constructing the AHelloWindow Object 608

Contents XV

Creating an Information Area 611

Chapter 48. Adding a Command Handler and Menu Bars 613
Listing the Hello World Version 3 Files 614
The Primary Source Code File 614
The AHelloWindow Class Header File 614
The Symbolic Definitions File 614
The Resource File 614
The Icon File 615
Exploring Hello World Version 3 615
Constructing the AHelloWindow Object 615
Creating a Menu Bar 616
Setting an Initial Check Mark in the Pull-Down Menu 617
Destructing the AHelloWindow Object 618
Aligning a Text String 618
Setting ACommandHandler as the Command Handler 619
Chapter 49. Adding Dialogs and Push Buttons 621
Listing the Hello World Version 4 Files 622
The Primary Source Code File 622
The AHelloWindow Class Header File 622
The Symbolic Definitions File 622
The Text Dialog Source Code File 623
The ATextDialog Class Header File 623
The Resource File 623
The Icon File 623
Exploring Hello World Version 4 624
Adding a Cascaded Menu to the Menu Bar 624
Adding a Modal Dialog Window 626
Setting Push Buttons in a Set Canvas 632

Chapter 50. Adding Split Canvases, a List Box, Native System Functions,

andHelp 635
Listing the Hello World Version 5 Files 635
The Primary Source Code File 636
The AHelloWindow Class Header File 636
The Symbolic Definitions File 636
The Text Dialog Source Code File 636
The ATextDialog Class Header File 636
The Earth Window Source File 636
The AEarthWindow Class Header File 637
The Resource File 637
The Icon File 637

Xvi VisualAge C++ Open Class Library User's Guide

The Help Window Source File 637

Exploring Hello World Version 5 637
Constructing the Client Window with Split Canvases 637
Creating and Using a List Box 638
Using Native System Functions and a Paint Handler 641
Setting Up the Help Area 641

Chapter 51. Adding a Font Dialog, a Pop-up Menu, and a Notebook . . . 647

Listing the Hello World Version 6 Files 647

Exploring Hello World Version 6 648

Part 7. Appendices, Bibliography, Glossary, and Index 651

Appendix A. Class Hierarchy by Category 653

Application Control Classes 653

Base Window, Menu, Handler, and Event Classes 654

Base Window, Menu, Handler, and Event Classes 655

Standard Control Classes 656

Standard Control Classes 657

Advanced Control, Dialog, and Handler Classes 658

Advanced Control, Dialog, and Handler Classes 659

Advanced Control, Dialog, and Handler Classes 660

Direct Manipulation Classes 661

2D Graphic Classes 662

Dynamic Data Exchange Classes 663

Multimedia Classes 664

Appendix B. New Color Support 665

Appendix C. Task and Samples Cross-Reference Table 673

Appendix D. Using Extended Style Support 677
IBitFlag 678
IWindow 679
IMenultem 681
Classes that Implement or Override the convertToGUIStyle Function 681

Appendix E. Obsolete and Ignored Members Cross-Reference Tables . . . 683

Obsolete Classes and Members 683

Ignored Classes and Members 686

Glossary 701

Contents XVil

xviii

Bibliography 715

The IBM VisualAge C++ Library 715
The IBM VisualAge C++ BookManager Library 715
C and C++ Related Publications 715
IBM OS/2 2.1 Publications 715
IBM OS/2 3.0 Publications 715
Multimedia Books 716
Other Books You Might Need 716

BookManager READ/2 Publications 716

Non-IBM Publications 716
Index 717

VisualAge C++ Open Class Library User's Guide

Notices

Any reference to an IBM licensed program in this publication is not intended to state
or imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program, or service that does not infringe any of IBM’s intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594 USA.

This publication may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All such names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Programming Interface Information

This book is intended to help you develop applications that use the C++ class libraries
provided with VisualAge C++. This publication documents General-Use
Programming Interface and Associated Guidance Information provided by

VisualAge C++.

General-Use programming interfaces allow the customer to write programs that obtain
the services of VisualAge C++.

Trademarks and Service Marks

The following terms are trademarks of the International Business Machines
Corporation in the United States or other countries or both:

C Set ++ Common User Access

CUA IBM

IBMLink Open Class

Operating System/2 0S/2

0S/2 Warp Presentation Manager

SAA Systems Application Architecture
VisualAge WorkFrame

© Copyright IBM Corp. 1993, 1995 Xix

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

XX VisualAge C++ Open Class Library User's Guide

Who Should Use This Book

About This Book

This book gives you guidance on how to use IBM Open Class Library, the
comprehensive library of C++ classes that are provided with VisualAge C++. IBM
Open Class Library consists of the following groups of classes, described individually

as

‘class libraries” in this book:

The Complex Mathematics Library

The I/O Stream Library

The Collection Class Library

The Data Type and Exception Class Library
The Data Access Builder Class Library

The User Interface Class Library

The book is divided into parts, beginning with an overview of IBM Open Class
Library, and followed by a part for each of the class libraries listed above.

Who Should Use This Book

This book is intended for skilled C++ programmers who want to develop portable
C++ applications using IBM Open Class Library. Programmers using this book need
to understand the concept of classes. For the Collection Class Library, programmers
must also be familiar with using C++ templates. Use this book if you want to do any
of the following in your C++ programs:

Manipulate complex numbers (numbers with both a real and an imaginary part)
Perform input and output to console or disk devices using a typesafe,
object-oriented programming approach

Implement commonly used abstract data types, including sets, maps, sequences,
trees, stacks, queues, and sorted or keyed collections

Manipulate strings with greater ease and flexibility than the standard C++ method
of using character pointers and the string functions of the C string.h library
Use date and time information, and apply methods to date and time objects
Use Data Access Builder generated source code in conjunction with the Data
Access Builder class library to access a DB2/2 relational database.

Simplify the development of portable applications containing graphical user
interfaces (GUI).

Simulate Common User Access (CUA) workplace look and feel and take
advantage of Presentation Manager features.

© Copyright IBM Corp. 1993, 1995 xXi

Finding Class or Function Descriptions

How to Use This Book

This book is divided into the following chapters and parts:

e Chapter 1, “Introduction to IBM Open Class Library” on page 1 describes
the origins, structure, and uses of each of the class libraries, so that you can
decide which libraries or classes to learn about.

e Part 1, “Complex Mathematics” on page 7 reviews the uses of complex
numbers, and describes the complex and c_exception classes. The complex class
is used to manipulate complex numbers, and the c_exception class is used to
handle exceptions resulting from complex number computations.

e Part 2, “The I/O Stream Library” on page 23 describes the organization of
the I/O Stream Class Library, gives reasons for using its classes rather than the
I/O interface provided by stdio.h, and shows a number of detailed examples of
how to do input and output to a console or file, how to format output, how to
handle input errors, and so on.

e Part 3, “The Collection Class Library” on page 73 describes the Collection
Class Library, and helps you design applications that use its classes. It discusses
instantiating collections, using the Collection Class Library member functions on
elements or element keys, tailoring collections for performance, determining the
cause of compilation errors resulting from your use of the Collection Classes, and
other subjects. This part also contains a set of tutorial lessons that you can use
to learn Collection Class Library concepts and techniques.

e Part 4, “Data Type and Exception Class Library” on page 189 describes the
string, date, time, exception, and other classes that make up the Data Type and
Exception Class Library, and shows you how to write programs that use the wide
range of string-handling and other features provided by this library.

e Part 5, “The Database Access Class Library” on page 231 describes how to
use the code you generated with the Data Access Builder tool with the Data
Access Builder Class Library to access data in DB2/2 tables.

e Part 6, “The User Interface Class Library” on page 263 describes the User
Interface Class Library, which you can use to create applications that have the
Common User Access (CUA) look and feel.

How to Find Class or Function Descriptions

xxii

For detailed information on a particular class or member function, see the appropriate
part of the Open Class Library Reference. If you know what library a class or
member function is in, you can turn to the Open Class Library Reference section that
describes that library. At the beginning of each Open Class Library Reference section
you will find a list of all classes described in the section, with page references to
class descriptions. Each class description in turn includes an alphabetical listing of

VisualAge C++ Open Class Library User's Guide

Icons

member functions with page references to individual functions. If you do not know
what section to look in (or what class), you can look up the class or method name in
the index.

Classes are organized alphabetically within each class library in the Open Class
Library Reference, except where classes with similar functionality are placed together.
Functions and data members are listed alphabetically at the start of each class chapter,
and their descriptions are grouped according to their purpose. If a class has more
than one version of a function, all versions are described in one place. For the
Collection Classes, all functions of flat collections are described in “Flat Collection
Member Functions” in the Open Class Library Reference, because each of these
functions is used by many or all of the Collection Classes.

A Note about Examples

The examples in this book explain elements of the C++ class libraries. They are
coded in a simple style. They do not try to conserve storage, check for errors,
achieve fast run times, or demonstrate all possible uses of a library, class, or member
function.

Icons Used in This Book

The icons in this book let you quickly scan pages for key concepts, examples,
cross-references, and other information.

This icon identifies important concepts, programming, and performance tips for using
VisualAge C++.

This icon identifies examples that illustrate how to use a particular language feature
or other concept presented in the book.

This icon identifies cross-references to related information in this or other books. The
icon may appear in the left margin where a number of cross-references are collected,
or in miniature form within the text of a paragraph (like this: {3y) where only one or
two cross-references are shown.

This icon identifies informa that applies only to Motif** versions of the class library.

This icon identifies informatio that applies only to Presentation Manager versions of
the class library.

This icon identifies portability information that you should refer to when you are
writing programs that you want to run on multiple platforms.

About This Book XXxiii

Related Documentation

Related Documentation

See “Bibliography” on page 715 for a list of related books and recommended reading
materials.

XxXiv VisualAge C++ Open Class Library User's Guide

History of IBM Open Class Library

Introduction to IBM Open Class Library

This book describes IBM Open Class Library, a comprehensive set of C++ class
libraries you can use to develop applications:

e The Complex Mathematics Library provides you with the facilities to manipulate
complex numbers and perform standard mathematical operations on them.

e The I/O Stream Library gives you the facilities to deal with many varieties of
input and output. You can derive classes from I/O Stream classes to customize
the input and output facilities for your own particular needs.

e The Collection Class Library provides a set of commonly used abstract data types
that you can use to build collections. Collections can have properties such as
sorted or unsorted, ordered or unordered, unique-element or multiple-element.

e The Data Type and Exception Classes let you manipulate string, date, and time
information, and let you handle and trace exceptions.

e The Data Access Builder Class Library provides a set of classes and methods that
let you connect and disconnect from your DB2/2 database and to perform
transactions in the database.

e The User Interface Class Library lets you develop portable applications
containing graphical user interfaces (GUI) and simulate the Common User Access
(CUA) workplace look and feel. You can use these classes to take advantage of
Presentation Manager features.

History of IBM Open Class Library

The UNIX** System Laboratories C++ Language System Release 3.0 included
Complex, I/O Stream, and Task Libraries. (Earlier releases of this product are known
as the AT&T** C++ Language System.) In the Unix System Laboratories product,
the class library that corresponds to the I/O Stream Library is called the lostream
Library. Prior to Release 2.0 of the AT&T C++ Language System, a class library
called the Stream Library provided input and output facilities. The I/O Stream
Library includes obsolete functions, described in this book, to provide compatibility
with the Stream Library.

The Collection Class Library was developed by IBM, as a set of classes for the
original C Set ++ for OS/2* product. The classes of the Collection Class Library are
exploited by the User Interface Class Library.

© Copyright IBM Corp. 1993, 1995 1

Class Library Hierarchies

The Data Type and Exception Classes were developed by IBM, originally as part of
the User Interface Class Library on C Set ++ for OS/2.

The User Interface Class Library was developed by IBM, originally for the C Set ++
for OS/2 product. This class library has been significantly enhanced and expanded
since its release on C Set ++ for OS/2 Version 2.1.

Hierarchies of the Class Libraries

The following figures show the class hierarchy of the class libraries that make up
IBM Open Class. Some of these figures are repeated in the parts that describe
specific libraries. For a more detailed description of the Collection Class Library
hierarchy figure, see “Abstract Classes” on page 91.

No figure is shown for the Complex Mathematics Library, because the only two
classes involved, complex and c_exception, are not related by inheritance.

Because of the complexity of the User Interface Class Library, no hierarchy diagram
is shown for them. For information on the hierarchy of these classes, see the Open
Class Library Reference Volumes 2 and 3.

The following Data Type and Exception classes are not shown because they do not
derive from any class and do not have any subclasses:

* IExceptionLocation
® [MessageText

e IStringEnum

* IException::TraceFn
® [Base::Version

2 VisualAge C++ Open Class Library User's Guide

Class Library Hierarchies

|

istream

stdiostream

ostream

istream_
withassign

istrstream

ifstream

iostream I

ostream_
withassign

ostrstream ofstream

|

iostream_
withassign

strstream I

streambuf

=

fstream

|

strstreambuf’

stdiobuf

filebuf

Figure 1. I/O Stream Library Hierarchy

Chapter

1. Introduction to IBM Open Class Library 3

Class Library Hierarchies

Collection

Ordered
Collection

Priority
Queue

 Key Equality Sorted Sequential
Collection Collection Collection Collection
[[
|
]
Equality Key] Key Sorted qu::lex:‘y
Collection Collection Collection
[
Equality
Key Sorted
Collection
‘ Key Set ‘ Map ‘ Set ‘ Key Sored ‘ Sorted Map ‘ Sorted Set S‘ﬁ]“u‘e';‘se ‘ Heap ‘ Tree
‘ Key Bag ‘ Relation ‘ Bag ‘ Key ﬁ‘,j"c‘l Sorted Relation ‘ Sorted Bag Sequence I

‘ ‘

Figure 2. Collection Class Library Hierarchy. Abstract classes have a grey background. Concrete classes have a black
background. Restricted access classes have a white background. Dotted lines show a “based-on” relationship, not an actual

derivation.

4 VisualAge C++ Open Class Library User's Guide

Including IBM Open Class Library

IBase
IDate ITime INotification IString IHandle IPair
Event
. . IString .
IVBase IReference TRectangle TPointArray 10String Handle TPoint
IBuffer IErrorInfo IStringParser ISlringglglz;rser:: ITrace IStringTest IRange 1Size
. ICLib IGUI ISystem IXLib IStringTest
[DBCSBuffer ErrorInfo ErrorInfo ErrorInfo ErrorInfo MemberFn
IRefCounted IObserver IObserver:: IObserver INotifier
Cursor List
centi IStandard
IException Notifier
TAccess IAssertion IDevice IInvalid IInvalid IResource
Error Failure Error Parameter Request Exhausted
10utOf I0utOfSystem [OutOfWindow|
Memory Resource Resource

Figure 3. Data Type and Exception Class Hierarchy. Some class names have been split into two lines to fit in their boxes.

Including IBM Open Class Library

A class library is a collection of header and library files. The header files provide the
interface to the class libraries.

Chapter 1. Introduction to IBM Open Class Library S

Including IBM Open Class Library

To use the classes, functions, and operators available in IBM Open Class, you must
include the parts of the library's interface that you need in your C++ source program.
To include an interface, use the directive #include <filename>, where filename is
the name of the header file. Place this statement at the beginning of the program that
requires any of the classes, functions, or operators defined in the header file. Then,
in the body of your program, you can use a class, function, or operator defined in the
header file, as well as derive new classes and overload the functions and operators.

6 VisualAge C++ Open Class Library User's Guide

Part 1. Complex Mathematics

This part provides a review of complex arithmetic, and describes the complex and
c_exception classes.

Chapter 2. Using the Complex Mathematics Classes 9
Review of Complex Numbers 9
Header Files and Constants for complex and c_exception 10
Constructing complex Objects 11
Complex Mathematics Input and Output 11
Mathematical Operators for complex 13
Friend Functions for complex 15
Using the c_exception Class to Handle Complex Mathematics Errors 18
Errors Handled Outside of the Complex Mathematics Library 20
Linking to the Complex Library 20
An Example of Using the Complex Mathematics Library 20

© Copyright IBM Corp. 1993, 1995 7

8 VisualAge C++ Open Class Library User's Guide

Complex Numbers Review

Using the Complex Mathematics Classes

This chapter reviews the concept of complex numbers, and then describes complex,
the class you use to manipulate complex numbers, and c_exception, the class you
use to errors created by the functions and operations in the complex class. Linking
issues, and conflicts between compTlex functions and similarly named functions in the
Standard C Runtime Library, are also identified.

Note: The c_exception class is not related to the C++ exception handling
mechanism that uses the try, catch, and throw statements.

Review of Complex Numbers

A complex number is made up of two parts: a real part and an imaginary part. A
complex number can be represented by an ordered pair (a,b), where a is the value of
the real part of the number and b is the value of the imaginary part. If (¢,b) and
(c,d) are complex numbers, then the following statements are true:

* (a,b) + (c,d)
e (a,b) - (c,d)
* (a,b) * (c,d)
* (a,b) / (c,d)

(a+c,b+d)

(a-c,b-d)

(ac-bd,ad+bc)

((ac+bd) / (c?+d?), (bc-ad) / (c2+d?))
e The conjugate of a complex number (a,b) is (a,-b)

e The absolute value or magnitude of a complex number (a,b) is the positive
square root of the value a2 + b2

e The polar representation of (a,b) is (r,theta), where r is the distance from the
origin to the point (a,b) in the complex plane, and theta is the angle from the
real axis to the vector (@,b) in the complex plane. The angle theta can be
positive or negative. Figure 4 on page 10 illustrates the polar representation
(r,theta) of the complex number (a,b).

© Copyright IBM Corp. 1993, 1995 9

Header Files and Constants

(a, b) r

imaginary axis

angle theta

real axis

complex (a,b) = polar (r, theta)

Figure 4. Polar Representation of Complex Number (a,b)

Header Files and Constants for complex and c_exception

You must include the following statement in any file that uses the complex or

c_exception classes:

#include <complex.h>

This file must be included before any use of the Complex Mathematics Library.

Constants The following table lists the mathematical constants that the Complex
Defined in Mathematics Library defines (if they have not been previously defined):
complex.h

Table 1 (Page 1 of 2). Constants Defined in complex.h

Constant Name

Description

M_E The constant e

M_LOG2E The logarithm of e to the base of 2
M_LOGIOE The logarithm of e to the base of 10
M_LN2 The natural logarithm of 2
M_LNI10 The natural logarithm of 10

M_PI k1S

10 VisualAge C++ Open Class Library User's Guide

Table 1 (Page 2 of 2). Constants Defined in complex.h

complex Input and Output

Constant Name Description

M_PI 2 w/2

M_PI 4 n/4

M_1_PI /=

M_2_PI 2/m

M_2_SQRTPI 2 divided by the square root of 7
M_SQRT2 The square root of 2
M_SQRT1_2 The square root of 1/ 2

Constructing complex Objects

You can use the complex constructor to construct initialized or unitialized complex

objects or arrays of complex objects. The following example shows different ways of
creating and initializing complex objects:

complex compl;

complex comp2(3.14);

complex comp3(3.14,2.72);

complex comparrl[3]={
1.0,
complex(2.0,-2.0),
3.0
1s

complex comparr2[3]={
complex(1.0,1.0),
2.0,
complex(3.0,-3.0)
1s

complex comparr3[3]={
1.0,
complex(M_PI_4,M_SQRT2),
M_SQRT1_2
1s

/1
/1
/1

/1
/1

Initialized to
Initialized to
Initialized to

Initialized to

Initialized to

Initialized to

(o,
(3.
(3.

(1
(2
(3.

(1.
(2
@3

(1
(0.
(0.

0)
14, 0)
14, 2.72)

.0, 0)
.0, -2.0)

0, 0)

0, 1.0)

.0, 0)
.0, -3.0)

.0, 0)

785..., 1.414...)
707..., 0)

Complex Mathematics Input and Output

The complex class defines input and output operators for I/O Stream Library input

and output. {3y See Part 2, “The I/O Stream Library” on page 23 for more in-depth

information on using the I/O Stream Library. Complex numbers are written to the

output stream in the format (real,imag). Complex numbers are read from the input
(real,imag) or real. The following example shows

stream in one of two formats:

you how to use the complex input and output operators, and provides some sample

input and the resulting output

Chapter 2. Using the Complex Mathematics Classes

11

complex Input and Output

// An example of complex input and output

#include <complex.h> // required for use of Complex Mathematics Library
#include <iostream.h> // required for use of I/0 Stream input and output

void main() {
complex a[3]={1.0, 2.0, complex(3.0,-3.0)};
complex b[3];
complex c[3];
complex d;

// read input for all of arrays b and c

// (you must specify each element individually)

cout << "Enter three complex values separated by spaces:\n";
cin >> b[0] >> b[1] >> b[2];

cout << "Enter three more complex values:\n";
cin >> c[2] >> c[0] >> c[1];

// read input for scalar d

cout << "Enter one more complex value:\n";

cin > d;

// Note that you cannot use the above notation for arrays.

// For example, cin >> a; is incorrect because a is a complex array.

// display each array of three complex numbers, then the complex scalar
cout << "Here are some elements of arrays a, b, and c:\n"
<< af2] << "\n'
<< b[0] << b[1] << b[2] << '\n'
<< c[1] << "\n'
<< "Here is scalar d:
<< d << "\n'
// cout << a produces an address, not a lTist of array elements:
<< "Here is the address of array a:\n"
<<

a
<< endl; // endl flushes the output stream

This example produces the output shown below in regular type, given the input
shown in bold. Notice that you can insert white space within a complex number,
between the brackets, numbers, and comma. However, you cannot insert white space
within the real or imaginary part of the number. The address displayed may be
different, or in a different format, than the address shown, depending on the operating

system, hardware, and other factors.

Enter three complex values separated by spaces:
38 (12.2,3.14159) (1712,-33)

Enter three more complex values:

(17.1234 , 1234.17) (27, 12) (-33 ,0)
Enter one more complex value:

17

Here are some elements of arrays a, b, and c:
(3, -3)

(38, 0)(12.2, 3.14159)(1712, -33)

(-33, 0)

Here is scalar d: (17, 0)

Here is the address of array a:

0x2ff7f9b8

12 VisualAge C++ Open Class Library User's Guide

Mathematical Operators for complex

Mathematical Operators for complex

The complex class defines a set of mathematical operators with the same precedence

as the corresponding real operators. With these operators, you can code expressions

on complex numbers such as the expressions shown in the example below. In the

example, for each complex scalar x, the comments showing the results of operations

use xr to denote the scalar's real part and xi to denote the scalar's imaginary part.
// Using the complex mathematical operators

#include <complex.h>
#include <iostream.h>

complex a,b,c,d,e,f,g;

void main() {
cout << "Enter six complex numbers, separated by spaces:\n";
cin >> b >> ¢ > d>> e > f > g;

// assignment, multiplication, addition
a=b*c+d; // a=((br*cr)-(bi*ci)+dr , (brxci)+(bi*cr)+di)

// division
a=b/d; // a=((brxdr)+(bi*di) / ((br*br)+(bi*bi),
// (bixdr)-(br*di) / ((brxbr)+(bixbi))

// subtraction
a=b-f; // a=((br-fr), (bi-fi))

// equality, multiplication assignment
if (a==f) c*=e; // same as c=c*e;

// inequality, addition assignment
if (bl=f) d+=g; // same as d=d+g;

cout << "Here are the seven numbers after calculations:\n"

<< "a=" << 3 << "\n'
<< "p=" << ph << "\n'
<< "c=" << ¢ << "\n'
<< "d=" << d << '"\n'
<< "e=" << g << "\n'
<< "f=" << f << "\n'
<< "g=" << g << endl;

This example produces the output shown below in regular type, given the input
shown in bold:

Enter six complex numbers, separated by spaces:
(1.14,2.28) (2.24,4.48) (1.17,12.18)
(4.4444444,5.12341) (12,7) 5

Here are the seven numbers after calculations:
a=(-10.86, -4.72)

c=(2.24, 4.48)

d=(6.17, 12.18)

e=(4.44444, 5.12341)
f=(12, 7)

g=(5, 0)

Note that there are no increment or decrement operators for complex numbers.

Chapter 2. Using the Complex Mathematics Classes 13

Mathematical Operators for complex

Equality and Inequality Operators Test for Absolute Equality
The equality and inequality operators test for an exact equality between the real parts
of two numbers, and between their complex parts. Because both components are
double values, two numbers may be “equal” within a certain tolerance, but unequal as
far as these operators are concerned. If you want an equality or inequality operator
that can test for an absolute difference within a certain tolerance between the two
pairs of corresponding components, you should define your own equality functions
rather than use the equality and inequality operators of the complex class. The
functions is_equal and is_not_equal in the following example provide a reliable
comparison between two complex values:

// Testing complex values for equality within a certain tolerance

#include <complex.h>

#include <iostream.h> // for output
#include <iomanip.h> // for use of setw() manipulator

int is_equal(const complex &a, const complex &b,
const double to1=0.0001)
{

return (abs(real(a) - real(b)) < tol &&
abs(imag(a) - imag(b)) < tol);
}

int is_not_equal(const complex &a, const complex &b,
const double to1=0.0001)
{

}

return !is_equal(a, b, tol);

void main()
{
complex c[4] = { complex(l.0, 2.0),
complex (1.0, 2.0),
complex (3.0, 4.0),
complex(1.0000163,1.999903581) };
cout << "Comparison of array elements c[0] to c[3]\n"
<< "== means identical,\n!= means unequal,\n"
<< " 7 means equal within tolerance of 0.0001.\n\n"
<< setw(10) << "Element"
<< setw(6) << 0
<< setw(6) <<1
<< setw(6) << 2
<< setw(6) << 3
<< endl;
for (int i=0;i<4;i++) {
cout << setw(10) << i;
for (int j=0;j<4;j++) {
if (c[il==c[j]) cout << setw(6) << "==";
else if (is_equal(c[il,c[j])) cout << setw(6) << "™";
else if (is_not_equal(c[il,c[j])) cout << setw(6) << "I=";
else cout << setw(6) << "??27";
}

cout << endl;

}

14 VisualAge C++ Open Class Library User's Guide

Friend Functions for complex

This example produces the following output:

Comparison of array elements c[0] to c[3]
== means identical,

I= means unequal,

~ means equal within tolerance of 0.0001.

1

0

1

Element 0

LTI R T
[T (R TR TR N

1
2
3

Assignment Operators Do Not Produce an lvalue
The complex mathematical assignment operators (+=, -=, *=, /=) do not produce a
value that can be used in an expression. The following code, for example, produces a
compile-time error:

complex X, y, z; // valid declaration
x = (y += z); // invalid assignment causes a
// compile-time error

Friend Functions for complex

The complex class defines a set of mathematical, trigonometric, magnitude, and
conversion functions as friend functions of complex objects. Because these functions
are friend functions rather than member functions, you cannot use the dot or arrow
operators. For example:

complex a,b,*c;

a=exp(b); // correct - exp() is a friend function of complex
a=b.exp(); // error - exp() is not a member function of complex
a=c->exp(); // error - exp() is not a member function of complex

}

Mathematical Functions for complex
The complex class defines four mathematical functions as friend functions of
complex objects. The functions, described in detail in the Open Class Library
Reference, are:

¢ exp - Exponent

¢ log - Logarithm

* pow - Power

e sqrt - Square Root

Chapter 2. Using the Complex Mathematics Classes 15

Friend Functions for complex

The following example shows uses of these mathematical functions:

#include <complex

void main() {
complex a, b
int i
double f;
//

.h>
#include <iostream.h>

H

// Using the complex mathematical functions

// prompt the user for an argument for calls to
/1 exp(), Tog(), and sqrt()

/1l

cout << "Enter a complex value\n";

cin >> a3

cout << "The value of exp() for " << a << " is:
<< "\nThe natural logarithm of " << a << " is: " << log(a)
<< "\nThe square root of " << a << " is: " << sqrt(a) << "\n\n";

/1l

" << exp(a)

// prompt the user for arguments for calls to pow()

/1l

cout << "Enter 2 complex values (a and b), an integer (i),"
<< " and a floating point value (f)\n";
cin > a > b > i > f;

cout << "a is " << a << ",

< ", f
<< "The
<< "The
<< "The
<< "The

is " << f << "\n'
value of fxxa is:
value of ax*i jis:
value of ax*f jis:
value of axxb is:

This example produces the output

shown in bold:

Enter a complex value

(3.7,4.2)

The value of exp() for (
The natural Togarithm of
7

The square root of (

3.7, 4.2

<< pow(f, a) <<
<< pow(a, i) <<
<< pow(a, f) <<
<< pow(a, b) <<

shown below

bis " <<b << ", iis " << i

"\n'
"\n'
"\n'

endl;

in regular type, given the input

3.7, 4.2) is: (-19.8297, -35.2529)
(3.7, 4.2) is: (1.72229, 0.848605)
) is: (2.15608, 0.973992)

Enter 2 complex values (a and b), an integer (i), and a floating point value (f)
(2.6,9.39) (3.16,1.16) -7 33.16237
ais (2.6, 9.39), b is (3.16, 1.16), i is -7, f is 33.1624

The value of f**a is
The value of a**i is
The value of a**f is
The value of a**b is

: (972.681, 8935.53)
: (-1.13873e-07, -3.

77441e-08)

¢ (4.05451e+32, -4.60496e+32)

: (262.846, 132.782)

16 VisualAge C++ Open Class Library User's Guide

Friend Functions for complex

Trigonometric Functions for complex
The complex class defines four trigonometric functions as friend functions of
complex objects. The functions, described in detail in the Open Class Library
Reference, are:

* cos - Cosine

e cosh - Hyperbolic cosine
e sin - Sine

* sinh - Hyperbolic sine

The following example shows how you can use some of the complex trigonometric
functions:

// Complex Mathematics Library trigonometric functions

#include <complex.h>
#include <iostream.h>

void main() {
complex a = (M_PI, MPI_2); // a= (pi,pi/2)
// display the values of cos(), cosh(), sin(), and sinh()
// for (pi,pi/2)

cout << "The value of cos() for (pi,pi/2) is:
<< "The value of cosh() for (pi,pi/2) is:

(

(

<< cos(a) << '\n'
<< cosh(a) << '"\n'
<< sin(a) << '\n'
<< sinh(a) << endl;

<< "The value of sin() for (pi,pi/2) is:
<< "The value of sinh() for (pi,pi/2) is:

This program produces the following output:

The value of cos() for (pi,pi/2) is: (6.12323e-17, 0)
The value of cosh() for (pi,pi/2) is: (2.50918, 0)

The value of sin() for (pi,pi/2) is: (1, -0)

The value of sinh() for (pi,pi/2) is: (2.3013, 0)

Magnitude Functions for complex
The magnitude functions for complex are:

* abs - Absolute value
* norm - Square magnitude

See the Open Class Library Reference for further details on these functions.

Conversion Functions for complex
The conversion functions in the Complex Mathematics Library allow you to convert
between the polar and standard complex representations of a value and to extract the
real and imaginary parts of a complex value.

The complex class provides the following conversion functions as friend functions of
complex objects:

e arg - Angle in radians
* conj - Conjugation

Chapter 2. Using the Complex Mathematics Classes 17

Using the c_exception Class

¢ polar - Polar to complex
e real - Extract real part
e imag - Extract imaginary part

The following program shows how you can use the complex conversion functions:

// Using the complex conversion functions

#include <complex.h>
#include <iostream.h>

void main() {
complex a;
// For a value supplied by the user, display the real part,
// the imaginary part, and the polar representation.
cout << "Enter a complex value" << endl;
cin >> a;
cout << "The real part of this value is " << real(a) << endl;
cout << "The imaginary part of this value is " << imag(a) << endl;
cout << "The polar representation of this value is "
<< "(" << abs(a) << "," << arg(a) << ")" << endl;
}

This example produces the output shown below in regular type, given the input
shown in bold:

Enter a complex value

(175,162)

The real part of this value is 175

The imaginary part of this value is 162

The polar representation of this value is (238.472,0.746842)

Using the c_exception Class to Handle Complex Mathematics Errors

Note: The c_exception class is not related to the C++ exception handling
mechanism that uses the try, catch, and throw statements.

The c_exception class lets you handle errors that are created by the functions and
operations in the complex class. When the Complex Mathematics Library detects an
error in a complex operation or function, it invokes complex_error(). This friend
function of c_exception has a c_exception object as its argument. When the
function is invoked, the c_exception object contains data members that define the
function name, arguments, and return value of the function that caused the error, as
well as the type of error that has occurred. The data members are:

complex argl; // First argument of the error-causing function
complex arg2; // Second argument of the error-causing function

char* name; // Name of the error-causing function
complex retval; // Value returned by default definition of complex_error
int type; // The type of error that has occurred.

If you do not define your own complex_error function, complex_error sets the

complex return value and the errno error number as defined in {3y Table 2 in the
Open Class Library Reference.

18 VisualAge C++ Open Class Library User's Guide

Using the c_exception Class

Defining a Customized complex_error Function
You can either use the default version of complex_error() or define your own version
of the function. In the following example, complex_error() is redefined:

#include <iostream.h>
#include <complex.h>
#include <float.h>

il
‘eg. N\
d

//Redefinition of the complex_error function

int complex_error(c_exception &c)

{
cout
cout << Exception
cout << "type = " << c.
cout << "name

= << C.
cout << "argl =

<< C.
cout << "arg2 = " << ¢
cout << "retval = " <<
cout << "==============
return 0;

}

void main()
{
complex c1(DBL_MAX,0);
complex result;
result = exp(cl);
cout << "exp" << cl <<

" << endl;
type << endl;
name << endl;
argl << endl;
.arg2 << endl;

c.retval << endl;
==" << endl;

"= " << result << endl;

This example produces the following output:

Exception
type = 3
name = exp
argl = (1.79769e+308, 0)
arg2 = (0, 0)

retval = (infinity, -infinity)

exp(1.79769e+308, 0)= (infini

ty, -infinity)

If the redefinition of complex_error() in the above code is commented out, the

default definition of compl
output

ex_error() is used, and the program produces the following

exp(1.79769e+308, 0) = (infinity, -infinity)

Compiling a Program that Uses a Customized complex_error Function
If you define your own version of complex_error, when you compile your program
you must use the /NOE linker option.

Chapter 2. Using the Complex Mathematics Classes 19

Complex Mathematics Library Example

Errors Handled Outside of the Complex Mathematics Library

There are some cases where member functions of the Complex Mathematics Library
call functions in the math library. These calls can cause underflow and overflow
conditions that are handled by the matherr() function that is declared in the math.h
header file. For example, the overflow conditions that are caused by the following
calls are handled by matherr():

® exp(complex(DBL_MAX, DBL_MAX))
e pow(complex(DBL_MAX, DBL_MAX), INT_MAX)
e norm(complex(DBL_MAX, DBL_MAX))

DBL_MAX is the maximum valid double value, and is defined in float.h. INT_MAX is
the maximum int value, and is defined in 1imits.h.

If you do not want the default error-handling defined by matherr(), you should define
your own version of matherr().

Linking to the Complex Library

You must specify the following library names when compiling or linking programs
that use the Complex Library:

® COMPLEX.LIB - for single-threaded programs
e COMPLEXM.LIB - for multi-threaded programs.

No dynamically linkable version of this library is provided.

An Example of Using the Complex Mathematics Library

The following example shows how you can use the Complex Mathematics Library to
calculate the roots of a complex number. For every positive integer n, each complex
number z has exactly n distinct nth roots. Suppose that in the complex plane the
angle between the real axis and point z is 0, and the distance between the origin and
the point z is r. Then z has the polar form (r, 6), and the n roots of z have the
values:

o

o'W

o w2

o m3

O mn-1
where o is a complex number with the value:

20 VisualAge C++ Open Class Library User's Guide

Complex Mathematics Library Example

o = (cos(2x/n), sin(2x/n))

and o is a complex number with the value:

o = rim(cos(6/n), sin(6/n))

The following code includes two functions, get_omega() and get_sigma(), to calculate
the values of ® and 0. The user is prompted for the complex value z and the value
of n. After the values of w and o have been calculated, the n roots of z are
calculated and printed.

// Calculating the roots of a complex number

#include <iostream.h>
#include <complex.h>
#include <math.h>

// Function to calculate the value of omega for a given value of n

complex get_omega(double n) {
complex omega = complex(cos((2.0+*M_PI)/n), sin((2.0+«M_PI)/n));
return omega;

}
//

// function to calculate the value of sigma for a given value of
// n and a given complex value
/1
complex get_sigma(complex comp_val, double n) {
double rn, r, theta;
complex sigma;
r = abs(comp_val);
theta = arg(comp_val);
rn = pow(r,(1.0/n));
sigma = rn * complex(cos(theta/n),sin(theta/n));
return sigma;

}

void main() {
double n;
complex input, omega, sigma;
//
// prompt the user for a complex number
//
cout << "Please enter a complex number: ";
cin >> input;

//

// prompt the user for the value of n

//

cout << "What root would you Tike of this number? ";
cin >> n;

//

// calculate the value of omega

/1

omega = get_omega(n);
cout << "Here is omega " << omega << endl;
//
// calculate the value of sigma
/1
sigma = get_sigma(input,n);
cout << "Here is sigma " << sigma << '\n'
<< "Here are the " << n << " roots of " << input << endl;

Chapter 2. Using the Complex Mathematics Classes 21

Complex Mathematics Library Example

for (int i = 0; i <n ; i++) {
cout << sigmax(pow(omega,i)) << endl;
}

This example produces the output shown below in regular type, given the input
shown in bold:

Please enter a complex number: (-7, 24)
What root would you 1ike of this number? 2
Here is omega (-1, 1.22465e-16)

Here is sigma (3, 4)

Here are the 2 roots of (-7, 24)

(3, 4)

(-3, -4)

22 VisualAge C++ Open Class Library User's Guide

Part 2. The I/0O Stream Library

This part describes the I/O Stream Library, which you can use to perform a wide
range of input and output operations in your C++ programs.

Chapter 3. Introduction to the I/O Stream Classes 25
Linking to the I/O Stream Classes 25
The I/O Stream Classes and stdioh 25
Overview of the I/O Stream Classes 25
The I/O Stream Class Hierarchy 27
The I/O Stream Header Files 28
Predefined Streams 29
Anonymous Streams 30
Stream Buffers 32
Format State Flags 34
Chapter 4. Getting Started with the I/O Stream Library 35
Receiving Input from Standard Inputo 35
Displaying Output on Standard Output or Standard Error 38
Flushing Output Streams with endl and flush 40
Parsing Multiple Inputs 42
Opening a File for Input and Reading from the File 43
Opening a File for Output and Writing to the File 46
Chapter 5. Advanced I/O Stream Topics 47
Associating a File with a Standard Input or Output Stream 47
Using filebuf Functions to Move Through aFile 48
Defining an Input Operator for a Class Type 50
Defining an Output Operator for a Class Type 52
Correcting Input Stream Errors 54
Changing the Formatting of Stream Output 56
Defining Your Own Format State Flags 62
Using the strstream Classes for String Manipulation 64
Chapter 6. Manipulators 67
Introduction to Manipulators 67
Simple Manipulators and Parameterized Manipulators 67
Creating Simple Manipulators for Your Own Types 68
Creating Parameterized Manipulators for Your Own Types 69

© Copyright IBM Corp. 1993, 1995 23

24 VisualAge C++ Open Class Library User's Guide

I/O Stream Overview

Introduction to the 1/0 Stream Classes

This chapter describes the overall structure of the I/O Stream Classes. These classes
provide you with the facilities to deal with many varieties of input and output.

Linking to the I/O Stream Classes

The I/O Stream Libraries are linked in automatically unless you specify the /Gn
option.

The 1/0 Stream Classes and stdio.h

In both C++ and C, input and output are described in terms of sequences of
characters, or streams. The I/O Stream Classes provide the same facilities in C++
that stdio.h provides in C, but it also has the following advantages over stdio.h:

¢ The input or extraction (>>) operator and the output or insertion (<<) operator are
typesafe. They are also easy to use.

* You can define input and output for your own types or classes by overloading the
input and output operators. This gives you a uniform way of performing input
and output for different types of data.

e The input and output operators are more efficient than scanf() and printf(), the
analogous C functions defined in stdio.h. Both scanf() and printf() take
format strings as arguments, and these format strings have to be parsed at run
time. This parsing can be time-consuming. The bindings for the I/O Stream
output and input operators are performed at compile time, with no need for
format strings. This can improve the readability of input and output in your
programs, and potentially the performance as well.

Overview of the I/0 Stream Classes

The I/0 Stream Classes provide the standard input and output capabilities for C++. In
C++, input and output are described in terms of streams. The processing of these
streams is done at two levels. The first level treats the data as sequences of
characters; the second level treats it as a series of values of a particular type.

There are two primary base classes for the I/O Stream Classes:

1. The streambuf class and the classes derived from it (strstreambuf, stdiobuf,
and filebuf) implement the stream buffers. Stream buffers act as temporary
repositories for characters that are coming from the ultimate producers of input or

© Copyright IBM Corp. 1993, 1995 25

I/0 Stream Overview

are being sent to the ultimate consumers of output. {3y See “Stream Buffers” on
page 32 for more details.

2. The ios class maintains formatting and error-state information for these streams.
The classes derived from i0s implement the formatting of these streams. This
formatting involves converting sequences of characters from the stream buffer
into values of a particular type and converting values of a particular type into
their external display format.

The I/O Stream Classes predefine streams for standard input, standard output, and
standard error. {J3ySee “Predefined Streams” on page 29 for more details on the
predefined streams. If you want to open your own streams for input or output, you
must create an object of an appropriate I/O Streams class. The iostream constructor
takes as an argument a pointer to a streambuf object. This object is associated with
the device, file, or array of bytes in memory that is going to be the ultimate producer
of input or the ultimate consumer of output.

Combining Input and Output of Different Types
The I/O Stream Classes overload the input (>>) and output (<<) operators for the
built-in types. As a result, you can combine input or output of values with different
types in a single statement without having to state the type of the values. For
example, you can code an output statement such as:

<< aFloat << " " << aDouble << "\n" << aString << endl;
without needing to provide type or formatting information for each output.

Input and Output for User-Defined Classes
You can overload the input and output operators for the classes that you create
yourself. Once you have overloaded the input and output operators for a class, you
can perform input and output operations on objects of that class in the same way that
you would perform input and output on char, int, double, and the other built-in

types.

See “Defining an Input Operator for a Class Type” on page 50 and “Defining an
Output Operator for a Class Type” on page 52 for information on how to define
class-type input and output operators.

26 VisualAge C++ Open Class Library User's Guide

I/O Stream Class Hierarchy

The I/0 Stream Class Hierarchy

The I/0 Stream Classes have two base classes, streambuf and ios, that correspond
to the two levels of processing described in “Overview of the I/O Stream Classes” on
page 25:

e The streambuf class implements stream buffers. See “Stream Buffers” on
page 32 for information on how and why to use stream buffers. streambuf is
the base class for the following classes:

— strstreambuf
— stdiobuf
— filebuf

e The ios class maintains formatting and error state information for streams.
Streams are implemented as objects of the following classes that are derived from
ios:

— stdiostream

— istream
— ostream

The classes that are derived from io0s are themselves base classes:

e istreamis the input stream class. It implements stream buffer input, or input
operations. The following classes are derived from istream:

— distrstream

— ifstream

— istream_withassign
— iostream

* ostream is the output stream class. It implements stream buffer output, or output
operations. The following classes are derived from ostream:

— ostrsteam
— ofstream
— ostream withassign
— iostream

e jostream is the class that combines istream and ostream to implement input
and output to stream buffers. The following classes are derived from jostream:

— strstream
— jostream withassign
— fstream

Note: The I/O Stream Classes also define other classes, including fstreambase and
strstreambase. These classes are meant for the internal use of the I/O Stream
Classes. Do not use them directly.

Chapter 3. Introduction to the I/O Stream Classes 27

I/0 Stream Header Files

ios

|

|

istream

stdiostream

L4

ostream

|

istream_
withassign

istrstream I

ifstream I

|

iostream

|

ostream_
withassign

S

ostrstream I

jostream_
withassign

L

strstream

]

streambuf

fstream

i

strstreambuf

i
i

stdiobuf

filebuf

L

ofstream I

Figure 5. 1/0O Stream Class Hierarchy

Figure 5 shows the relationship between the two base classes, i0s and streambuf,
and their derived classes. In the figure, for any two classes connected by a line, the
class at the lower level is derived from the class at the higher level.

The 1/0 Stream Header Files

28 VisualAge C++ Open Class Library User's Guide

iostream.h contains declarations for the basic classes:

To use an I/O Stream class, you must include the appropriate header files for that
class. The following lists the I/O Stream header files and the classes that they cover:

Predefined Streams

— streambuf

- ios

— istream

— istream_withassign
— ostream

— ostream withassign
— ijostream

— iostream_withassign

e fstream.h contains declarations for the classes that deal with files:

— filebuf
— ifstream
— ofstream
— fstream

e stdiostr.h contains declarations for stdiobuf and stdiostream, the classes
that specialize streambuf and ios, respectively, to use the FILE structures
defined in the C header file stdio.h.

e strstrea.h contains declarations for the classes that deal with character strings.
The first “str” in each of these names stands for “string”:

— distrstream
— ostrsteam
— strstream
— strstreambuf

e ijomanip.h contains declarations for the parameterized manipulators.
Manipulators are values that you can insert into streams or extract from streams
to affect or query the behavior of the streams.

* stream.h is used for compatibility with earlier versions of the I/O Stream Classes.
It includes iostream.h, fstream.h, stdiostr.h, and iomanip.h, along with
some definitions needed for compatibility with the AT&T C++ Language System
Release 1.2. Only use this header file with existing code; do not use it with new
C++ code.

Note: If you use the obsolete function form() declared in stream.h, there is a
limit to the size of the format specifier. If you call form() with a format
specifier string longer than this limit, a runtime message (EDC5091) will be
generated and the program will terminate.

Predefined Streams

In addition to giving you the facilities to define your own streams for input and
output, the I/O Stream Classes also provide the following predefined streams:

Chapter 3. Introduction to the I/O Stream Classes 29

Anonymous Streams

e cin is the standard input stream.
e cout is the standard output stream.

e cerr is the standard error stream. Output to this stream is unit-buffered.
Characters sent to this stream are flushed after each output operation.

¢ clog is also an error stream, but unlike the output to cerr, the output to clog is
stream-buffered. Characters sent to this stream are flushed only when the stream
becomes full or when it is explicitly flushed.

The predefined streams are initialized before the constructors for any static objects are
called. You can use the predefined streams in the constructors for static objects.

The predefined streams cin, cerr, and clog are tied to cout. As a result, if you use
cin, cerr, or clog, cout is flushed. That is, the contents of cout are sent to their
ultimate consumer. {3y See “tie” in the Open Class Library Reference for more
details on tying streams together.

Anonymous Streams

An anonymous stream is a stream that is created as a temporary object. Because it is
a temporary object, an anonymous stream requires a const type modifier and is not a
modifiable lvalue. Unlike the AT&T C++ Language System Release 2.1,

VisualAge C++ does not allow a non-const reference argument to be matched with a
temporary object. User-defined input and output operators usually accept a
non-const reference (such as a reference to an istream or ostream object) as an
argument. Such an argument cannot be initialized by an anonymous stream, and thus
an attempt to use an anonymous stream as an argument to a user-defined input or
output operator will usually result in a compile-time error.

In the following example, three methods of writing a character to and reading it from
a file are shown:

1. This method uses anonymous streams with the built-in char type. This compiles
and runs successfully.

2. This method uses anonymous streams with a class that has a char as its only
data member, and that has input and output operators defined for it. This
produces a compilation error if you define anon when you compile. Otherwise,
this part of the program is not compiled.

3. This method uses named streams to write a class object to and read it from a file.
This compiles and runs successfully.

// Using anonymous streams

#include <fstream.h>

class MyClass { public: char a; };

30 VisualAge C++ Open Class Library User's Guide

Anonymous Streams

istream& operator >> (istream& aStream, MyClass mc)
{ return aStream >> mc.a; }

ostream& operator << (ostream& aStream, MyClass mc)
{ return aStream << mc.a; }

void main() {
char a='a';
MyClass b,c;
b.a = 'b';
c.a="c"

// . Use an anonymous stream with a built-in type; this works
fstream("filel.abc",io0s::out) << a << endl; // write to the file
fstream("filel.abc",i0s::i1n) >> a; // read from the file
cout << a << endl; // show what was in the file

#ifdef anon
// E . Use an anonymous stream with a class type
// This produces compilation errors if "anon" is defined:

fstream("filel.abc",ios::out) << b << endl; // write to the file

fstream("filel.abc",i0s::in) >> b; // read from the file
cout << b << endl; // show what was in the file
#endif
// . Use a named stream with a class type; this works
fstream File2("file2.abc",io0s::out); // define and open the file
File2 << ¢ << endl; // write to the file
File2.close(); // close the file
File2.open("file2.abc",io0s::in); // reopen for input
File2 >> c; // read from the file
cout << ¢ << endl; // show what was in the file
}

If you compile the program with anon defined, compilation fails with messages that
resemble the following:

Call does not match any argument 1ist for "ostream::operator<<".
Call does not match any argument 1ist for "istream::operator>>".

If you compile without anon defined, the letters 'a' and 'c' are written to standard
output.

Chapter 3. Introduction to the I/O Stream Classes 31

Stream Buffers

Stream Buffers

One of the most important concepts in the I/O Stream Classes is the stream buffer.
The streambuf class implements some of the member functions that define stream
buffers, but other specialized member functions are left to the classes that are derived
from streambuf: strstreambuf, stdiobuf, and filebuf.

Note: The AT&T and UNIX System Laboratories C++ Language System
documentation use the terms reserve area and buffer instead of stream buffer.

What Does a Stream Buffer Do?

A stream buffer acts as a buffer between the ultimate producer (the source of data) or
ultimate consumer (the target of data) and the member functions of the classes
derived from ios that format this raw data. The ultimate producer can be a file, a
device, or an array of bytes in memory. The ultimate consumer can also be a file, a
device, or an array of bytes in memory.

Why Use a Stream Buffer?
In most operating systems, a system call to read data from the ultimate producer or
write it to the ultimate consumer is an expensive operation. If your applications can
reduce the number of system calls they have to make, they will usually be more
efficient. By acting as a buffer between the ultimate producer or ultimate consumer
and the formatting functions, a stream buffer can reduce the number of system calls
that are made.

Consider, for example, an application that is reading data from the ultimate producer.
If there is no buffer, the application has to make a system call for each character that
is read. However, if the application uses a stream buffer, system calls will only be
made when the buffer is empty. Each system call will read enough characters from
the ultimate producer (if they are available) to fill the buffer again.

How Is a Stream Buffer Implemented?
A stream buffer is implemented as an array of bytes. For each stream buffer, pointers
are defined that point to elements in this array to define the get area, or the space that
is available to accept bytes from the ultimate producer, and the put area, or the space
that is available to store bytes that are on their way to the ultimate consumer.

A stream buffer does not necessarily have separate get and put areas. A stream
buffer that is used for input, such as one that is attached to an istream object, has a
get area. A stream buffer that is used for output, such as one that is attached to an
ostream object, has a put area. A stream buffer that is used for both input and
output, such as one that is attached to an iostream object, has both a get area and a
put area. In stream buffers implemented by the filebuf class that are specialized to
use files as an ultimate producer or ultimate consumer, the get and put areas overlap.

32 VisualAge C++ Open Class Library User's Guide

Stream Buffers

The following member functions of the streambuf class return pointers to boundaries
of areas in a stream buffer:

base() returns a pointer to the beginning of the stream buffer.

eback() returns a pointer to the beginning of the space available for putback.
Characters that are putback are returned to the get area of the stream buffer.
gptr() returns the get pointer, a pointer to the beginning of the get area. The
space between gptr() and egptr() has been filled by the ultimate producer.
These characters are waiting to be extracted from the stream buffer. The space
between eback() and gptr() is available for putback.

egptr() returns a pointer to the end of the get area.

pbase() returns a pointer to the beginning of the space available for the put area.
pptr() returns the put pointer, a pointer to the beginning of the put area. The
space between pbase() and pptr() is filled with bytes that are waiting to be sent
to the ultimate consumer. The space between pptr() and epptr() is available to
accept characters from the application program that are on their way to the
ultimate consumer.

epptr() returns a pointer to the end of the put area.

ebuf() returns a pointer to the end of the stream buffer.

Note: In the actual implementation of stream buffers, the pointers returned by these
functions point at char values. In the abstract concept of stream buffers, on the other
hand, these pointers point to the boundary between char values. To establish a
correspondence between the abstract concept and the actual implementation, you
should think of the pointers as pointing to the boundary just before the character that
they actually point at.

Figure 6 on page 34 shows how the pointers returned by these functions delineate
the stream buffer.

Chapter 3. Introduction to the I/O Stream Classes 33

Format State Flags

Stream Buffer

. N~ Ty

get area put area
T A — T A —
[l [[[[
A A A A A A A A
base() eback() gptr() egptr() pbase() pptr() epptr() ebuf()
Ultimate Producer Ultimate Consumer

Figure 6. The Structure of Stream Buffers

Format State Flags

The ios class defines an enumeration of format state flags that you can use to affect
the formatting of data in I/O streams. The following list shows the formatting
features and the format flags that control them:

Whitespace and padding: ios::skipws, ios::1eft, ios::right, ios::internal
Base conversion: ios::dec, jos::hex, ios::oct, ios::showbase

Integral formatting: ios::showpos

Floating-point formatting: ios::fixed, ios::scientific, ios::showpoint
Uppercase and lowercase: ios::uppercase

Buffer flushing: ios::stdio, ios::unitbuf

For examples of how to use these format state flags, see “Changing the Formatting of
Stream Output” on page 56. For descriptions of individual format state flags, see
“Format State Flags” in the Open Class Library Reference.

34 VisualAge C++ Open Class Library User's Guide

Receiving Input

Getting Started with the I/0 Stream Library

This chapter identifies common input and output tasks you may want to perform in
C++ programs, and shows how you can accomplish these tasks using the I/O Stream
Library. The tasks are:

e Receiving input from standard input

¢ Displaying output on standard output or standard error

* Flushing an output stream with the end1 and flush manipulators
e Parsing multiple inputs

* Opening a file for input and reading from the file

e Opening a file for output and writing to the file.

Q3 If a task you need help with is not listed here, you may find it in Chapter 5,
“Advanced 1/0O Stream Topics” on page 47.

Note: You can compile and run coding examples in this chapter that appear outside
of any function, by placing them inside a main() function and using #include <...>
to include necessary header files. Where the header file to include is not indicated,
include iostream.h.

Receiving Input from Standard Input

When you include the iostream.h header file in a program, four streams are
automatically defined for I/O use: cin, cout, cerr, and clog. The cin stream is the
standard input stream. Input to cin comes from the C standard input stream, stdin,
unless cin has been redirected by the user. The remaining streams can be used for
output, and {3y their use is described in “Displaying Output on Standard Output or
Standard Error” on page 38.

You can receive standard input using the predefined input stream and the input
operator (operator>>) for the type being read. In the following example, an integer is
read from the input stream into a variable:

int i;

cin >> i,

An input operator must exist for the type being read in. The I/O Stream Library
defines input operators for all C++ built-in types. For types you define yourself, you
need to provide your own input operators. {3y See “Defining an Input Operator for a
Class Type” on page 50 for details on how to do this. If you attempt to read input

© Copyright IBM Corp. 1993, 1995 35

Receiving Input

into a variable and no input operator is defined for the type of that variable, the
compiler displays an error message with text similar to the following:

Call does not match any argument list for "istream::operator>>".

Multiple Variables in an Input Statement
You can receive input from a stream into a succession of variables with a single input
statement, by repeating the input operator (>>) after each input, and then specifying
the next variable to read in. You can combine variables of multiple types in an input
statement, without having to specify the types of those variables in the input
statement: For example:

int

i,d,ks

float 1,m;

cin

>> i >> j >> k > 1 >> m;

The above syntax provides identical results to the following multiple input statements:

int

1,3,k;

float 1,m;

cin
cin
cin
cin
cin

>> i
>> J;
>> K
>> 13
>> m;

If you want to enhance the readability of your source code, break the single input
statement up with white space, instead of separating it into multiple input statements:

int

i,d,ks

float 1,m;

cin

String Input

>>
>>
>> k
>>
>> m;

If you want to read input into a character array (a string), you should declare the
character array using array notation, with a length large enough to hold the largest
string being entered. If you declare the character array using pointer notation, you
must allocate storage to the pointer, for example by using new or malloc. The
following example shows a correct and an incorrect way of placing input in a
character array:

char goodText[40];
char* badText;

cin
cin

>> goodText; // works as long as input is less than 40 chars
>> bhadText; // may cause a runtime error because no storage
// is allocated to *badText

36 VisualAge C++ Open Class Library User's Guide

Receiving Input

In the above example, the input to badText can be made to work by inserting the
following code before the input:

badText=new char[40];

This guideline applies to input to any pointer-to-type: storage must be allocated to the
pointer before input occurs.

White Space in String Input
The input operator uses white space to delineate items in the input stream, including
strings. If you want an entire line of input to be read in as a single string, you should
use the getline() function of istream:

// String input using operator << and getline()

#include <iostream.h>

void main() {
char text1[100], text2[100];

// prompt and get input for text arrays
cout << "Enter two words:\n";
cin >> textl >> text2;

// display the text arrays
cout << "<" << textl << ">\n"
<< "< << text2 << ||>\n||
<< "Enter two lines of text:\n";

// ignore the next character if it is a newline
if (cin.peek()=='\n") cin.ignore(1,'\n');

// get a line of text into array textl
cin.getline(textl, sizeof(textl), '\n');

// get a line of text into array text2
cin.getline(text2, sizeof(text2), '\n');

// display the text arrays
cout << "<" << textl << ">\n"

<< "<" << text2 << ">" << endl;
}

The first argument of getline() is a pointer to the character array in which to store
the input. The second argument specifies the maximum number of bytes of input to
read. The third argument is the delimiter, which the library uses to determine when
the string input is complete. If you do not specify a delimiter, the default is the
new-line character.

Here are two samples of the input and output from this program. Input is shown in
bold type, and output is shown in regular type:

Enter two words:

Wordl Word2

<Wordl>

<Word2>

Enter two lines of text:
First line of text

Chapter 4. Getting Started with the I/O Stream Library 37

Displaying Output

Second Tine of text
<First line of text>
<Second line of text>

For the above input, the program works as expected. For the input in the sample
below, the first input statement reads two white-space-delimited words from the first
line. The check for a new-line character does not find one at the next position
(because the next character in the input stream is the space following “happens”), so
the first getline() call reads in the remainder of the first line of input. The second
line of input is read by the second getline() call, and the program ends before any
further input can be read.

Enter two words:

What happens if I enter more words than it asks for?
<What>

<happens>

Enter two lines of text:

I suppose it will skip over the extra ones

< if I enter more words than it asks for?>

<I suppose it will skip over the extra ones>

Incorrect Input and the Error State of the Input Stream
When your program requests input through the input operator and the input provided
is incorrect or of the wrong type, the error state may be set in the input stream and
further input from that input stream may fail. One runtime symptom of such a failure
is that your program's prompts for further input display without pausing for the input.
L3 See “Correcting Input Stream Errors” on page 54 for details on how to detect and
correct input stream errors.

Using Input Streams Other Than cin

You can use the same techniques for input from other input streams as for input from
cin. The only difference is that, for other input streams, your program must define
the stream. £y For information on how to define an input stream attached to a file,
see “Opening a File for Input and Reading from the File” on page 43. Assuming you
have defined a stream attached to a file opened for input, and have called that stream
myin, you can read into that stream from the file by specifying that stream's name
instead of cin:

// assume the input file is associated with stream myin

int a,b;

myin >> a >> b;

Displaying Output on Standard Output or Standard Error

The I/O Stream library predefines three output streams as well as the cin input stream
described in { “Receiving Input from Standard Input” on page 35 . The standard
output stream is cout, and the remaining streams, cerr and clog, are standard error
streams. Output to cout goes to the C standard output stream, stdout, unless cout

38 VisualAge C++ Open Class Library User's Guide

Displaying Output

has been redirected. Output to cerr and clog goes to the C standard error stream,
stderr, unless cerr or clog has been redirected.

cerr and clog are really two streams that write to the same output device; the
difference between them is that cerr flushes its contents to the output device after
each output, while clog must be explicitly flushed.

You can print to one of the predefined output streams by using the predefined
stream's name and the output operator (operator<<), followed by the value to print:

#include <iostream.h>
void main(int argc, char* argv[]) {
if (argc==1) cout << "Good day!" << endl;
else cerr << "I don't know what to do with "
<< argv[1l] << endl;

If you name the compiled program myprog, the following inputs will produce the
following output to standard output or standard error:

Invocation QOutput

myprog Good day!
(to standard output)

myprog hello there I don't know what to do with hello
(to standard error)

An output operator must exist for any type being output. The I/O Stream Library
defines output operators for all C++ built-in types. For types you define yourself, you
need to provide your own output operators. {3 See “Defining an Output Operator
for a Class Type” on page 52 for details on how to do this. If you attempt to place
the contents of a variable into an output stream and no output operator is defined for
the type of that variable, the compiler displays an error message with text similar to
the following:

Call does not match any argument list for "ostream::operator<<".

Multiple Variables in an Output Statement

You can place a succession of variables into an output stream with a single output
statement, by repeating the output operator (<<) after each output, and then specifying
the next variable to output. You can combine variables of multiple types in an output
statement, without having to specify the types of those variables in the output
statement: For example:

int i,j,k;

float 1,m;

/...

cout << i << j << k << 1 << my

Chapter 4. Getting Started with the I/O Stream Library 39

Flushing Output Streams

The above syntax provides identical results to the following multiple output
statements:

int i,j,k;

float 1,m;

cout << i,

cout << j;

cout << k;

cout << 1;

cout << m;

If you want to enhance the readability of your source code, break the single output
statement up with white space, instead of separating it into multiple output statements:
int i,j,k;
float 1,m;
cout << i
<<
<<

— = .

<<
<< m;

Using Output Streams Other Than cout, cerr, and clog
You can use the same techniques for output to other output streams as for output to
the predefined output streams. The only difference is that, for other output streams,
your program must define the stream. {3y For information on how to define an
output stream attached to a file, see “Opening a File for Output and Writing to the
File” on page 46. Assuming you have defined a stream attached to a file opened for
output, and have called that stream myout, you can write to that file through its
stream, by specifying the stream's name instead of cout, cerr or clog:
// assume the output file is associated with stream myout
int a,b;
myout << a << b;

“Opening a File for Output and Writing to the File” on page 46 provides information
on all operations required to perform basic file output, including opening, writing to,
and closing output files.

Flushing Output Streams with endl and flush

Output streams must be flushed for their contents to be written to the output device.
Consider the following:

cout << "This first calculation may take a very long time\n";
firstVeryLongCalc();

cout << "This second calculation may take even Tonger\n";
secondVerylLongCalc();

cout << "A11 done!"

40 VisualAge C++ Open Class Library User's Guide

Flushing Output Streams

If the functions called in this excerpt do not themselves perform input or output to the
standard I/O streams, the first message will be written to the cout buffer before
firstVeryLongCalc() is called. The second message will be written before
secondVerylLongCalc() is called, but the buffer may not be flushed (written out to the
physical output device) until an implicit or explicit flush operation occurs. As a
result, the above program displays its messages about expected delays after the delays
have already occurred. If you want the output to be displayed before each function
call, you must flush the output stream.

A stream is flushed implicitly in the following situations:

e The predefined streams cout and clog are flushed when input is requested from
the predefined input stream (cin).

* The predefined stream cerr is flushed after each output operation.

* An output stream that is unit-buffered is flushed after each output operation. A
unit-buffered stream is a stream that has ios::unitbuf set. {3y See “Buffer
Flushing” in the Open Class Library Reference for further details.

* An output stream is flushed whenever the flush() member function is applied to
it. This includes cases where the flush or end1 manipulators are written to the
output stream. {3y See “Placing endl or flush in an Output Stream.”

e The program terminates.

The above example can be corrected so that output appears before each calculation
begins, as follows:

cout << "This first calculation may take a very long time\n";
cout.flush();

firstVeryLongCalc();

cout << "This second calculation may take even longer\n";
cout.flush();

secondVeryLongCalc();

cout << "A1T1 done!"

cout.flush();

Placing endl or flush in an Output Stream
The endl and flush manipulators give you a simple way to flush an output stream:
cout << "This first calculation may take a very long time" << endl;
firstVeryLongCalc();
cout << "This second calculation may take even longer" << endl;

secondVeryLongCalc();
cout << "AT1 done!" << flush;

Placing the flush manipulator in an output stream is equivalent to calling flush() for

that output stream. When you place endl in an output stream, it is equivalent to
placing a new-line character in the stream, and then calling flush().

Chapter 4. Getting Started with the I/O Stream Library 41

Parsing Multiple Inputs

Avoid using end1 where the new-line character is required but buffer flushing is not,
because endl has a much higher overhead than using the new-line character. For

example:
cout << "Employee ID: " << emp.id << endl
<< "Name: ! << emp.name << end]
<< "Job Category: " << emp.jobc << endl
<< "Hire date: " << emp.hire << endl;

is not as efficient as:

cout << "Employee ID: " << emp.id
<< "\nName: " << emp.name
<< "\nJob Category: " << emp.jobc
<< "\nHire date: " << emp.hire << endl;

You can include the new-line character as the start of the character string that
immediately follows the location where the end1 manipulator would have been
placed, or as a separate character enclosed in single quotation marks:

cout << "Salary: " << emp.pay << "\n'
<< "Next raise: " << emp.elig_raise << endl;

Flushing a stream generally involves a high overhead. If you are concerned about
performance, only flush a stream when necessary.

Parsing Multiple Inputs

The I/0 Stream Library input streams determine when to stop reading input into a
variable based on the type of variable being read and the contents of the stream. The
easiest way to understand how input is parsed is to write a simple program such as
the following, and run it several times with different inputs.

#include <iostream.h>
void main() {
int a,b,c;
cin >> a >> b >> c;
COUt << Ila: <II << a << II>\nII
<< "p: <" << b << ">\p"
<< "c: <" << ¢ << '>' << endl;

The following table shows sample inputs and outputs, and explains the outputs. In
the “Input” column, <\n> represents a new-line character in the input stream.

42 VisualAge C++ Open Class Library User's Guide

File Input

Input Output Remarks
123<\n> No output. a has been assigned the value 123, but
the program is still waiting on input for b and c.
1<\n> a: <I> White space (in this case, new-line characters) is
2<\n> b: <2> used to delimit different input variables.
3<\n> c: <3>
12 3<\n> a: <I> White space (in this case, spaces) is used to
tc) :g: delimit different input variables. There can be any
’ amount of white space between inputs.
123,456,789<\n> a: <123> Characters are read into int a up to the first
b: <-559038737> character that is not acceptable input for an integer
c: <-559038737> . .
(the comma). Characters are read into int b
where input for a left off (the comma). Because a
comma is not one of the allowable characters for
integer input, ios::failbit is set, and all further
input fails until ios::failbit is cleared. Qj See
“Correcting Input Stream Errors” on page 54 for
details on how to clear an input stream.
1.2 2.3<\n> a: <I> As with the previous example, characters are read
3.4<\n> b: <-559038737>

c: <-559038737>

into a until the first character is encountered that
is not acceptable input for an integer (in this case,
the period). The next input of an int causes
jos::failbit to be set, and so both it and the third
input result in errors.

L See “White Space in String Input” on page 37 for information on how the input
operator interprets white space in the input stream during string input.

Opening a File for Input and Reading from the File

Use the following steps to open a file for input and to read from the file. The steps
are described in detail in the subsections that follow the steps.

1. Construct an fstream or ifstream object to be associated with the file. The file
can be opened during construction of the object, or later.

2. Use the name of the fstream or ifstream object and the input operator or other
input functions of the istream class, to read the input.

3. Close the file by calling the close() member function or by implicitly or
explicitly destroying the fstream or ifstream object.

Chapter 4. Getting Started with the I/O Stream Library 43

File Input

Constructing an fstream or ifstream Object for Input
You can open a file for input in one of two ways:

e Construct an fstream or ifstream object for the file, and call open() on the
object:

#include <fstream.h>

void main() {
fstream infilel;
ifstream infile2;
infilel.open("myfile.dat",ios::in);
infile2.open("myfile.dat");
/...

}

e Specify the file during construction, so that open() is called automatically:

#include <fstream.h>

void main() {
fstream infilel("myfile.dat",ios::in);
ifstream infile2("myfile.dat");
/] ...

}

The only difference between opening the file as an fstream or ifstream object is that,
if you open the file as an fstream object, you must specify the input mode (ios::in).
If you open it as an ifstream object, it is implicitly opened in input mode. The
advantage of using ifstream rather than fstream to open an input file is that, if you
attempt to apply the output operator to an ifstream object, this error will be caught
during compilation. If you attempt to apply the output operator to an fstream object,
the error is not caught during compilation, and may pass unnoticed at runtime.

The advantage of using fstream rather than ifstream is that you can use the same
object for both input and output. For example:

// Using fstream to read from and write to a file

#include <fstream.h>
void main() {
char q[40];
fstream myfile("test.x",ios::in); // open the file for input

myfile >> q; // input from myfile into q
myfile.close(); // close the file
myfile.open("test.x",ios::app); // reopen the file for output
myfile << q << endl; // output from q to myfile
myfile.close(); // close the file

44 VisualAge C++ Open Class Library User's Guide

File Input

This example opens the same file first for input and later for output. It reads in a
character string during input, and writes that character string to the end of the same
file during output. If the contents of the file text.x before the program is run are:

barbers often shave

the file contains the following after the program is run:

barbers often shave
barbers

Note that you can use the same fstream object to access different files in sequence.
In the above example, myfile.open("test.C",i0s::app) could have read
myfile.open("test.out",ios::app) and the program would still have compiled and
run, although the end result would be that the first string of test.C would be
appended to test.out instead of to test.C itself.

Reading Input from a File
The statement myfile >> a in the above example reads input into a from the myfile
stream. Input from an fstream or ifstream object resembles input from the standard
input stream cin, in all respects except that the input is a file rather than standard
input, and you use the fstream object name instead of cin. The two following
programs produce the same output when provided with a given set of input. In the
case of stdin.C, the input comes from the standard input device. In the case of
filein.C, the input comes from the file file.in:

stdin.C filein.C
#include <iostream.h> #include <fstream.h>
void main() { void main() {
int ia,ib,ic; int ia,ib,ic;
char ca[40],cb[40],cc[40]; char ca[40],cb[40],cc[40];
// cin is predefined fstream myfile("file.in",io0s::in);
cin >> ia >> ib >> ic myfile >> ia >> ib >> ic
>> ca; >> ca;
cin.getline(cb,sizeof(ch),'\n'); myfile.getline(cb,sizeof(ch),'\n');
cin >> cc; myfile >> cc;
// no need to close cin myfile.close();
cout << ia << ca cout << ia << ca
<< ib << cb << ib << cb
<< jc << cc << endl; << jc << cc << endl;

In both examples, the program reads the following, in sequence:

1. Three integers

2. A whitespace-delimited string

3. A string that is delimited either by a new-line character or by a maximum length
of 39 characters.

4. A whitespace-delimited string.

Chapter 4. Getting Started with the I/O Stream Library 45

File Output

Note that, when you define an input operator for a class type, this input operator is
available both to the predefined input stream cin and to any input streams you define,
such as myfile in the above example.

For more information on defining your own input operators, see “Defining an Input
Operator for a Class Type” on page 50.

For more details on reading input from a stream, see “Receiving Input from Standard
Input” on page 35. All techniques for reading input from the standard input stream
can be used to read input from a file, providing your code is changed so that the cin
object is replaced with the name of the fstream object associated with the input file.

Opening a File for Output and Writing to the File

The description of using a file as the input stream in “Opening a File for Input and
Reading from the File” on page 43 provides the basis for explanations in this section.
You may want to read that section first if you have not already done so.

To open a file for output, use the following steps:

1. Declare an fstream or ofstream object to associate with the file, and open it
either when the object is constructed, or later:

#include <fstream.h>
void main() {
fstream filel("fiup 2out",ios::app);
ofstream file2("file2.out");
ofstream file3;
file3.open("file3.out");
}
You must specify one or more open modes when you open the file, unless you
declare the object as an ofstream object. {3y Open modes are described in
“open” in the Open Class Library Reference. The advantage of accessing an
output file as an ofstream object rather than as an fstream object is that the

compiler can flag input operations to that object as errors.

2. Use the output operator or ostream member functions to perform output to the
file.

3. Close the file using the close() member function of fstream.

When you define an output operator for a class type, this output operator is available
both to the predefined output streams and to any output streams you define. £y For
more information on defining your own output operators, see “Defining an Output
Operator for a Class Type” on page 52.

46 VisualAge C++ Open Class Library User's Guide

Associating a File with Stdin or Stdout

Advanced I/0O Stream Topics

This chapter builds on the information in Chapter 4, “Getting Started with the I/O
Stream Library” on page 35, and shows you how to use the I/O Stream Classes to
accomplish these more advanced tasks:

e Associating a file with a standard input or output stream

e Using filebuf functions to move through a file

¢ Defining an input operator for a class type

e Defining an output operator for a class type

e Correcting input stream errors

¢ Changing the formatting of stream output

* Defining your own format state flags

e Using the strstream classes to accept input from and to send output to character
arrays (strings).

L If a task you need help with is not listed here, you may find it in Chapter 4,
“Getting Started with the I/O Stream Library” on page 35.

Associating a File with a Standard Input or Output Stream

The iostream withassign class lets you associate a stream object with one of the
predefined streams cin, cout, cerr, and clog. You can do this, for example, to
write programs that accept input from a file if a file is specified, or from standard
input if no file is specified.

The following program is a simple filter that reads input from a file into a character
array, and writes the array out to a second file. If only one file is specified on the
command line, the output is sent to standard output. If no file is specified, the input
is taken from standard input. The program uses the iostream withassign assignment
operator to assign an ifstream or ofstream object to one of the predefined streams.

// Generic I/0 Stream filter, invoked as follows:
// filter [infile [outfile]]

#include <iostream.h>

#include <fstream.h>

void main(int argc, charx argv[])
{
ifstream* infile;
ofstream* outfile;

char inputline[4096]; // used to read input lines
int sinl=sizeof(inputline);// used by getline() function
if (argc>1) { // if at least an input file was specified

infile = new ifstream(argv[1]); // try opening it
if (infile->good()) // if it opens successfully
cin = xinfile; // assign input file to cin

© Copyright IBM Corp. 1993, 1995 47

Moving Through Files with filebuf

if (argc>2) { // if an output file was also specified
outfile = new ofstream(argv[2]); // try opening it
if (outfile->good()) // if it opens successfully
cout = xoutfile; // assign output file to cout
}

}

cin.getline(inputline,

sizeof (inputline),'\n'); // get first line

while (cin.good()) { // while input is good

//

// Insert any line-by-line filtering here

//
cout << inputline << endl; // write line
cin.getline(inputline,sinl,'\n'); // get next line (sinl specifies
} // max chars to read)

if (argc>1) { // if input file was used
infile->close(); // then close it
if (argc>2) { // if output file was used

outfile->close(); // then close it

}
}
}

You can use this example as a starting point for writing a text filter that scans a file
line by line, makes changes to certain lines, and writes all lines to an output file.

Using filebuf Functions to Move Through a File

In a program that receives input from an fstream object (a file), you can associate
the fstream object with a filebuf object, and then use the filebuf object to move
the get or put pointer forward or backward in the file. You can also use filebuf
member functions to determine the length of the file.

To associate an fstream object with a filebuf object, you must first construct the
fstream object and open it. You then use the rdbuf() member function of the
fstream class to obtain the address of the file's filebuf object. Using this filebuf
object, you can move through the file or determine the file's length, with the
seekpos() and seekoff() functions. For example:

// Using the filebuf class to move through a file

#include <fstream.h> // for use of fstream classes

#include <iostream.h> // not really needed since fstream includes it
#include <stdlib.h> // for use of exit() function

void main() {
// declare a streampos object to keep track of the position in filebuf
streampos Position;

// declare a streamoff object to set stream offsets
// (for use by seekoff and seekpos)
streamoff Offset=0;

// declare an fstream object and open its file for input
fstream InputFile("algong.uin",ios::in);

48 VisualAge C++ Open Class Library User's Guide

Moving Through Files with filebuf

// check that input was successful, exit if not

if (!InputFile) {
cerr << "Could not open algong.uin! Exiting...\n";
exit(-1);
}

// associate the fstream object with a filebuf pointer
filebuf *InputBuffer=InputFile.rdbuf();

// read the first Tine, and display it

char LineOfFile[128];
InputFile.getline(LineOfFile,sizeof(Line0OfFile),'\n');
cout << LineOfFile << endl;

// Now skip forward 100 bytes and display another line
0ffset=100;
Position=InputBuffer->seekoff(0ffset,ios::cur,jos::in);
InputFile.getline(LineOfFile,sizeof(Line0OfFile),'\n');
cout << "At position " << Position << ":\n"

<< LineOfFile << endl;

// Now skip back 50 bytes and display another Tine
0ffset=-50;
Position=InputBuffer->seekoff(0ffset,ios::cur,jos::in);
// ios::cur refers to current position in buffer
InputFile.getline(LineOfFile,sizeof(LineOfFile),'\n');
cout << "At position " << Position << ":\n"

<< LineOfFile << endl;

// Now go to position 137 and display to the end of its Tine
Position=137;
InputBuffer->seekpos(Position,ios::in);
InputFile.getline(LineOfFile,sizeof(Line0OfFile),'\n');
cout << "At position " << Position << ":\n"

<< LineOfFile << endl;

// Now close the file and end the program
InputFile.close();
1

If the file algong.uin contains the following text:

The trip begins on Round Lake.
We proceed through a marshy portage,
and soon find ourselves in a river whose water is the color of ink.

A heron flies off in the distance.
Frogs croak cautiously alongside the canoes.
We can feel the sun's heat glaring at us from grassy shores.

the output of the example program is:

The trip begins on Round Lake.

At position 131:

ink.

At position 86:

elves in a river whose water is the color of ink.
At position 137:

A heron flies off in the distance.

Chapter 5. Advanced I/O Stream Topics 49

Defining Your Own Input Operator

Defining an Input Operator for a Class Type

myclass.h

An input operator is predefined for all built-in C++ types. If you create a class type
and want to read input from a file or the standard input device into objects of that

class type, you need to define an input operator for that class's type. You define an
istream input operator that has the class type as its second argument. For example:

#include <iostream.h>

class PhoneNumber {
public:

int AreaCode;

int Exchange;

int Local;
// Copy Constructor:

PhoneNumber(int ac, int ex, int 1c) :

AreaCode(ac), Exchange(ex), Local(lc) {}

//... Other member functions

}s

istream& operator>> (istream& aStream, PhoneNumber& aPhoneNum) {
int tmpAreaCode, tmpExchange, tmpLocal;
aStream >> tmpAreaCode >> tmpExchange >> tmpLocal;
aPhoneNum=PhoneNumber (tmpAreaCode, tmpExchange, tmpLocal);
return aStream;

}

The input operator must have the following characteristics:

e Its return type must be a reference to an istream.

e Its first argument must be a reference to an istream. This argument must be
used as the function's return value.

e Its second argument must be a reference to the class type for which the operator
is being defined.

You can define the code performing the actual input any way you like. In the above
example, input is accomplished for the class type by requesting input from the
istream object for all data members of the class type, and then invoking the copy
constructor for the class type. This is a typical format for a user-defined input
operator.

Using the cin Stream in a Class Input Operator

Be careful not to use the cin stream as the input stream when you define an input
operator for a class type, unless this is what you really want to do. In the example
above, if the line

aStream >> tmpAreaCode >> tmpExchange >> tmplocal;

is rewritten as:

cin >> tmpAreaCode >> tmpExchange >> tmplocal;

50 VisualAge C++ Open Class Library User's Guide

Defining Your Own Input Operator

the input operator functions identically, when you use statements in your main
program such as cin >> myNumber. However, if the stream requesting input is not the
predefined stream cin, then redefining an input operator to read from cin will
produce unexpected results. Consider how the following code's behavior changes
depending on whether cin or aStream is used as the stream in the input statement
within the input operator defined above:

#include <iostream.h>
#include <fstream.h>
#include "myclass.h"

void main() {
PhoneNumber addressBook[40];
fstream infile("address.txt",ios::in);
for (int i=0;i<40;i++)
infile >> addressBook[i]; // does this read from "address.txt"
// or from standard input?
/...
1

In the original example, the definition of the input operator causes the program to
read input from the provided istream object (in this case, the fstream object infile).
The input is therefore read from a file. In the example that uses cin explicitly within
the input operator, the input that is supposedly coming from infile according to the
input statement infile >> addressBook[i] actually comes from the predefined stream
cin.

Dlsplaymg Prompts in Input Operator Code

You can display prompts for individual data members of a class type within the input
operator definition for that type. For example, you could redefine the PhoneNumber
input operator shown above as:

istream& operator>> (istream& aStream, PhoneNumber& aPhoneNum) {
int tmpAreaCode, tmpExchange, tmplLocal;
cout << "Enter area code: ";
aStream >> tmpAreaCode;
cout << "Enter exchange: ";
aStream >> tmpExchange;
cout << "Enter local: "y
aStream >> tmplLocal;
aPhoneNum=PhoneNumber (tmpAreaCode, tmpExchange, tmpLocal);
return aStream;

}

You may be tempted to do this when you anticipate that the source of all input for
objects of a class will be the standard input stream cin. Avoid this practice wherever
possible, because a program using your class may later attempt to read input into an
object of your class from a different stream (for example, an fstream object attached
to a file). In such cases, the prompts are still written to cout even though input from
cin is not consumed by the input operation. Such an interface does not prevent
programs from using your class, but the unnecessary prompts may puzzle end users.

Chapter 5. Advanced 1/0 Stream Topics 51

Defining Your Own Output Operator

Defining an Output Operator for a Class Type

An output operator is predefined for all built-in C++ types. If you create a class type

and want to write output of that class type to a file or to any of the predefined output

streams, you need to define an output operator for that class's type. You define an

ostream output operator that has the class type as its second argument. For example:
// myclass.h

#include <iostream.h>

class PhoneNumber {
public:

int AreaCode;

int Exchange;

int Local;
// Copy Constructor:

PhoneNumber(int ac, int ex, int 1c) :

AreaCode(ac), Exchange(ex), Local(lc) {}

//... Other member functions

}s

ostream& operator<< (ostream& aStream, PhoneNumber aPhoneNum) {
aStream << "(" << aPhoneNum.AreaCode << ") "
<< aPhoneNum.Exchange << "-"
<< aPhoneNum.Local << '\n';
return aStream;

}

The output operator must have the following characteristics:

e Its return type should be a reference to an ostream.

e Its first argument must be a reference to an ostream. This argument must be
used as the function's return value.

e Its second argument must be of the class type for which the operator is being
defined.

You can define the code performing the actual output any way you like. In the above
example, output is accomplished for the class type by placing in the output stream all
data members of the class, along with parentheses around the area code, a space
before the exchange, and a hyphen between the exchange and the local.

Class Output Operators and the Format State
You should consider checking the state of applicable format flags for any stream you
perform output to in a class output operator. At the very least, if you change the
format state in your class output operator, before your operator returns it should reset
the format state to what it was on entry to the operator. For example, if you design
an output operator to always write floating-point numbers at a given precision, you
should save the precision in a temporary on entry to your operator, then change the
precision and do your output, and reset the precision before returning.

The ios::x_width setting determines the field width for output. Because
jos::x_width is reset after each insertion into an output stream (including insertions

52 VisualAge C++ Open Class Library User's Guide

Defining Your Own Output Operator

within class output operators you define), you may want to check the setting of
jos::x_width and duplicate it for each output your operator performs. Consider the
following example, in which class Coord_3D defines a three-dimensional co-ordinate
system. If the function requesting output sets the stream's width to a given value
before the output operator for Coord_3D is invoked, the output operator applies that
width to each of the three co-ordinates being output. (Note that it lets the width reset
after the third output, so that, from the client code's perspective, ios::x_width is reset
by the output operation, as it would be for built-in types such as float.)

// Setting the output width in a class output operator

#include <iostream.h>
#include <iomanip.h>

class Coord_3D {
public:
double X,Y,Z;
Coord_3D(double x, double y, double z) : X(x), Y(y), Z(z) {}
1s

ostream& operator << (ostream& aStream, Coord_3D coord) {
int startingWidth=aStream.width();
aStream << coord.X
#ifndef NOSETW
<< setw(startingWidth) // set width again
#endif
<< coord.Y
#ifndef NOSETW
<< setw(startingWidth) // set width again
#endif
<< coord.Z;
return aStream;

}

void main() {
Coord_3D MyCoord(38.162168,1773.59,17293.12);
cout << setw(17) << MyCoord << '\n'
<< setw(11) << MyCoord << endl;
1

If you add #define NOSETW to prevent the two lines containing setw() in the output
operator definition from being compiled, the program produces the output shown
below; notice that only the first data member of class Coord_3D is formatted to the
desired width.

38.16221773.5917293.1
38.16221773.5917293.1

If you do not comment out the lines containing setw(), all three data members are
formatted to the desired width, as shown below:

38.1622 1773.59 17293.1
38.1622 1773.59 17293.1

L See “Changing the Formatting of Stream Output” on page 56 for more
information on the format state and how to change it, within output operators and in
client code.

Chapter 5. Advanced I/O Stream Topics 53

Correcting Input Stream Errors

Correcting Input Stream Errors

When an input statement is requesting input of one type, and erroneous input or input
of another type is provided, the error state of the input stream is set to jos::badbit
and jos::failbit, and further input operations may not work properly. For example,
the following code repeatedly displays the text: Enter an integer value: if the first
input provided is a string whose initial characters do not form an integer value:

#include <iostream.h>
void main() {
int i=-1;
while (i<=0) {
cout << "Enter a positive integer: " ;
cin >> i;
1
cout << "The value was " << i << endl;

}

This program loops indefinitely, given an input such as ABC12, because the erroneous
input causes the error state to be set in the stream, but does not clear the error state or
advance the get pointer in the stream beyond the erroneous characters. Each time the
input operator is called for an int (as in the while loop above), the same characters
are read in.

To clear an input stream and repeat an attempt at input you must add code to do the
following:

1. Clear the stream's error state.
2. Remove the erroneous characters from the stream.
3. Attempt the input again.

You can determine whether the stream's error state has been set in one of the
following ways:

e By calling fail() for the stream (shown in the example below)

e By calling bad(), oef(), good(), or rdstate().

¢ By using the void* type conversion operator (for example, if (cin)).

* By using operator! operator (shown in the comment in the example below)

All of these methods are described in “ios Class” on page 31 in the Open Class
Library Reference.

You can clear the error state by calling clear(), and you can remove the erroneous
characters using ignore(). The example above could be improved, using these
suggestions, as follows:

54 VisualAge C++ Open Class Library User's Guide

Correcting Input Stream Errors

#include <iostream.h>
void main() {
int i=-1;
while (i==-1) {
cout << "Enter a positive integer: ";
cin >> i3
while (cin.fail()) { // could also be "while (!cin) {"
cin.clear();
cin.ignore(1000,'\n");
cerr << "Please try again: ";
cin >> i3
1
}

cout << "The value was " << i << endl;

}

The ignore() member function with the arguments shown above removes characters
from the input stream until the total number of characters removed equals 1000, or
until the new-line character is encountered, or until EOF is reached. This example
produces the output shown below in regular type, given the input shown in bold:

Enter an integer value:

ABC12

Please try again:

12ABC
The value was 12

Note that, for the second attempt at input, the error state is set after the input of 12,
so the call to cin.fail() after the corrected input returns false. If another integer
input were requested after the while loop ends, the error state would be set and that
input would fail.

When you define an input operator of class type, you can build error-checking code
into your definition. If you do so, you do not have to check for error-causing input
every time you use the input operator for objects of your class type. Consider the
class definition for the PhoneNumber data type shown in “myclass.h” on page 50, and
the following input operator definition:

istream& operator>> (istream& aStream, PhoneNumber& aPhoneNum) {

int AreaCode, Exchange, Local;
aStream >> AreaCode;

while (aStream.fail()) eatNonInts(aStream,AreaCode);
aStream >> Exchange;

while (aStream.fail()) eatNonInts(aStream,Exchange);
aStream >> Local;

while (aStream.fail()) eatNonInts(aStream,Local);
aPhoneNum=PhoneNumber (AreaCode, Exchange, Local);
return aStream;

}

The eatNonInts() function in this example should be defined to ignore all characters
in the input stream until the next integer character is encountered, and then to read
the next integer value into the variable provided as its second argument. The function
could be defined as follows:

Chapter 5. Advanced 1/0 Stream Topics 55

Formatting Your Output

void eatNonInts(istream& aStream, int& anInt) {
char someChar;
aStream.clear();
while (someChar=aStream.peek(), !isdigit(someChar))
aStream.get (someChar) ;
aStream >> anlnt;

}

Now whenever input is requested for a PhoneNumber object and the provided input
contains nonnumeric data, this data is skipped over. Note that this is only a primitive
error-handling mechanism; if the input provided is 416 555 2p45 instead of 416 555
2045, the characters p45 will be ignored and the local is set to 2 rather than 2045. A
more complete example would check each input for the correct number of digits.

Changing the Formatting of Stream Output

The I/O Stream Classes let you define how output should be formatted on a
stream-by-stream basis within your program. Most formatting applies to numeric
data: what base integers should be written to the output stream in, how many digits of
precision floating-point numbers should have, whether they should appear in scientific
or fixed-point format. Other formatting applies to any of the built-in types, and to
your own types if you design your class output operators to check the format state of
a stream to determine what formatting action to take. ({3 See “Defining an Output
Operator for a Class Type” on page 52 for suggestions on checking the format state
in user-defined output operators.)

This section describes a number of techniques you can use to change the way data is
written to output streams. One common characteristic of most of the methods
described (other than the method of changing the output field's width) is that each
format state setting applies to its output stream until it is explicitly cleared, or is
overridden by a mutually exclusive format state. This differs from the C printf()
family of output functions, in which each printf() statement must define its
formatting information individually.

ios Methods and Manipulators
For some of the format flags defined for the i0s class, you can set or clear them
using an ios function and a flag name, or by using a manipulator. (Manipulators are
described in more detail in Chapter 6, “Manipulators” on page 67) With manipulators
you can place the change to a stream'’s state within a list of outputs for that stream.
The following example shows two ways of changing the base of an output stream
from decimal to octal. The first, which is more difficult to read, uses the setf()
function to set the basefield field in the format state to octal. The second way uses
a manipulator, oct, within the output statement, to accomplish the same thing:

56 VisualAge C++ Open Class Library User's Guide

Formatting Your Output

#include <iostream.h>
void main() {
int a;
cout.setf(ios::oct,ios::basefield);
cout << a << endl;
// assume format state gets changed here, so we must change it back
cout << oct << a << endl;

}

Note that you do not need to qualify a manipulator, provided you do not create a
variable or function of the same name as the manipulator. If a variable oct were
declared at the start of the above example, cout << oct ... would write the variable
oct to standard output. cout << jos::oct ... would change the format state.

Using setf, unsetf, and flags
There are two versions of the setf() function of ios. One version takes a single
long value newset as argument; its effect is to set any flags set in newset, without
affecting other flags. This version is useful for setting flags that are not mutually
exclusive with other flags (for example, ios::uppercase). The other version takes
two long values as arguments. The first argument determines what flags to set, and
the second argument determines which groups of flags to clear before any flags are
set. The second argument lets you clear a group of flags before setting one of that
group. The second argument is useful for flags that are mutually exclusive. If you
try to change the base field of the cout output stream using cout.setf(ios::oct);,
setf() sets ios::oct but it does not clear jos::dec if it is set, so that integers
continue to be written to cout in decimal notation. However, if you use
cout.setf(ios::oct,ios::basefield);, all bits in basefield are cleared (oct, dec, and
hex) before oct is set, so that integers are then written to cout in octal notation.

To clear format state flags, you can use the unsetf() function, which takes a single
argument indicating which flags to clear.

To set the format state to a particular combination of flags (without regard for the
pre-existing format state), you can use the flags(long flagset) member function of
ios. The value of flagset determines the resulting values of all the flags of the
format state.

The following example demonstrates the use of flags(), setf(), and unsetf(). The
main() function changes the flags as follows:

1. The original settings of the format state flags are determined, using flags().
These settings are saved in the variable originalFlags.

2. jos::fixed is set, and all other flags are cleared, using flags(ios::fixed).

3. jos::adjustfield is set to ios::right, without affecting other fields, using
setf(ios::right).

Chapter 5. Advanced 1/0 Stream Topics 57

Formatting Your Output

4. ios::floatfield is set to ios::scientific, and ios::adjustfield is set to
jos::1eft, without affecting other fields. The call to setf() is
setf(ios::scientific | ios::left, ios::floatfield|ios::adjustfield).

5. The original format state is restored, by calling flags() with an argument of
originalFlags, which contains the format state determined in step 1.

The function showFlags() determines and displays the current flag settings. It obtains
the value of the settings using flags(), and then excludes ios::oct from the result
before displaying the result in octal. This exclusion is done to display the result in
octal without causing the octal setting for os::basefield to show up in the

program's output.
//Using flags(), flags(long), setf(long), and setf(long,long)

#include <iostream.h>

void showFlags() {

// save altered flag settings, but clear ios::oct from them
long flagSettings = cout.flags() & (7ios::oct) ;

// display those flag settings in octal
cout << oct << flagSettings << endl;

}

void main () {

// get and display current flag settings using flags()
cout << "flags(): "
long originalFlags = cout.flags();
showFlags();

// change format state using flags(long)
cout << "flags(ios::fixed): "
cout.flags(ios::fixed);
showFlags();

/

~

change adjust field using setf(long)
cout << "setf(ios::right): "
cout.setf(ios::right);
showFlags();

/

~

change floatfield using setf(long, long)
cout << "setf(ios::scientific | ios::left,\n"
<< "jos::floatfield | ios::adjustfield): ";

cout.setf(ios::scientific | ios::left,ios::floatfield |ios::adjustfield);

showFlags();

/

~

reset to original setting
cout << "flags(originalFlags): "
cout.flags(originalFlags);
showFlags();

This example produces the following output:

flags(): 21
flags(ios::fixed): 10000
setf(ios::right): 10004

setf(ios::scientific | ios::left,
ios::floatfield | jos::adjustfield): 4002
flags(originalFlags): 21

58 VisualAge C++ Open Class Library User's Guide

Formatting Your Output

Note:

If you specify conflicting flags, the results are unpredictable. For example,
the results will be unpredictable if you set both jos::1eft and jos::right in
the format state of i0sobj. You should set only one flag in each set of the
following three sets:

® jos::left, ios::right, ios::internal
® jos::dec, ios::oct, jos::hex
e jos::scientific, ios::fixed.

Changing the Notation of Floating-Point Values
You can change the notation and precision of floating-point values to match your
program's output requirements. To change the precision with which floating-point
values are written to output streams, use ios::precision(). By default, an output
stream writes float and double values using six significant digits. The following
example changes the precision for the cout predefined stream to 17:

cout.precision(17);

You can also change between scientific and fixed notations for floating-point values.
Use the two-parameter version of the setf() member function of ios to set the
appropriate notation. The first argument indicates the flag to be set; the second
argument indicates the field of flags the change applies to. For example, to change
the notation of an output stream called File6, use:

Fileb.setf(ios::scientific,ios::floatfield);

This statement clears the settings of the ios::floatfield field and then sets it to
jos::scientific.

The ios::uppercase format state variable affects whether the “e” used in
scientific-notation floating-point values is in uppercase or lowercase. By default, it is
in lowercase. To change the setting to uppercase for an output stream called
TaskQueue, use:

TaskQueue.setf(ios::uppercase);

The following example shows the effect on floating-point output of changes made to
an output stream using ios format state flags and the precision member function:

// How format state flags and precision() affect output

#include <iostream.h>

void main() {
double a=3.14159265358979323846;
double b;
long originalFlags=cout.flags();
int originalPrecision=cout.precision();

Chapter 5. Advanced I/O Stream Topics 59

Formatting Your Output

for (double exp=1.;exp<l.0E+25;exp*=100000000.) f
cout << "Printing new value for b:\n";
b=axexp; // Initialize b to a larger magnitude of a

// Now print b in a number of ways:
// In fixed decimal notation
cout.setf(ios::fixed,ios::floatfield);
cout << " " << b << "\n';
// In scientific notation
cout.setf(ios::scientific,ios::floatfield);
cout << " " <<h << "\n';
// Change the exponent from Tower to uppercase
cout.setf(ios::uppercase);
cout << " " <<b << "\n';
// With 12 digits of precision, scientific notation
cout.precision(12);
cout << " " <<b << "\n';
// Same precision, fixed notation
cout.setf(ios::fixed,ios::floatfield);
// Now set everything back to defaults
cout.flags(originalFlags);
cout.precision(originalPrecision);

}

The output from this program is:

Printing new value for b:
3.141593
3.141593e+00
3.141593E+00
3.141592653590E+00
Printing new value for b:
314159265.358979
3.141593e+08
3.141593E+08
3.141592653590E+08
Printing new value for b:
31415926535897932.000000
3.141593e+16
3.141593E+16
3.141592653590E+16
Printing new value for b:
3141592653589792800000000.000000
3.141593e+24
3.141593E+24
3.141592653590E+24

Changing the Base of Integral Values
For output of integral values, you can choose decimal, hexadecimal, or octal notation.
You can either use setf() to set the appropriate ios flag, or you can place the
appropriate parameterized manipulator in the output stream. The following example
shows both methods:

//Showing the base of integer values

#include <iostream.h>
#include <jomanip.h>

60 VisualAge C++ Open Class Library User's Guide

Formatting Your Output

void main() {
int a=148;
cout.setf(ios::showbase); // show the base of all integral output:
// leading Ox means hexadecimal,
// leading 01 to 07 means octal,
// leading 1 to 9 means decimal
cout.setf(ios::oct,ios::basefield);
// change format state to octal
cout << a << '"\n';
cout.setf(ios::dec,ios::basefield);
// change format state to decimal
cout << a << '"\n';
cout.setf(ios::hex,ios::basefield);
// change format state to hexadecimal
cout << a << '"\n';
cout << oct << a << '\n'; // Parameterized manipulators clear the
cout << dec << a << '\n'; // basefield, then set the appropriate
cout << hex << a << '\n'; // flag within basefield.

The ios::showbase flag determines whether numbers in octal or hexadecimal notation
are written to the output stream with a leading “0” or “0x,” respectively. You can set
jos::showbase where you intend to use the output as input to an I/O Stream input
stream later on. If you do not set ios::showbase and you try to use the output as
input to another stream, octal values and those hexadecimal values that do not contain
the digits a-f will be interpreted as decimal values; hexadecimal values that do
contain any of the digits a-f will cause an input stream error.

Setting the Width and Justification of Output Fields
For built-in types, the output operator does not write any leading or trailing spaces
around values being written to an output stream, unless you explicitly set the field
width of the output stream, using the width() member function of i0s or the setw()
parameterized manipulator. Both width() and setw() have only a short-term effect on
output. As soon as a value is written to the output stream, the field width is reset, so
that once again no leading or trailing spaces are inserted. If you want leading or
trailing blanks to appear on successively written values, you can use the setw()
manipulator within the output statement. For example:

#include <iostream.h>

#include <iomanip.h> // required for use of setw()

void main() {

int i=-5,j=7,k=-9;

cout << setw(5) << i << setw(5) << j << setw(5) << k << endl;

}

You can also specify how values should be formatted within their fields. If the
current width setting is greater than the number of characters required for the output,
you can choose between right justification (the default), left justification, or, for
numeric values, internal justification (the sign, if any, is left-justified, while the value
is right-justified). For example, the output statement above could be replaced with:

Chapter 5. Advanced I/O Stream Topics 61

Defining Your Own Format State Flags

cout << setw(5) << i; /l -5
cout.setf(ios::left,ios::adjustfield);
cout << setw(5) << j; /17
cout.setf(ios::internal,ios::adjustfield);
cout << setw(5) << k << endl; // -9

The following shows two lines of output, the first from the original example, and the
second after the output statement has been modified to use the field justification
shown above:

-5 7 -9
-57 -9

Defining Your Own Format State Flags

If you have defined your own input or output operator for a class type, you may want
to offer some flexibility in how you handle input or output of instances of that class.
The I/0 Stream Classes let you define stream-specific flags that you can then use
with the format state member functions such as setf() and unsetf(). You can then
code checks for these flags in the input and output operators you write for your class
types, and determine how to handle input and output according to the settings of
those flags.

For example, suppose you develop a program that processes customer names and
addresses. In the original program, the postal code for each customer is written to the
output file before the country name. However, because of postal regulations, you are
instructed to change the record order so that the postal code appears after the country
name. The following example shows a program that translates from the old file
format to the new file format, or from the new file format to the old.

The program checks the input file for an exclamation mark as the first byte. If one is
found, the input file is in the new format, and the output file should be in the old
format. Otherwise the reverse is true. Once the program knows which file should be
in which format, it requests a free flag from each file's stream object. It reads in and
writes out each record, and closes the file. The input and output operators for the
class check the format state for the defined flag, and order their output accordingly.

// Defining your own format flags

#include <fstream.h>
#include <stdlib.h>

long InFileFormat=0;
long OutFileFormat=0;

class CustRecord {
public:
int Number;
char Name[48];
char Phone[16];
char Street[128];

62 VisualAge C++ Open Class Library User's Guide

char City[64];

char Country[64];

char PostCode[10];
1s

Defining Your Own Format State Flags

ostream& operator<<(ostream &os, CustRecord &cust) {

0s << cust.Number << "\n'
<< cust.Name << '\n'
<< cust.Phone << '\n'
<< cust.Street << '\n'
<< cust.City << '\n';

if (os.flags() & OutFileFormat) // New file format

0s << cust.Country << '\n'
<< cust.PostCode << endl;
else
os << cust.PostCode << '\n'
<< cust.Country << endl;
return os;

}

// 01d file format

istream& operator>>(istream &is, CustRecord &cust) {

is >> cust.Number;

is.ignore(1000,'\n'); // Ignore anything up to and including new Tine

is.getline(cust.Name,48);
is.getline(cust.Phone,16);
is.getline(cust.Street,128);
is.getline(cust.City,64);

if (is.flags() & InFileFormat) { // New file format!

is.getline(cust.Country,64);
is.getline(cust.PostCode,10);
}

else {
is.getline(cust.PostCode,10);
is.getline(cust.Country,64);
}

return is;

}

void main(int argc, charx argv[]) {
if (argc!=3) {

// Requires two parameters

cerr << "Specify an input file and an output file\n";

exit(1);
}
ifstream InFile(argv[1]);
ofstream OutFile(argv[2],ios::out);

InFileFormat = InFile.bitalloc();
OutFileFormat = OutFile.bitalloc();

if (InFileFormat==0 ||
OutFileFormat==0) {

// Allocate flags for
// each fstream

// Exit if no flag could
// be allocated

cerr << "Could not allocate a user-defined format flag.\n";

exit(2);
}

if (InFile.peek()=="1"') {
InFile.setf(InFileFormat);
OutFile.unsetf(OutFileFormat);
InFile.get();
}

else {
OutFile << 'I';
OutFile.setf(OutFileFormat);
InFile.unsetf(InFileFormat);

}

// '!' means new format
// Input file is in new format
// Output file is in old format
// Clear that first byte

// Otherwise, write '!'' to
// the output file, set the
// output stream's flag, and
// clear the input stream's
// flag

Chapter 5. Advanced I/O Stream Topics 63

String Manipulation Using strstream

CustRecord record;

while (InFile.peek()!=EOF) { // Now read the input file
InFile >> record; // records and write them
OutFile << record; // to the output file,
}

InFile.close(); // Close both files

OutFile.close();
}

The following shows sample input and output for the program. If you take the output
from one run of the program and use it as input in a subsequent run, the output from
the later run is the same as the input from the preceding one.

Input File Output File
3848 13848

John Smith John Smith
4163341234 4163341234

35 Baby Point Road 35 Baby Point Road
Toronto Toronto

M6S 2G2 Canada

Canada M6S 2G2

1255 1255

Jean Martin Jean Martin
0418375882 0418375882

48 bis Ave. du Belloy 48 bis Ave. du Belloy
Le Vesinet Le Vesinet

78110 France

France 78110

Note that, in this example, a simpler implementation could have been to define a
global variable that describes the desired form of output. The problem with such an
approach is that later on, if the program is enhanced to support input from or output
to a number of different streams simultaneously, all output streams would have to be
in the same state (as far as the user-defined format variable is concerned), and all
input streams would have to be in the same state. By making the user-defined format
flag part of the format state of a stream, you allow formatting to be determined on a
stream-by-stream basis.

Using the strstream Classes for String Manipulation

You can use the strstream classes to perform formatted input and output to arrays of
characters in memory. If you create formatted strings using these classes, your code
will be less error-prone than if you use the sprintf() function to create formatted
arrays of characters.

Note: For new applications, you may want to consider using the Data Type class
IString, rather than strstream, to handle strings. The IString class provides a much
broader range of string-handling capabilities than strstream, including the ability to
use mathematical operators such as + (to concatenate two strings), = (to copy one
string to another), and == (to compare two strings for equality). {3y See Chapter 17,
“String Classes” on page 197 for further information.

64 VisualAge C++ Open Class Library User's Guide

String Manipulation Using strstream

You can use the strstream classes to retrieve formatted data from strings and to write
formatted data out to strings. This capability can be useful in situations such as the
following:

* Your application needs to send formatted data to an external function that will
display, store, or print the formatted data. In such cases, your application, rather
than the external function, formats the data.

* Your application generates a sequence of formatted outputs, and requires the
ability to change earlier outputs as later outputs are determined and placed in the
stream, before all outputs are sent to an output device.

* Your application needs to parse the environment string or another string already
in memory, as if that string were formatted input.

You can read input from an strstream, or write output to it, using the same I/O
operators as for other streams. You can also write a string to a stream, then read that
string as a series of formatted inputs. In the following example, the function add() is
called with a string argument containing representations of a series of numeric values.
The add() function writes this string to a two-way strstream object, then reads
double values from that stream, and sums them, until the stream is empty. add()
then writes the result to an ostrstream, and returns OQutputStream.str(), which is a
pointer to the character string contained in the output stream. This character string is
then sent to cout by main().

// Using the strstream classes to parse an argument Tist

#include <strstream.h>
charx add(charx);

void main() {
cout << add("1 27 32.12 518") << endl;
}

char* add(char* addString) {
double value=0,sum=0;
strstream TwoWayStream;
ostrstream OutputStream;
TwoWayStream << addString << endl;
for (53) {
TwoWayStream >> value;
if (TwoWayStream) sum+=value;
else break;
}
QutputStream << "The sum is: " << sum << "." << ends;
return OutputStream.str();

}

This program produces the following output:

The sum is: 578.12.

Chapter 5. Advanced I/O Stream Topics 65

String Manipulation Using strstream

66 VisualAge C++ Open Class Library User's Guide

Simple and Parameterized Manipulators

Manipulators

This chapter introduces manipulators. Manipulators let you change the format state of
streams, using the same syntax you use to insert or extract values from those streams.

Introduction to Manipulators

Manipulators provide a convenient way of changing the characteristics of an input or
output stream, using the same syntax that is used to insert or extract values. With
manipulators, you can embed a function call in an expression that contains a series of
insertions or extractions. Manipulators usually provide shortcuts for sequences of
iostream library operations. {3 See “Simple Manipulators and Parameterized
Manipulators” for a description of the two kinds of manipulators.

The iomanip.h header file contains a definition for a macro IOMANIPdeclare().
IOMANIPdeclare() takes a type name as an argument and creates a series of classes
you can use to define manipulators for a given kind of stream. Calling the macro
IOMANIPdeclare() with a type as an argument creates a series of classes that let you
define manipulators for your own classes. If you call IOMANIPdeclare() with the
same argument more than once in a file, you will get a syntax error.

Simple Manipulators and Parameterized Manipulators
There are two kinds of manipulators:

¢ Simple manipulators do not take any arguments. The following classes have
built-in simple manipulators:

— ios
— istream
— ostream

¢ Parameterized manipulators require one or more arguments. setfill (near the
bottom of the iomanip.h header file) is an example of a parameterized
manipulator. You can create your own parameterized manipulators and your own
simple manipulators.

The following example shows the uses of both simple and parameterized
manipulators. It defines a parameterized manipulator that prints the character <, sets
the format state of the output stream to right-justified, and sets the width to the
argument with which the manipulator was called. The next output is then
right-justified within the specified field width, after the <. The example also defines

© Copyright IBM Corp. 1993, 1995 67

Creating Simple Manipulators

a simple manipulator that inserts the character > into the output stream, and inserts a
new-line and flushes the stream by using the end1 predefined simple manipulator.

// Using simple and parameterized manipulators

#include <iostream.h>
#include <iomanip.h>

ostream& rjust(ostream& os, int n) { // Parameterized manipulator - set
os.setf(ios::right,ios::adjustfield); // format flags to right justify,
return os << '<' << setw(n); // then print '<', then set width
} // to manipulator's parameter.

OMANIP(int) rjust(int n) { return OMANIP(int)(rjust,n);}

ostream& endrj (ostream& os) { // Simple manipulator -- place the
return os << '>' << endl; // character '>' in stream, then
} // a newline character, and flush.

// Notice that, in this example, the simple manipulator uses a
// predefined simple manipulator (endl1), while the parameterized
// manipulator uses a predefined parameterized manipulator (setw).

void main() {
cout << "Employee name:" << rjust(20) << "Sceeles, Darryn" << endrj
<< "Salary: " << rjust(20) << "$4.25/hour" << endrj
<< "Next raise: " << rjust(20) << "9/19/98" << endrj;

This program produces the following output:

Employee name:< Sceeles, Darryn>
Salary: < $4.25/hour>
Next raise: < 9/19/98>

Creating Simple Manipulators for Your Own Types

The I/O Stream Library gives you the facilities to create simple manipulators for your
own types. Simple manipulators that manipulate istream objects are accepted by the
following input operators:

istream &istream::operator>> (istream&, istream& (*f) (istreamd));
istream &istream::operator>> (istream&, ios&(*f) (iosd));

Simple manipulators that manipulate ostream objects are accepted by the following
output operators:

ostream &ostream::operator<< (ostream&, ostream&(*f) (ostreamd));
ostream &ostream::operator<< (ostream&, ios&(*f) (ios&));

The definition of a simple manipulator depends on the type of object that it modifies.

The following table shows sample function definitions to modify istream, ostream,
and i0s objects.

68 VisualAge C++ Open Class Library User's Guide

Creating Parameterized Manipulators

Class of object Sample function definition
istream istream &fi(istream&){ /*...*/ }
ostream ostream &fo(ostreamd){ /x...x/ }
ios ios &fios(ios&){ /*...*/ }

For example, if you want to define a simple manipulator Tine that inserts a line of
dashes into an ostream object, the definition could look like this:

ostream &line(ostream& os) {
return 0s << "\Ne-m o oo e m ool "

}

Thus defined, the 1ine manipulator could be used like this:
cout << Tine << "WARNING! POWER-OUT IS IMMINENT!" << line << flush;

This statement produces the following output:

Creating Parameterized Manipulators for Your Own Types

The I/O Stream Library gives you the facilities to create parameterized manipulators
for your own types. Follow these steps to create a parameterized manipulator that
takes an argument of a particular type tp:

1. Call the macro IOMANIPdeclare(tp). Note that tp must be a single identifier.
For example, if you want ¢p to be a reference to a Tong double value, use
typedef to make a single identifier to replace the two identifiers that make up the
type label Tong double:

typedef long double& LONGDBLREF

2. Determine the class of your manipulator. If you want to define the manipulator
as shown in “Example of Defining an APP Parameterized Manipulator” on
page 70, choose a class that has APP in its name (an APP class, also known as an
applicator). If you want to define the manipulator as shown in “Example of
Defining a MANIP Parameterized Manipulator” on page 71, choose a class that
has MANIP in its name (a MANIP class). Once you have determined which type of
class to use, the particular class that you choose depends on the type of object
that the manipulator is going to manipulate. The following table shows the class
of objects to be modified, and the corresponding manipulator classes.

Chapter 6. Manipulators 69

Creating Parameterized Manipulators

Class to be modified

Manipulator class

istream IMANIP(tp) or IAPP(tp)
ostream OMANIP(tp) or OAPP(tp)
iostream IOMANIP(tp) or I0APP(tp)

The ios part of istream objects or ostream
objects

SMANIP(tp) or SAPP(tp)

3. Define a function f that takes an object of the class tp as an argument. The
definition of this function depends on the class you chose in step 2, and is shown

in the following table:

Class chosen Sample definition

IMANIP(tp) or IAPP(tp) istream &f(istreamd, tp){/ *... */ }
OMANIP(tp) or OAPP(tp) ostream &f(ostreamd&, tp){/* ... */ }
IOMANIP(tp) or I0APP(tp) iostream &f(iostreamd, tp){/* ... %/}
SMANIP(tp) or SAPP(tp) ios &f(ios&, tp){/* ... */ }

4. If you chose one of the APP classes in step 2, define the manipulator as shown in
“Example of Defining an APP Parameterized Manipulator.” If you chose one of
the MANIP classes in step 2, define the manipulator as shown in “Example of
Defining a MANIP Parameterized Manipulator” on page 71. These two methods

produce equivalent manipulators.

Note: Parameterized manipulators defined with IOMANIP or I0APP are not
associative. This means that you cannot use such manipulators more than once
in a single output statement. {33y See “Examples of Nonassociative Parameterized
Manipulators” on page 72 for more details.

Example of Defining an APP Parameterized Manipulator
In the following example, the macro IOMANIPdeclare is called with the user-defined
class my_class as an argument. One of the classes that is produced, 0APP(my class),

70

is used to define the manipulator pre_print.

#include <jomanip.h>

// declare class

class my_class {
public:
char * sl;
const char c;
unsigned short ctr;
my_class(char *theme, const char suffix,
unsigned short times):
sl(theme), c(suffix), ctr(times) {}
}s

VisualAge C++ Open Class Library User's Guide

// Creating and using parameterized manipulators

Creating Parameterized Manipulators

// print a character an indicated number of times
// followed by a string

ostream& produce_prefix(ostream& o, my _class mc) {
for (register i=mc.ctr; i; --i) o << mc.c ;
0 << mc.sl;
return o3

}

IOMANIPdeclare(my class);

// define a manipulator for the class my_class
OAPP(my_class) pre_print=produce_prefix;

void main() {
my_class obj("Hello",'-',10);
cout << pre_print(obj) << endl;

}

This program produces the following output:

Example of Defining a MANIP Parameterized Manipulator
In the following example, the macro IOMANIPdeclare is called with the user-defined
class my_class as an argument. One of the classes that is produced,
OMANIP(my_class), is used to define the manipulator pre_print().

#include <iostream.h>
#include <iomanip.h>

class my_class {
public:
char * sl;
const char c;
unsigned short ctr;
my_class(char xtheme, const char suffix,
unsigned short times):
s1(theme), c(suffix), ctr(times) {};
}s

// print a character an indicated number of times
// followed by a string

ostream& produce_prefix(ostream& o, my_class mc) {
for (register int i=mc.ctr; i; --1) 0 << mc.c ;
0 << mc.sl;
return o;

}
IOMANIPdeclare(my_class);
// define a manipulator for the class my_class

OMANIP(my class) pre_print(my_class mc) {
return OMANIP(my class) (produce_prefix,mc);
}

Chapter 6. Manipulators 71

Creating Parameterized Manipulators

void main()

{
my_class obj("Hello",'-',10);
cout << pre_print(obj) << "\0" << endl;

This example produces the same output as the previous example.

Examples of Nonassociative Parameterized Manipulators
The following example demonstrates that parameterized manipulators defined with
IOMANIP or IOAPP are not associative. The parameterized manipulator mysetw() is
defined with IOMANIP. mysetw() can be applied once in any statement, but if it is
applied more than once, it causes a compile-time error. To avoid such an error, put
each application of mysetw into a separate statement.

// Nonassociative parameterized manipulators

#include <iomanip.h>

iostream& f(iostream & io, int i) {
io.width(i);
return io;

}

IOMANIP (int) mysetw(int i) {
return IOMANIP(int) (f,1);
}

iostream_withassign ioswa;

void main() {
ioswa = cout;
int i1 = 8, i2 = 14;
//
// The following statement does not cause a compile-time
// error.
//
ioswa << mysetw(3) << il << endl;
//
// The following statement causes a compile-time error
// because the manipulator mysetw is applied twice.
/!
ioswa << mysetw(3) << il << mysetw(5) << i2 << endl;
/!
// The following statements are equivalent to the previous
// statement, but they do not cause a compile-time error.
/!
ioswa << mysetw(3) << il;
ioswa << mysetw(5) << i2 << endl;

72 VisualAge C++ Open Class Library User's Guide

Part 3. The Collection Class Library

Chapter 7. Overview of the Collection Class Library 75
Concrete Classes Provided by the Library 75
Benefits of the Collection Class Library 79
Types of Classes in the Collection Class Library 80
Flat Collections 80
Restricted Access 86
Trees 87
Auxiliary Classes 87
The Overall Implementation Structure 88
Linking to the Collection Classes 93
Chapter 8. Instantiating and Using the Collection Classes 95
Instantiation and Object Definition 95
Bounded and Unbounded Collections 96
Adding, Removing, and Replacing Elements 96
CUISOTS . . . o o o o o 98
Iterating over Collections 101
Copying and Referencing Collections 105
Chapter 9. Element Functions and Key-Type Functions 107
Introduction to Element Functions and Key-Type Functions 107
Using Member Functions 108
Using Separate Functions 109
Using Element Operation Classes 110
Functions for Derived Element Classes 114
Using Pointer Classes 115
Chapter 10. Tailoring a Collection Implementation 125
Introduction 125
Replacing the Default Implementation 125
The Based-On Concept 126
Provided Implementation Variants 128
Features of Provided Implementation Variants 130
Chapter 11. Polymorphic Use of Collections 139
Introduction to Polymorphism 139
Using Reference Classes 140
Chapter 12. Support for Visual Builder for C++ 141

© Copyright IBM Corp. 1993, 1995 73

Chapter 13. Exception Handling 145

Introduction to Exception Handling 145
Precondition and Defined Behavior 146
Levels of Exception Checking 147
List of Exceptions 147
The Hierarchy of Exceptions 149
Chapter 14. Collection Class Library Tutorials 151
Preparing for the Lessons 152
Lesson 1: Defining a Simple Collection of Integers 153
Lesson 2: Adding, Listing, and Removing Elements 156
Lesson 3: Changing the Element Type 161
Lesson 4: Changing the Collection 167
Lesson 5: Changing the Implementation Variant 176
Errors When Compiling or Running the Lessons 179
Other Tutorials 179
Chapter 15. Solving Problems in the Collection Class Library 181
Cursor Usage 182
Element Functions and Key-Type Functions 182
Key Access Function - How to Return the Key (1) 184
Key Access Function - How to Return the Key (2) 185
Definition of Key-Type Functions 185
Exception Tracing 186
Declaration of Template Arguments and Element Functions (1) 186
Declaration of Template Arguments and Element Functions (2) 186
Declaration of Template Arguments and Element Functions 3) 187
Default Constructor 187
Considerations when Linking with Templates 188

74 VisualAge C++ Open Class Library User's Guide

Concrete Classes

Overview of the Collection Class Library

A C++ collection is an abstract concept, or a C++ class implementing an abstract
concept, that allows you to manipulate objects in a group. Collections are used to
store and manage elements (or objects) of a user-defined type. Different collections
have different internal structures, and different access methods for storage and
retrieval of objects.

This chapter describes the types of concrete collections provided by the library,
introduces the classes that make up the Collection Class Library, and explains some
of the key concepts that are used to describe the Collection Class Library.

Concrete Classes Provided by the Library

Bag

Deque

Equality
Sequence

This section lists the concrete collections of the Collection Class Library, and
provides a verbal description of a potential application of each collection type. These
descriptions are also found in the individual class chapters in the Collection Class
Library section of the Open Class Library Reference. You can use these descriptions
to understand the characteristics and behavior of each concrete collection, and of the
overall capabilities of the Collection Classes.

An example of using a bag is a program for entering observations on species of
plants and animals found in a river. Each time you spot a plant or animal in the
river, you enter the name of the species into the collection. If you spot a species
twice during an observation period, the species is added twice, because a bag supports
multiple elements. You can locate the name of a species that you have observed, and
you can determine the number of observations of that species, but you cannot sort the
collection by species, because a bag is an unordered collection. If you want to sort
the elements of a bag, use a sorted bag instead.

An example of using a deque is a program for managing a lettuce warehouse. Cases
of lettuce arriving into the warehouse are registered at one end of the queue (the
“fresh” end) by the receiving department. The shipping department reads the other
end of the queue (the “old” end) to determine which case of lettuce to ship next.
However, if an order comes in for very fresh lettuce, which is sold at a premium, the
shipping department reads the “fresh” end of the queue to select the freshest case of
lettuce available.

An example of using an equality sequence is a program that calculates members of
the Fibonacci sequence and places them in a collection. Multiple elements of the
same value are allowed. For example, the sequence begins with two instances of the

© Copyright IBM Corp. 1993, 1995 75

Concrete Classes

Heap

Key Bag

Key Set

Key Sorted
Bag

value 1. You can search for a given element, for example 8, and find out what
element follows it in the sequence. Element equality allows you to do this, using the
locate() and setToNext() functions.

You can compare using a heap collection to managing the scrap metal entering a
scrapyard. Pieces of scrap are placed in the heap in an arbitrary location, and an
element can be added multiple times (for example, the rear left fender from a
particular kind of car). When a customer requests a certain amount of scrap,
elements are removed from the heap in an arbitrary order until the required amount is
reached. You cannot search for a specific piece of scrap except by examining each
piece of scrap in the heap and manually comparing it to the piece you are looking for.

An example of using a key bag is a program that manages the distribution of
combination locks to members of a fitness club. The element key is the number that
is printed on the back of each combination lock. Each element also has data
members for the club member's name, member number, and so on. When you join
the club, you are given one of the available combination locks, and your name,
member number, and the number on the combination lock are entered into the
collection. Because a given number on a combination lock may appear on several
locks, the program allows the same lock number to be added to the collection
multiple times. When you return a lock because you are leaving the club, the
program finds the elements whose key matches your lock's serial number, and deletes
the matching element that has your name associated with it.

An example of using a key set is a program that allocates rooms to patrons checking
into a hotel. The room number serves as the element's key, and the patron's name is
a data member of the element. When you check in at the front desk, the clerk pulls a
room key from the board, and enters that key's number and your name into the
collection. When you return the key at check-out time, the record for that key is
removed from the collection. You cannot add an element to the collection that is
already present, because there is only one key for each room. If you attempt to add
an element that is already present, the add() function returns False to indicate that
the element was not added.

An example of using a key sorted bag is a program that maintains a list of families,
sorted by the number of family members in each family. The key is the number of
family members. You can add an element whose key is already in the collection
(because two families can have the same number of members), and you can generate
a list of families sorted by size. You cannot locate a family except by its key,
because a key sorted bag does not support element equality.

76 VisualAge C++ Open Class Library User's Guide

Key Sorted
Set

Map

Priority
Queue

Queue

Relation

Concrete Classes

An example of using a key sorted set is a program that keeps track of canceled

credit card numbers and the individuals to whom they are issued. Each card number
occurs only once, and the collection is sorted by card number. When a merchant
enters a customer's card number into a point-of-sale terminal, the collection is
checked to see if that card number is listed in the collection of canceled cards. If it is
found, the name of the individual is shown, and the merchant is given directions for
contacting the card company. If the card number is not found, the transaction can
proceed because the card is valid. A list of canceled cards is printed out each month,
sorted by card number, and distributed to all merchants who do not have an automatic
point-of-sale terminal installed.

An example of using a map is a program that translates integer values between the
ranges of 0 and 20 to their written equivalents, from their written forms to their
numeric forms. Two maps are created, one with the integer values as keys, one with
the written equivalents as keys. You can enter a number, and that number is used as
a key to locate the written equivalent. You can enter a written equivalent of a
number, and that text is used as a key to locate the value. A given key always
matches only one element. You cannot add an element with a key of 1 or “one” if
that element is already present in the collection.

An example of a priority queue is a program used to assign priorities to service
calls in a heating repair firm. When a customer calls with a problem, a record with
that person's name and the seriousness of the situation is placed in a priority queue.
When a service person becomes available, customers are chosen by the program
beginning with those whose situation is most severe. In this example, a serious
problem such as a nonfunctioning furnace would be indicated by a low value for the
priority, and a minor problem such as a noisy radiator would be indicated by a high
value for the priority.

An example of using a queue is a program that processes requests for parts at the
cash sales desk of a warehouse. A request for a part is added to the queue when the
customer's order is taken, and is removed from the queue when an order picker
receives the order form for the part. Using a queue collection in such an application
ensures that all orders for parts are processed on a first-come, first-served basis.

An example of using a relation is a program that maintains a list of all your

relatives, with an individual's relationship to you as the key. You can add an aunt,
uncle, grandmother, daughter, father-in-law, and so on. You can add an aunt even if
an aunt is already in the collection, because you can have several relatives who have
the same relationship to you. (For unique relationships such as mother or father, your
program would have to check the collection to make sure it did not already contain a
family member with that key, before adding the family member.) You can locate a
member of the family, but the family members are not in any particular order.

Chapter 7. Overview of the Collection Class Library 77

Concrete Classes

Sequence

Set

Sorted Bag

Sorted Map

Sorted
Relation

Sorted Set

An example of a sequence is a program that maintains a list of the words in a
paragraph. The order of the words is obviously important, and you can add or
remove words at a given position, but you cannot search for individual words except
by iterating through the collection and comparing each word to the word you are
searching for. You can add a word that is already present in the sequence, because a
given word may be used more than once in a paragraph.

An example of a set is a program that creates a packing list for a box of free samples
to be sent to a warehouse customer. The program searches a database of in-stock
merchandise, and selects ten items at random whose price is below a threshold level.
Each item is then added to the set. The set does not allow an item to be added if it is
already present in the collection, ensuring that a customer does not get two samples
of a single product. The set is not sorted, and elements of the set cannot be located
by key.

An example of using a sorted bag is a program for entering observations on the

types of stones found in a riverbed. Each time you find a stone on the riverbed, you
enter the stone's mineral type into the collection. You can enter the same mineral
type for several stones, because a sorted bag supports multiple elements. You can
search for stones of a particular mineral type, and you can determine the number of
observations of stones of that type. You can also display the contents of the
collection, sorted by mineral type, if you want a complete list of observations made to
date.

An example of using a sorted map is a program that matches the names of rivers
and lakes to their coordinates on a topographical map. The river or lake name is the
key. You cannot add a lake or river to the collection if it is already present in the
collection. You can display a list of all lakes and rivers, sorted by their names, and
you can locate a given lake or river by its key, to determine its coordinates.

An example of using a sorted relation is a program used by telephone operators to
provide directory assistance. The computerized directory is a sorted relation whose
key is the name of the individual or business associated with a telephone number.
When a caller requests the number of a given person or company, the operator enters
the name of that person or company to access the phone number. The collection can
have multiple identical keys, because two individuals or companies might have the
same name. The collection is sorted alphabetically, because once a year it is used as
the source material for a printed telephone directory.

An example of using a sorted set is a program that tests numbers to see if they are
prime. Two complementary sorted sets are used, one for prime numbers, and one for
nonprime numbers. When you enter a number, the program first looks in the set of
nonprime numbers. If the value is found there, the number is nonprime. If the value

78 VisualAge C++ Open Class Library User's Guide

Stack

Benefits of the Collection Class Library

is not found there, the program looks in the set of prime numbers. If the value is
found there, the number is prime. Otherwise the program determines whether the
number is prime or nonprime, and places it in the appropriate sorted set. The
program can also display a list of prime or nonprime numbers, beginning at the first
prime or nonprime following a given value, because the numbers in a sorted set are
sorted from smallest to largest.

An example of using a stack is a program that keeps track of daily tasks that you
have begun to work on but that have been interrupted. When you are working on a
task and something else comes up that is more urgent, you enter a description of the
interrupted task and where you stopped it into your program, and the task is pushed
onto the stack. Whenever you complete a task, you ask the program for the most
recently saved task that was interrupted. This task is popped off the stack, and you
resume your work where you left off. When you attempt to pop an item off the stack
and no item is available, you have completed all your tasks.

Benefits of the Collection Class Library

In addition to implementing the common abstract data types efficiently and reliably,
the Collection Class Library gives you the following benefits:

* A framework of properties to help you decide which abstract data type is
appropriate in a given situation

* A choice about how the abstract data type you have chosen is implemented by
the Collection Class Library

The Collection Class Library lets you choose the appropriate abstract data type for a
given situation by providing collection classes that are a complete, systematic, and
consistent combination of basic properties. These properties, which are explained in
L “Flat Collections” on page 80 , help you to select abstract data types that are at
the appropriate level of abstraction. In a particular application, for example, you may
have the choice between using a bag and a key sorted set. The properties of these
two collections will help you decide which one is more appropriate.

Once you have chosen the appropriate abstract data type, the Collection Class Library
offers you a choice of implementations for it. Each abstract data type has a common
interface with all of its possible implementations. It is easy to replace one
implementation with another for performance reasons or if the requirements of your
application change.

Chapter 7. Overview of the Collection Class Library 79

Flat Collections

Types of Classes in the Collection Class Library

The classes that make up the Collection Class Library are divided into three types:

Flat Collections

Trees

Flat collections include abstractions such as sequence, set, bag, and map.
Unlike trees, flat collections have no hierarchy of elements or recursive
structure.

{3 See “Flat Collections” for more information on flat collections and
their properties.

Trees are recursive collections of nodes, where each node holds an
element and has a given number of nodes as children.

Ly See “Trees” on page 87 for more details on trees.

Auxiliary Classes

The auxiliary classes include classes for cursors, iterators, and simple and
managed pointers.

Cursors and iterators give you convenient methods for accessing the
elements stored in the collections. See “Cursors” on page 98 for more
details on cursor classes. See “Iteration Using Iterators” on page 102 for
more details on iterator classes.

The pointer classes provide the means to store in collections a pointer to
an object instead of the object itself. The managed pointer class offers
this object management together with automatic storage management. /-
See “Using Pointer Classes” on page 115 and “Managed Pointers” on
page 119 for more details on pointer classes.

Flat Collections

Four basic properties are used to differentiate between different flat collections:

Ordering

Whether a next or previous relationship exists between elements.

Access by key

Whether a part of the element (a key) is relevant for accessing an element
in the collection. When keys are used, they are compared using relational
operators.

Equality for elements

Whether equality is defined for the element.

80 VisualAge C++ Open Class Library User's Guide

Flat Collections

Uniqueness of entries
Whether any given element or key is unique, or whether multiple
occurrences of the same element or key are allowed.

Figure 7 shows the flat collection that results from each combination of properties.
For example, “Map” appears in the Unique, Unordered column for the Key, Element
Equality row. This means that a map is unordered, each element is unique, keys are
defined, and element equality is defined. The figure contains N/A where no flat
collection corresponds to the combination of properties. For example, the N/A in the
first two rows of the rightmost column indicates that an ordered collection that is
sequential instead of sorted and offers access by key is not available. This implies
that there are no flat collections that have all of the following properties:

¢ The collection is ordered.

e The collection is sequential.

e The collection allows an element to appear more than once.
¢ Keys are defined for elements in the collection.

The rationale for not implementing collections with these combinations of properties
is that there is no reason to choose them over another collection that is already
available. For example, for an ordered collection that is sequential and offers access
by key, the key access would only have advantages if the elements are stored in a
position depending on their key. Because they are not, there is no flat collection with
key access that maintains a sequential order.

Unordered Ordered
Sorted Sequential
Unique Multiple Unique Multiple Multiple
Key (Key Element Map Relation Sorted map Sorted N/A
equality Equality relation
must be No Key set Key bag Key sorted Key sorted N/A
defined)
Element set bag
Equality
No Key Element Set Bag Sorted set Sorted bag Equality
Equality sequence
No N/A Heap N/A N/A Sequence
Element
Equality

Figure 7. Combination of Flat Collection Properties

Chapter 7. Overview of the Collection Class Library 81

Flat Collections

Ordering of Collection Elements
The elements of a flat collection class can be ordered in three ways:

e Unordered collections have elements that are not ordered.

e Sorted collections have their elements sorted by an ordering relation defined for
the element type. For example, integers can be sorted in ascending order, and
strings can be ordered alphabetically. The ordering relation is determined by the
instantiations for the collection class. For elements where the ordering relation
returns the same position, elements are added in chronological order.

¢ Sequential collections have their ordering determined by an explicit qualifier to
the add() function, for example, addAtPosition().

A particular element in a sorted collection can be accessed quickly by using the
ordering relation to determine its position. Unordered collections can also be
implemented to allow fast access to the elements, by using, for example, a hash table
or a sorted representation. The Collection Class Library provides a fast Tocate()
function that uses this structure for unordered and sorted collections. Even though
unordered collections are often implemented by sorting the elements, do not assume
that all unordered collections are implemented in this way. If your program requires
this assumption to be true, use a sorted collection instead.

For each flat collection, the Collection Class Library provides both unordered and
sorted abstractions. For example, the Collection Class Library supports both a set and
a sorted set. The ordering property is independent of the other properties of flat
collections: you have the choice of making a given flat collection unordered or sorted
regardless of the choices that you make for the other properties.

Access by Key
A given flat collection can have a key defined for its elements. A key is usually a
data member of the element, but it can also be calculated from the data members of
the element by some arbitrary function. Keys let you:

* Organize the elements in a collection
e Access a particular element in a collection

For collections that have a key defined, an equality relation must be defined for the
key type. Thus, a collection with a key is said to have key equality.

Equality for Keys and Elements
A flat collection can have an equality relation defined for its elements. The default
equality relation is based on the element as a whole, not just on one or more of its
data members (for example, the key). For two elements to be equal, all data
members of both elements must be equal. The equality relation is needed for

82 VisualAge C++ Open Class Library User's Guide

Flat Collections

functions such as those that locate or remove a given element. A flat collection that
has an equality relation has element equality.

Note that, for non-built-in types, you can define your own equality relation to behave
differently. For example, your equality relation could test only certain data members
of two elements to determine element equality. In such cases, element equality may

apply to two elements even when the elements are not exactly equal.

The equality relation for keys may be different than the equality relation for elements.
Consider, for example, a job control block that has a priority and a job identifier that
defines equality for jobs. You could choose to implement a job collection as
unordered, with the job ID as key, or as sorted by priority, with the priority as key.
The Job class for this job control block could look like this:
typedef unsigned long JoblId;
typedef int Priority;
class Job {
JobId ivId; // These are private data members.
Priority ivPriority;
public:
JobId id () const { return ivIid; }
Priority priority () { return ivPriority; }
}s
// 1f ivid is the key:
JobId const& key (Job const& t)
{ return t.id (); }
// 1f ivPriority is the key:
Priority const& key (Job const& t)
{ return t.priority (); }
/] ...

In the first case, you have fast access through the job ID but not through the priority;
in the second case, you have fast access through the priority but not through the job
ID. The ordering relation on the priority key in the second case does not yield a job
equality, because two jobs can have equal priorities without being the same.

Functions like TocateElementWithKey() ({3 described in “Flat Collection Member
Functions” in the Open Class Library Reference) use the equality relation on keys to
locate elements within a collection. A collection that defines key equality may also
define element equality. Functions that are based on equality (such as locate()) are
only provided for collections that define element equality. Collections that define
neither key equality nor element equality, such as heaps and sequences, provide no
functions for locating elements by their values or testing for containment. Elements
can be added and retrieved from such collections by iteration. For sequences,
elements can also be added and retrieved by position.

Chapter 7. Overview of the Collection Class Library 83

Flat Collections

A sorted collection must define either key equality or element equality. A sorted
collection that does not have a key defined must have an ordering relation defined for
the element type. This relation implicitly defines element equality.

Keys can be used to access a particular element in a collection. The alternative to
defining element equality as equality of all data members is to define it as equality of
keys only. (In the job control block example on page 83, this means defining job
equality as equality of the job ID.) Use this alternative only when you are sure that
keys are unique. When you use this alternative, you can locate an element only with
the key (using locateElementWithKey(key) instead of Tocate(element). Locating
elements by key improves performance, particularly if the complete element is large
or difficult to construct in comparison to the key alone. Consider the two alternatives
in the following example:

// First solution

JobId const& key (Job const& t) { return t.id; }
KeySet < Job, int > jobs;

/] ...

jobs.TocateETementWithKey (1);

// Second solution

IBoolean operator== (Job const& tl, Job const& t2)
{ return tl.id == t2.id; }

Set < Job > jobs;

/] ...

Job tl;

tl.id = 1;

jobs.locate (tl1);

The first solution is superior, if job construction (Job t1) requires a significant
proportion of the total system resources used by the program.

The Collection Class Library provides sorted and unsorted versions of maps and
relations, for which both key and element equality must be defined. These collections
are similar to key set and key bag, except that they define functions based on element
equality, namely union and intersection. The add() function behaves differently
toward maps and relations than it does toward key set and key bag.

Uniqueness of Entries

The terms unique and multiple relate to the key, in the case of collections with a key.
For collections with no key, unique and multiple relate to the element.

In some flat collections, such as map, key set, and set, no two elements are equal or
have equal keys. Such collections are called unique collections. Other collections,
including relation, key bag, bag, and HEAP, can have two equal elements or elements
with equal keys. Such collections are called multiple collections.

For those multiple collections with key that have element equality (relation and sorted
relation), elements are always unique while keys can occur multiple times. In other

84 VisualAge C++ Open Class Library User's Guide

Flat Collections

words, if element equality is defined for a multiple collection with key, element
equality is tested before inserting a new element.

A unique collection with no keys and no element equality is not provided because a
containment function cannot be defined for such a collection. A containment function
determines whether a collection contains a given element.

The behavior during element insertion (when one of the add... methods is applied to
a collection) distinguishes unique and multiple collections. In unique collections, the
add() function does not add an element that is equal to an element that is already in
the collection. In multiple collections, the add() function adds elements regardless of
whether they are equal to any existing elements or not.

The add() function has two general properties:

¢ All elements that are contained in the collection before an element is added are
still contained in the collection after the element is added.
e The element that is added will be contained in the collection after it is added.

Operations that contradict these properties are not valid. You cannot add an element
to a map or sorted map that has the same key as an element that is already contained
in the collection, but is not equal to this element (as a whole). In the case of a map
and sorted map, an exception is thrown. Note that both map and sorted map are
unique collections. The functions TocateOrAddETementWithKey() and
addOrReplaceETementWithKey() specify what happens if you try to add an element to a
collection that already contains an element with the same key.

Figure 8 on page 86 shows the result of adding a series of four elements to a map, a
relation, a key set, and a key bag. The first row shows what each collection looks
like after the element <a, 1> has been added to each collection. Each following row
shows what the collections look like after the element in the leftmost column is added
to each.

The elements are pairs of a character and an integer. The character in the pair is the
key. An element equality relation, if defined, holds between two elements if both the
character and the integer in each pair are equal.

Chapter 7. Overview of the Collection Class Library 85

Restricted Access

add Map or sorted Relation or Key set or key Key bag or key
map sorted relation sorted set sorted bag

<a,l> <a,l> <a,l> <a, 1> <a,l>

<b,1> <a,l>, <b,1> <a,1>, <b,1> <a,l>, <b,1> <a,l>, <b,1>

<a,l> <a,1>, <b,1> <a,1>, <b,1> <a, 1>, <b,1> <a,1>, <b,1>,

<a,l>

<a,2> exception: <a,l>, <b,1>, <a,l>, <b,1> <a,l>, <b,1>,
Key Already <a,2> <a,l>, <a,2>
Exists

Figure 8. Behavior of add for Unique and Multiple Collections

Restricted Access

Flat collections with restricted access have a restricted set of functions that can be
applied to them; that is, only a subset of the functions listed in £ *“Flat Collection
Member Functions” in the Open Class Library Reference can be applied. Examples
of such flat collections are stack and priority queue.

You may want to restrict the set of functions for reasons such as:

1. You can simplify the interface to the collection.

2. The normal rules for restricted flat collections apply, so certain assumptions can
be made when validating and inspecting the code. A stack, for example, does not
allow the removal of any element except the top one.

3. You can create new implementation options.

The Collection Class Library provides the following flat collections with restricted
access:

e Stack, deque, and queue, which are all based on sequence
¢ Priority queue, which is based on key sorted bag

{3 See Part 3, “Flat Collection Classes” in the Open Class Library Reference for
descriptions of collections with restricted access. These descriptions are
alphabetically merged with descriptions for other collections. You can use Table 2
on page 87 to select the appropriate flat collection with restricted access for a given
set of properties.

86 VisualAge C++ Open Class Library User's Guide

Auxilliary Classes

Table 2. Properties for Collections with Restricted Access

Add Remove Sorted (with key) Unsorted (no key)
According to First Priority queue N/A

key

Last Last N/A Stack

Last First N/A Queue

First or last First or last N/A Deque

Trees

Trees can be described either as structures where the elements have a hierarchy or as
a special form of recursive structure. Recursively a tree can be described as a node
(parent) with pointers to other nodes (children). Every node has a fixed number of
pointers, which are set to null at initialization time. Insertion of a new node involves
setting a pointer in the parent so that it points to the inserted child. Figure 9
illustrates the structure of an n-ary tree.

Node: child 1 | child 2 child n
Element 0
null pointer
child 1] child 2 child n child 1 |child 2 child n
Element Element

Figure 9. The Structure of N-ary Trees

Similarly, you can obtain tree-like or recursive structures by implementing the array
of children of a node as a flat collection of nodes. This will give you different
functionality for the children, for example, the ability to locate a child with a given
value.

Auxiliary Classes

To use the collection classes, you also need a cursor and an iterator class. These are
described in “Cursors” on page 98 and “Iteration Using Iterators” on page 102.

Chapter 7. Overview of the Collection Class Library 87

Implementation Structure

You can use the pointer and managed pointer classes to manage objects; they enable
automatic storage management. “Using Pointer Classes” on page 115 and “Managed
Pointers” on page 119 explain the concepts and usage in detail.

The Overall Implementation Structure

To achieve maximum runtime efficiency and ease of use, the Collection Class Library
combines the common features of object-oriented techniques, such as class
hierarchies, polymorphism and late binding, with an efficient class structure that uses
advanced optimization techniques. This section gives a brief overview of the
Collection Class structure that is shown in Figure 10 on page 90. A more detailed
explanation of the particular concepts is found in subsequent sections.

You need not understand the entire implementation structure to begin using the
collections in their basic forms. The following is a list of the implementation
strategies offered by the Collection Class Library, in order of increasing complexity:

Use the Defaults

Use Variants

Default implementations are provided for every collection. If you do not want to be
concerned with choosing an implementation for an abstract data type, you can use the
default classes provided by the Collection Classes. In chapters of the Open Class
Library Reference that describe particular collections, the default implementation is
the first implementation in the “Class Implementation Variants” table for that chapter,
if a table is present. If no table is present, the default implementation is stated in the
chapter's “Class Implementation Variants” section.

If you want to choose a particular implementation variant for a collection, you can
easily replace the default implementation by an implentation variant of the same
collection that behaves externally in the same way but offers improved performance.

Use Polymorphism

If you want to have a more generalized collection class than those offered by the
concrete classes, you can take advantage of polymorphism. For example, when
working with a set, instead of using the concrete classes ISet, IGSet,
ISetOnBSTKeySortedSet, and so on, you can use the abstract class IASet or, for more
generic behavior, the abstract class IAEqualityCollection. Abstract classes, which
are accessed using reference classes, let you program to a more generalized interface,
without necessarily knowing what abstract data types (collections) your code will
operate on. You can leave the implementation details for later.

88 VisualAge C++ Open Class Library User's Guide

Implementation Structure

Categories of Classes
The hierarchy of abstract classes lets you overload selected collection class member
functions. You can inherit from an appropriate reference class, and then implement
the member functions that you want to overload. For all other member functions, the
reference class calls the corresponding methods from the concrete (“based-on”) class
hierarchy. You can also use the reference classes to achieve polymorphism, which is
discussed on page 139.

Figure 10 on page 90 illustrates the relationships between the categories of classes
for the collection known as a set. Each class falls within one of five categories:
concrete, typed implementation, typeless implementation, abstract, and reference
classes. Arrows indicate a relationship between classes. Text beside each arrow
indicates the relationship between the two classes. The relationships are:

¢ Instantiates
e Jsa
e Uses

In this figure, you will notice certain naming conventions. For example, default
classes begin with the letter I, while abstract classes begin with the letters IA.
For information on naming conventions, see “Class Template Naming Conventions”
on page 93.

Chapter 7. Overview of the Collection Class Library 89

Implementation Structure

default concrete abstract
ISequence
classes ISet q classes classes IACollection
typedefi
i 1SetOn 1SetOn 1SetOn
Vla”am AVL Hash SortedTabular
classes KeySortedSet KeySet Sequence
IAEquality IAOrdered
(partially) instantiates Collection Collection
4
isa
KeySortedSet
implementations
. IASet
typed IGAVI IWSetOn
implementation KeySortedSet|[yses |KeySortedSet
classes :
uses Set
implementations
4 uses isa
typeless) IAVI
implementation |KeySortedSet
classes Impl IRSet reference
classes

Figure 10. Overall Library Structure

The following sections describe the categories of collections in the Collection Class
Library.

Default Classes

The default classes provide the easiest way to use the collection classes. Two default
classes are provided for each abstract data type:

e A class that is instantiated only with the element type, and possibly the key type.
ISet is an example of this type of default class.
¢ A class that takes element-specific functions. IGAvIKeySortedSet is an example

of this type of default class. /3y See “Using Element Operation Classes” on
page 110 for information on element-specific functions.

Variant Classes

Each abstract data type can be instantiated either by its default class or by one of
several variant classes. Sets can be implemented, for example, as key sorted sets or
as hash tables. Key sorted sets, in turn, can be implemented as linked or tabular or
diluted sequences. Default classes and variant classes are also called the

90 VisualAge C++ Open Class Library User's Guide

Implementation Structure

implementation variants of a collection. All implementation variants of a collection
have the same interface and external behavior.

Abstract Classes
The classes in the Collection Classes are all related through the hierarchy of abstract
classes shown in Figure 11 on page 92. In the figure, abstract classes have a grey
shadow. Concrete collections have a black shadow, or a white shadow for restricted
access collections. The leaves of the abstract class hierarchy (that is, those classes
that have no derived classes within the abstract class hierarchy tree) define the
collection for which concrete implementations are provided. The lines in the figure
represent an is a relationship from a lower collection to the collection above it. For
example, a set is an equality collection, which is a collection. Note that Tree does
not inherit from any abstract class. The names of abstract collections start with IA.

Reference Classes
To avoid the overhead of virtual function calls, the Collection Classes do not allow
concrete classes to be derived directly from abstract classes. The compiler can
usually optimize function calls when it knows the exact type of the object, but
because collections are mostly passed by reference, such an optimization is not
possible with the collection classes. If you do not want to take advantage of
polymorphism, you do not have to deal with the overhead of virtual function calls.

Abstract and concrete classes are linked through reference classes. These classes are
derived from the abstract classes, and implement the member functions using one of
the corresponding concrete classes. Names of reference classes start with IR. {y
See Chapter 11, “Polymorphic Use of Collections” on page 139 for more details on
the use of polymorphism in the Collection Classes.

Support Classes for Visual Builder for C++
The collection classes have special classes which support Visual Builder for C++.
See Visual Builder User's Guide for more information on Visual Builder.

Typed and Typeless Implementation Classes
Typed implementation classes implement the concrete classes. They provide an
interface that is specific to a given element type.

Typed implementation classes may be basic or based on another implementation.
Basic classes have names that start with I or IG. Based-on classes have names that
start with IW. {y For further details, see “The Based-On Concept” on page 126.

Typeless implementation classes prevent unnecessary code expansion, which could

occur if all code for a collection were fully implemented through its templates. For
example, the add(Element const& element) function is offered with a typed interface,

Chapter 7. Overview of the Collection Class Library 91

Implementation Structure

Collection

Ordered
Collection
Key Equality Sequential
‘ Collection ‘ Collection Conesion Collection
[[T
| L] = 0
. L . Equality
Equality Key Key Sorted “qualin
Collection Collection Collection
‘ [
Equality
Key Soried
Collection
‘ Key Set ‘ Map ‘ Set ‘ Key Sored ‘ Sorted Map ‘ Sorted Set ‘ ;ﬂ]“u‘e';‘se ‘ Heap ‘ Tree

Key Bag

‘ Relation

‘ Bag ‘ Key Sorted

Bag

Sorted Relation ‘ Sorted Bag Sequence I
Queue
T T

Figure 11. The Abstract Class Hierarchy. Abstract classes have a grey background. Concrete classes have a black background.
Restricted access classes have a white background. Dotted lines show a “based-on” relationship, not an actual derivation.

so that the compiler can check whether a program tries to add a string to a collection
of integers. However, suppose an application were to use all of the following:
integerCollection.add(anInteger);
stringCollection.add(aString);
elementCollection.add(anElement);

/...

Without typeless implementations, each collection's template instantiation of the add()
function would need to contain the full functionality for adding an element. By
having each of these typed add() functions use the same typeless
(void*)implementation code, the library avoids unnecessary code expansion.

The collection classes, however, use functions that return specific types. The
implementation classes provide an untyped (void«) interface that the concrete class
implementations use.

92 VisualAge C++ Open Class Library User's Guide

Linking to the Collection Class Library

Class Template Naming Conventions
All class templates begin with an uppercase I. Table 3 shows the naming
conventions used to distinguish between different types of class templates, given a
default class template of ISet. Underscored letters in each class template name are
those that indicate the stated convention:

Class name Meaning of letters
ISet Default class template.
IGSet Default generic class template. The element operations class can

be specified as template argument.

ISetOn... Variant class template.
IVSet Support class template for Visual Builder
IVGSetOn Generic support class template for Visual Builder. The element

operations class can be specified as a template argument.

IWSetOn. .. Typed implementation based on another typed implementation.
You can think of the W as a shorthand for “wrapping another
implementation with a new interface.” 3 See “Typed and
Typeless Implementation Classes” on page 91 for further details.)

IASet Abstract class template.

IRSet Reference class template.

Table 3. Class Template Naming Conventions

Linking to the Collection Classes

The Collection Class Library uses the library files shown below. By default the
compiler uses dynamic linking, and you should not have to specify any library. The
files are shown here in case you want to override the default behavior:

e (PP00C30.LIB - for static linking
* CPPOOC3I.LIB - import library for dynamic linking
* CPP00C30.DLL - for dynamic linking

Chapter 7. Overview of the Collection Class Library 93

Linking to the Collection Class Library

94 VisualAge C++ Open Class Library User's Guide

Instantiation and Object Definition

Instantiating and Using the Collection Classes

This chapter describes how to instantiate and use collection classes.

To use a collection class, you normally follow these three steps:

1. Instantiate a collection class template and provide arguments for the formal
template arguments.

2. Define one or more objects of this instantiated class, possibly providing
constructor arguments.

3. Apply functions to these objects.

Instantiation and Object Definition

This section describes instantiation for the default implementation. For a given class,
such as ISet, and a given element type, such as a class named Job, the instantiation
for a new class that represents sets of jobs could look like this:

typedef ISet < Job > JobSet;

The instantiation could also look like this:

class JobSet : public ISet < Job > {
public:

JobSet (INumber n = 100) : ISet < Job > (n) {}
}s

The second form defines a new class called JobSet that has a constructor that takes a
single argument. The definition of the constructor is necessary if the program needs
to create JobSets with different estimates for the number of elements. Because
derived classes do not inherit their constructors from their base classes, JobSet does
not inherit the constructor of ISet < Job >.

Once the JobSet collection is defined, you can define JobSet objects toBeDone,
pending, and delayed as follows:

JobSet toBeDone, pending, delayed;

You can also define the objects without introducing a new type name (JobSet):

ISet < Job > toBeDone, pending, delayed;

However, you should begin by explicitly defining a named class, such as JobSet, that
uses the default implementation. It is then easier to replace the default

© Copyright IBM Corp. 1993, 1995 95

Adding, Removing, and Replacing Elements

implementation with a better implementation later on. { See Chapter 10, “Tailoring
a Collection Implementation” on page 125 for more details on replacing default
implementations.

Bounded and Unbounded Collections

A bounded collection limits the number of elements it can contain. There are no
bounded collections in the Collection Classes. The concept of bounded collections is
supported so that you can create your own bounded collection implementations.

When a bounded collection contains the maximum number of elements (its bound),
the collection is said to be full. This condition can be tested by the function
isFull(). If elements are added to a full collection, the exception IFullException is
thrown. This behavior is useful for collections that are to have their storage allocated
completely on the runtime stack.

You can determine the maximum number of elements in a bounded collection by
calling the function maxNumberOfElements (). You can only call this function if the
collection is bounded. You can determine whether a collection is bounded by calling
the function isBounded().

In the current implementation of the Collection Classes, all collections are unbounded.
The functions isBounded() and isFul1() always return False. The function
maxNumberOfElements () throws the exception INotBoundedException.

Adding, Removing, and Replacing Elements
You can perform three operations to modify a collection:

¢ Adding elements. Use the add() function and its variants.
¢ Removing elements. Use the remove() function and its variants.
e Replacing elements. Use the replace() function and its variants.

Adding Elements
The function add() places the element identified by its argument into the collection.
After an element has been added, all cursors of the collection become undefined.
Cursors are used to point to elements of the collection; an undefined cursor is one
that might not currently point to a valid element. add() behaves differently
depending on the properties of the collection:

¢ In unique collections, an element is not added if it is already contained in the
collection.

¢ In sorted collections, an element is added according to the ordering relation of the
collection.

¢ In sequential collections, an element is added to the end of the collection.

96 VisualAge C++ Open Class Library User's Guide

Adding, Removing, and Replacing Elements

In general, you can copy one collection to another collection that is initially empty by
iterating through the elements of the first collection and calling add() with each
element as an argument. In particular, for a sequential collection, add() must add the
element last, because iteration iterates from the first toward the last element.

For sequential collections, elements can be added at a given position using add
functions other than add(), such as addAtPosition(), addAsFirst(), and addAsNext().
Elements after and including the given position are shifted. Positions can be specified
by a number, with 1 for the first element, by using the addAtPosition() function.
Positions can also be specified relative to another element by using the addAsNext ()
or addAsPrevious() functions, or relative to the collection as a whole by using the
addAsFirst() or addAsLast functions.

Removing Elements
In the Collection Classes, you can remove an element that is pointed to by a given
cursor by using the removeAt() function. All other removal functions operate on the
model of first generating a cursor that refers to the desired position and then
removing the element to which the cursor refers. There is an important difference
between element values and element occurrences. An element value may, for
nonunique collections, occur more than once. The basic remove() function always
removes only one occurrence of an element.

For collections with key equality or element equality, removal functions remove one
or all occurrences of a given key or element. These functions include remove(),
removeElementWithKey (), removeAl10ccurrences(), and removeAllElementsWithKey().
Ordered collections provide functions for removing an element at a given numbered
position. Ordered collections also allow you to remove the first or last element of a
collection using the removeFirst() or removelast() functions.

After an element has been removed, all cursors of the collection become undefined.
Therefore, removing all elements with a given property from a collection cannot be
done efficiently using cursors. After you have removed one element with the
property, the entire collection would have to be searched for the next element with
the property. If you want to remove all of the elements in a collection that have a
given property, you should use the function removeAl11() and provide a predicate
function as its argument. This predicate function has an element as argument and
returns an IBoolean value. The IBoolean result tells whether the element will be
removed. The following example removes all even elements from an integer
collection:

Chapter 8. Instantiating and Using the Collection Classes 97

Cursors

IBoolean isEven (int const& i, voidx)

{

}
/.

intSet.removeAll (isEven);

return i % 2 == 0;

Sometimes you may want to pass more information to the predicate function. You
can use an additional argument of type void*. The pointer then can be used to access
a structure containing further information. {3 See the last example under “Iteration
Using Iterators” on page 102 for information on how to use the additional argument.

Replacing Elements

It is possible to modify collections by replacing the value of an element occurrence.
Adding and removing elements usually changes the internal structure of the
collection. Replacing an element leaves the internal structure unchanged. If an
element of a collection is replaced, the cursors in the collection do not become
undefined.

For collections that are organized according to element properties, such as an ordering
relation or a hash function, the replace function must not change this element
property. For key collections, the new key must be equal to the key that is replaced.
For nonkey collections with element equality, the new element must be equal to the
old element as defined by the element equality relation. The key or element value
that must be preserved is called the positioning property of the element in the given
collection type.

Sequential collections and heaps do not have a positioning property. Element values
in sequences and heaps can be changed freely. Replacing element values involves
copying the whole value. If only a small part of the element is to be changed, it is
more efficient to use the elementAt() access function described in “Using Cursors for
Locating and Accessing Elements” on page 100. The replaceAt() function checks
whether the replacing element has the same positioning property as the replaced
element. ({ySee Chapter 13, “Exception Handling” on page 145 for more details on
preconditions.) When you use the elementAt() function to replace part of the element
value, this check is not performed. If you want to ensure safe replacement (a
replacement that does not change the positioning property), use replaceAt() rather
than elementAt().

Cursors

A cursor is a reference to an element in a collection. If the position of the element
changes, the cursor is invalidated. This occurs because the cursor refers only to the
position of the element and not to the element itself.

98 VisualAge C++ Open Class Library User's Guide

Cursors

A cursor is always associated with a collection. The collection is specified when the
cursor is created. Each collection function that takes a cursor argument has a
precondition that the cursor actually belong to the collection. Simple functions, such
as advancing the cursor, are also functions of the cursor itself. For example, given
the following definitions:

typedef ISet<Jdob> JobSet;

JobSet myJobSet;
JobSet::Cursor myCursor(myJobSet);

the following two lines of code are functionally equivalent:

myCursor.setToNext();
myJobSet.setToNext (myCursor);

Cursors and iteration by cursors can be used with any collection. With cursors the
Collection Classes provide:

* An iteration scheme that is simpler than using iterators. ({3 See “Iteration Using
Iterators” on page 102.)

e The ability to define functions that return cursors. Such functions can give you
fast access to an element if it exists, or indicate the non-existence of an element
by returning an invalid cursor.

Cursors are only temporarily defined. As soon as elements are added to or removed
from the collection, existing cursors become undefined. One of the three following
situations occurs:

1. The cursor is invalidated (isValid() will return False).

2. The cursor remains valid and points to an element of the collection; however, it
may point to a different element than before.

3. The cursor remains valid but no longer points to an element of the collection.

Do not use an undefined cursor as an argument to a function that requires the cursor
to point to an element of the collection.

Each concrete collection class, such as ISet<int>, has an inner definition of a class
Cursor that can be accessed as ISet<int>::Cursor.

Because abstract classes declare functions on cursors just as concrete classes do,
there is a base class ICursor for these specific cursor classes. To allow the creation
of specific cursors for all kinds of collections, every abstract class has a virtual
member function newCursor(). newCursor() creates an appropriate cursor for the
given collection object.

Chapter 8. Instantiating and Using the Collection Classes 99

Cursors

Using Cursors for Locating and Accessing Elements
Cursors provide a basic mechanism for accessing elements of collection classes. For
each collection, you can define one or more cursors, and you can use these cursors to
access elements. Collection Class functions such as elementAt(), locate() and
removeAt () use cursors.

elementAt () lets you access an element using a cursor.

elementAt () returns a reference to an element, thereby avoiding copying the elements.
Suppose that an element had a size of 20KB and you want to access a 2-byte data
member of that element. If you use elementAt() to return a reference to this element,
you avoid having to copy the entire element to a local variable.

Several other functions, such as firstElement() or elementWithKey(), return a
reference to an element. They can be thought of as first executing a corresponding
cursor function, such as setToFirst() or locateElementWithKey(), and then accessing
the element using the cursor.

You must determine if the element exists before trying to access it. If its existence is
not known from the context, it must first be checked. To save the extra effort of
locating the desired element twice (once for checking whether it exists and then for
actually retrieving its reference), use the cursor that is returned by the locate function
for fast element access:
if (myCollection.locateETementWithKey (someKey, myCursor)) {
/...

myVariable = myCollection.elementAt (myCursor);

/...

The elementAt () function can also be used to replace the value of the referenced
element. You must ensure that the positioning property of the element is not changed
with respect to the given collection. {3 See “Adding, Removing, and Replacing
Elements” on page 96 for more details.

There are two versions of elementAt():

Element const& elementAt (ICursor const&) const;
Element& elementAt (ICursor constd);

Use the first version of elementAt() if you want to assert to the compiler that no
elements in the collection can be changed by this function.

100 VisualAge C++ Open Class Library User's Guide

Iteration

Iterating over Collections

Iterating over all or some elements of a collection is a common operation. The
Collection Class Library gives you two methods of iteration:

e Using cursors
e Using iterators or iteration functions

Ordered (including sorted) collections have a well-defined ordering of their elements,
while unordered collections have no defined order in which the elements are visited
in an iteration. Each element is visited exactly once.

You cannot add or remove elements from a collection while you are iterating over a
collection, or all elements may not be visited once. You cannot use any of the
iterations described in this section if you want to remove all of the elements of a
collection that have a certain property. Use the function removeA11() (described in
L7 “Flat Collection Member Functions” in the Open Class Library Reference), that
takes a predicate function as argument. {3y See “Removing Elements” on page 97
for details on removing elements.

Iteration Using Cursors
Cursor iteration can be done with a for loop. Consider the following example:

ISet<int> myCollection;

ISet<int>::Cursor myCursor (myCollection);

for (myCursor.setToFirst (); myCursor.isValid ();
myCursor.setToNext ())

{

/] ...
int currentElement = myCollection.elementAt (myCursor) ;
// change currentElement
/] ...
}

ISet<int>::Cursor is the class Cursor that is defined within the class ISet<int>.
This is referred to as a nested class. myCursor is the name of the cursor object. Its
constructor takes myCollection as argument.

The Collection Class Library defines a macro forCursor that you can use to write an
elegant cursor iteration:

Chapter 8. Instantiating and Using the Collection Classes 101

Iteration

#define forCursor(c) \
for ((c).setToFirst(); \
(c).isvalid(); \
(c).setToNext())

// myCollection and myCursor are the same as before.

forCursor(myCursor)

{
/...
int currentElement = myCollection.elementAt (myCursor);
// change currentElement

/...

If the element is used as read-only, a function of the cursor can be used instead of
elementAt (myCursor):

// myCollection and myCursor are the same as before.
// myCursor's construction associated it to myCollection.

forCursor(myCursor)

{
/...
int currentElement = myCursor.element ();
// print currentElement

}

The function element () above is a function of the Cursor class ({ysee “Cursors” on
page 98). It returns a const reference to the element currently pointed at by the
cursor.

Note: You should remove multiple elements from a collection using the removeAll()
function, with a predicate function as an argument. This function is more efficient
and less error-prone than the alternative of removing elements using cursor iteration.
L3 See “Adding, Removing, and Replacing Elements” on page 96 for further details.

Iteration Using lterators
Cursor iteration has two possible drawbacks:

¢ For unordered collections, the explicit notion of an (arbitrary) ordering may be
undesirable for stylistic reasons. For example, it could mislead you (or another
programmer) into perceiving or exploiting an order where in fact the order does
not exist or is not guaranteed.

e Iteration in an arbitrary order might be done more efficiently using something
other than cursors. For example, with tree representations, a recursive descent
iteration may be faster than the cursor navigation, even though the time for extra
function calls must be considered.

102 VisualAge C++ Open Class Library User's Guide

Iteration

The Collection Class Library provides the al1ETementsDo() function that addresses
both drawbacks by calling a function that is applied to all elements. The function
returns an IBoolean value that tells whether the iteration should be continued or not.
For ordered collections, the function is applied in the order of elements within the
collection. Otherwise the order is unspecified.

The function that is applied in each iteration step can be given in two ways: directly
as a C++ function, or by defining the function as a method of a user-defined iterator
class:

¢ As a C++ function: Code the function that you want to be applied to all elements
as a C++ function, then use allETementsDo() to apply the function to the
elements.

e As an object of an iterator class: Code the function as a member function of an
iterator class that you create (for example, myIteratorClass). Then let the
iterator apply this function to every element, by using
allElementsDo(myIteratorObject), where myIteratorObject is an object of
mylteratorClass.

The second possibility is more flexible. You can better encapsulate the member
function, and you can use additional arguments to that function if needed. If the
function is a method that you can use for various classes, you can reuse the iteration
class.

Note: Do not add or remove elements while using the iterator.

For both these possibilities (the C++ function and the object of an iterator class), an

additional distinction is made as to whether the function leaves the element constant
or not. This means that four definitions of the function al1ElementsDo() are offered
by every collection. The following example shows the definition of al1ETementsDo()
for ISet:

template < class Element, ... >
class ISet {
/] ...
// Iteration applying a C++ function:
IBoolean allElementsDo (IBoolean (*function)(Element&, voidx),
void* additionalArgument = 0);
IBoolean allElementsDo (IBoolean (*function)(Element const&, voidx*),
void* additionalArgument = 0) const;

// Iteration applying an iterator object:

IBoolean allElementsDo (IIterator < Element > &);
IBoolean allElementsDo (IConstantIterator < Element > &)const;

Chapter 8. Instantiating and Using the Collection Classes 103

Iteration

If you use an object of an iterator class, this class must offer an applyTo() function.
It also must be derived from the abstract base class IIterator or IConstantIterator.
These abstract iterator base classes are defined in the following way:

template < class Element >

class IIterator {

public:

virtual IBoolean applyTo (Element&) = 0;
1

template < class Element >
class IConstantIterator {
public:
virtual IBoolean applyTo (Element const&) = 0;
}s

Additional arguments that are needed for the iteration can, for example, be passed as
arguments to the constructor of the derived iterator class. You must define the
function with the given argument and return types. For additional arguments, you
may have to define a separate class or structure.

The following example shows the use of iterators. The example adds all integers in a
bag using two methods: by iterating the applied function as an object of an iterator
class or as a function.

// An example of using Iterators

#include <ibag.h>
#include <iostream.h>

typedef IBag < int > IntBag;

class SumlIterator : public IConstantIterator < int > {
int ivSum;
public:
SumIterator () : ivSum (0) {}
IBoolean applyTo (int const& i) {
ivSum += i, // Increments ivSum by the value
return True; // of the current element
1
int sum () { return ivSum; } // used to return the sum of
// integers in the bag as
// calculated by applyTo
}s

int sumUsingIteratorObject (IntBag const& bag) {

SumIterator sumUp; // Instantiates an iterator object
bag.alTElementsDo (sumUp); // of SumIterator in order to
return sumUp.sum (); // apply its methods to the bag
} // of integers
IBoolean sumUpFunction (int const& i, void* sum) {
(int)sum += i3 // Increments sum by current value
return True; // of i. This function is applied
} // to all elements of the bag.

104 VisualAge C++ Open Class Library User's Guide

Copying and Referencing Collections

int sumUsingIteratorFunction (IntBag const& bag) {

int sum = 0; // Applies sumUpFunction (an
bag.allETementsDo // iterator function) to all
(sumUpFunction, &sum); // elements in the bag.

return sum;

}

int main (int argc, char* argv[]) {
IntBag intbag;
for (int cnt=1; cnt < argc; cnt++)
intbag.add(atoi(argv[cnt]));
cout << "Sum obtained using an Iterator Object = "
<< sumUsingIteratorObject(intbag) << "\n";
cout << "Sum obtained using an Iterator Function ="
<< sumUsingIteratorFunction(intbag) << "\n";
return 0;

If you invoke this program by entering:

sumup 1 2 3 45

the program produces the following output:

Sum obtained using an Iterator Object = 15
Sum obtained using an Iterator Function = 15

Copying and Referencing Collections

The Collection Classes implement no structure sharing between different collection
objects. The assignment operator and the copy constructor for collections are defined
to copy all elements of the given collection into the assigned or constructed
collection. You should remember this point if you are using collection types as
arguments to functions. If the argument type is not a reference or pointer type, the
collection is passed by the copy constructor, and changes made to the collection
within the called function do not affect the collection in the calling function.

If you want a function to modify a collection, pass the collection as a reference:

void removePrimes (ISet < int > mySet) { /* ... =/ } // wrong
void removePrimes (ISet < int >& mySet) { /x ... %=/ } // right

For the sake of efficiency, avoid having a collection type as the return type of a
function:

ISet < int > f () {
ISet < int > result;
/] ...
return result;

}
/] ...
intSet = f (); // inefficient

Chapter 8. Instantiating and Using the Collection Classes 105

Copying and Referencing Collections

In this program intSet becomes a reference argument to the assignment operation,
which would again copy the set. A better approach is:
void f (ISet < int > &result) { /* ... %/ }

/] ...
f (intSet);

106 VisualAge C++ Open Class Library User's Guide

Element and Key-Type Functions

Element Functions and Key-Type Functions

This chapter describes the functions that are required by member functions of the
Collection Classes to manipulate elements and keys. The following topics are
discussed:

¢ FElement functions and key-type functions

¢ Using standard operators to provide element and key-type functions
e Using separate functions

¢ Using element operation classes

¢ Functions for derived element classes

Introduction to Element Functions and Key-Type Functions

The member functions of the Collection Class Library call other functions to
manipulate elements and keys. These functions are called element functions and
key-type functions, respectively.

Member functions of the Collection Class Library may, for example, use the element's
assignment or copy constructors for adding an element, or they may use the element's
equality operator for locating an element in the collection. In addition, Collection
Class functions use memory management functions for the allocation and deallocation
of dynamically created internal objects (such as nodes in a tree or a linked list).

The element functions that may be required by a given collection are:

e Default and copy constructor
¢ Destructor

¢ Assignment

¢ Equality test

* Ordering relation

e Key access

¢ Hash function

The key-type functions that may be required by a given collection are:

¢ Equality test
* Ordering relation
e Hash function

Note: For implementation variants where both equality test and ordering relation are
required element functions (or where both are required key-type functions), the library
does not define which of the two is used to determine element or key equality.

© Copyright IBM Corp. 1993, 1995 107

Using Member Functions

The memory management functions that may be required by a given collection are:

¢ Allocation
e Deallocation

The lists above are the superset of all element functions and key-type functions that a
Collection Class can ever require. For example, a collection without keys does not
require any key-type functions, and a collection without element equality does not
require an equality test. Element functions and key-type functions required for a
certain collection are listed with the description of each collection in the Open Class
Library Reference.

Where possible, these functions are already defined by the Collection Class Library.
Default memory management functions are provided for usage with any element and
key type. For the standard C++ data types int and char+, defaults are offered for all
element and key-type functions. For all other element and key types, you must
provide these functions.

There are three different methods of providing element functions and key-type
functions, each of which offers a different level of flexibility and tailoring:

1. Using member functions
2. Using separate functions in the global name space
3. Using element operation classes.

The second and third methods can also be used to replace the default memory
management functions for some of the collections.

Using Member Functions

The easiest way to provide the required element or key-type functions is to use
member functions. For assignment, equality, and ordering relation, operator=,
operator==, and operator< are used, respectively. Certain element functions and
key-type functions must be defined as member functions. Others cannot be defined
as member functions, but must be defined as separate functions.

You must define these functions using member functions:

¢ Constructors

¢ Destructors
You cannot define these functions using member functions. Instead you must define
them as separate functions that are not members of any class:

¢ Functions for key access
¢ Functions for hashing
¢ Functions for memory management

108 VisualAge C++ Open Class Library User's Guide

Using Separate Functions

Except for assignment, you must define member functions of a class as const. You
will get a compile-time error if you do not include const in these definitions.

The following example shows how member functions must be defined as const:

class Element

{

public:
Element& operator= (Element const&);
IBoolean operator== (Element const&) const;
IBoolean operator< (Element const&) const;

bs

The result type of the assignment operator is irrelevant to the Collection Class
Library. The result type of equality and ordering relation must be compatible with
type IBoolean.

Using Separate Functions

You can use separate functions to provide the required element and key functions.
Use separate functions when, in instantiating the Collection Class, you have no
control over the element class, and the element class does not define the appropriate
functions. You can also use separate functions to provide key access and hash
function.

The following shows what the declarations for these separate functions must look

like:
void assign (Element&, Element constd);
IBoolean equal Element const&, Element constd);
Tong compare (Element const&, Element constd);

Element constd);

Element const&, unsigned long);
Key const&, Key constd);

Key const&, Key constd);

Key const&, unsigned long);

Key const& key
unsigned Tong hash
IBooTlean equal
long compare
unsigned long hash

You can find examples of these functions in the tutorials (see Chapter 14, “Collection
Class Library Tutorials” on page 151) and in the coding examples in the Open Class
Library Reference.

You can also use separate functions for the standard memory management functions,
as defined by the C++ language:

voidx operator new (size_t);
void operator delete (voidx);

The compare() function must return a value that is less than, equal to, or greater than
zero, depending on whether the first argument is less than, equal to, or greater than
the second argument. The hash function must return a value that is less than the
second argument; this value may be achieved, for example, by computing the
remainder (operator%) with the second argument. The hash function should evenly

Chapter 9. Element Functions and Key-Type Functions 109

Using Element Operation Classes

distribute over the range between zero and the second argument. For equal elements
or keys, the hash element must yield equal results.

An efficient hash function is very important to the performance of your program. If
you are unsure of how to implement an efficient hash function, see the suggested
reading material on data structures and algorithms in “Other Books You Might Need”
on page 716.

For assign(), equal(), and compare(), template functions are defined that will be
instantiated unless otherwise defined. The default for assign() uses the assignment
operator, the default for equal () uses the equality operator, and the default for
compare() uses two comparisons with operator<. It is therefore advisable to define
your own compare() function if the given element type has a more efficient
implementation available. Such definitions are already provided for integer types
using operator- and for char* using strcmp(). By default, the standard memory
management functions are used. (Using operator- works for integer types because
the result of a-b can be used to determine whether a<b evaluates to True.)

The following example demonstrates the use of a separate function for the definition
of the key access. The element class is Task, its data member ivId is the key, and its
member function id() is used to access the key:

typedef unsigned long TaskId;
typedef int Priority;

class Task {
TaskId ivId; // This will be used as the key.
Priority ivPriority; // These are private data members.
public:

TaskId id () const { return ivId; }
Priority priority () { return ivPriority; }

// ... other member functions, for example one that

// sets or changes a task's priority
IH
/] ...
TaskId const& key (Task const& t) // Key access.
{ return t.id (); }
// The key() function cannot directly return the key (ivId)
// because the key is a private data member.
/] ...
IKeySet <Task, TaskId> runningTasks;

Using Element Operation Classes

You can use element operation classes in cases where you want to place elements of
one type into more than one collection, and where the element or key-type functions
are different for each collection. For example, suppose you require an element type
that is used to instantiate employee records that can be sorted either by name or by
salary. You can declare an element class Person, and then place references to each
Person instance into each of two collections. In one collection, the key is the name;
in the other, the key is the salary. In your program, you need to define different
element and key-type functions for hashing, comparison, and so on. Because these

110 VisualAge C++ Open Class Library User's Guide

Using Element Operation Classes

functions are not identical for both collections, you cannot define them within the
class Person.

You can provide different sets of element and key-type functions for a given element
type and multiple collections, by using the IG... class template for the collection you
want to use. This class template lets you define element functions separately from
the element class. In the case of the employee program, you can declare two classes
as follows:

IGKeySortedSet <PersonPtr, int, SalaryOps> SalaryKSet;
IGKeySortedSet <PersonPtr, IString, NameOps> NameKSet;

You then need to define two other classes, SalaryOps and NameOps, which must
contain appropriate element and key-type functions.

When you do not provide element or key operations by using an IG... collection, the
standard class template (I... as opposed to IG...) defines default operations. These
default operations are declared in istdops.h.

For an example of using element operation classes, see “Coding Example for Map” in
the Open Class Library Reference.

The following excerpt shows the definition of the class templates for ILinkedSequence
and IGLinkedSequence:
template < class Element, class ElementOps >

class IGLinkedSequence { /* ... %/ };

template < class Element >
class ILinkedSequence :
public IGLinkedSequence < Element, IStdOps < Element > > {
[% oo %/}

The advantage of passing the arguments using an extra class instead of passing them
as function pointers is that the class solution allows inlining.

The following is a skeleton for operation classes. The keyOps member must only be
present for key collections. Note that all element and key operations must be defined
as const.

template < class Element, class Key >
class ...0ps

{

void= allocate (size_t) const;

void deallocate (void*) const;

void assign (Element&, Element const&) const;
IBoolean equal (Element const&, Element const&) const;
Tong compare (Element const&, Element const&) const;
Key const& key (Element const&) const;

unsigned Tong hash (Element const&, unsigned long) const;

Chapter 9. Element Functions and Key-Type Functions 111

Using Element Operation Classes

class KeyOps
{

IBoolean equal (Key const&, Key const&) const;

Tong compare (Key const&, Key const&) const;

unsigned Tong hash (Key const&, unsigned long) const;
keyOps;

}s

You can inherit from the following class templates when you define your own
operation classes. Templates with argument type T can be used for both the element
and the key type.

class IStdMemOps
{

void* allocate (size_t) const;
void deallocate (voidx) const;

}s

template < class T >
class IStdAsOps
{

bs

void assign (T&, T const&) const;

template < class T >
class IStdEqOps
{

}s

IBoolean equal (T const&, T constd) const;

template < class T >
class IStdCmpOps
{

}s

long compare (T const&, T const&) const;

template < class Element, class Key >
class IStdKeyOps
{

}s

Key const& key (Element const&) const;

template < class T >
class IStdHshOps
{

}s

unsigned long hash (T const&, unsigned Tong) const;

The file istdops.h defines the above templates. It also defines other templates that
combine the properties of one or more of the templates. The following table shows
all template class names defined in istdops.h, and the element and key-type
functions they implement:

112 VisualAge C++ Open Class Library User's Guide

Using Element Operation Classes

Template allocate assign equal compare hash key key using
deallocate using equality
compare and hash

IStdMemOps v

IStdAsOps v

IStdEqOps v

IStdCmpOps v

IStdHshOps 4

IStdOps 4 4

IEOps 4 4 v

IECOps v v v v

IEHOps v 4 v v

IKCOps v v v

IKEHOps 4 4 v
IEKCOps v 4 v v

IEKEHOps v v v 4

To define an operations class, use the predefined templates for standard functions, and
define the specific functions individually. Consider, for example, tasks that have an
identifier and a priority. The identifier might serve as the key in a collection that
keeps track of all active tasks, while the priority might be used for implementing
priority-controlled task queues. Because the key() function is already defined to yield
the task identifier, the priority queue has to be instantiated in the following way:

class TaskPrioOps : public IStdMemOps,

{ pubTic IStdAsOps < Task >

public:
Priority key (Task const& t) { return t.priority (); }
IStdCmpOps < Priority > keyOps;
IH
/] ...
IGPriorityQueue < Task, Priority, TaskPrioOps >
taskPriorityQueue;

The functions that are required for a particular Collection Class depend not only on
the abstract class but also on the concrete implementation choice. If you choose a set
to be implemented through a hash table, the elements require a hash function. If you
choose a (sorted) AVL tree implementation, elements need a comparison function.
Even the default implementations may require more functions to be provided than
would be necessary for the collection interface. Each chapter in the Open Class
Library Reference that describes a particular collection defines which functions must
be provided for keys and elements for each implementation of that collection.

Chapter 9. Element Functions and Key-Type Functions 113

Functions for Derived Element Classes

Memory Management with Element Operation Classes
The following scenario illustrates the use of memory management with element
operation classes.

Suppose you want to use your own element operation class to provide a special form
of memory management. For example, you want an entire collection (the collection
body plus the elements) to reside in a database, or in shared memory. To do this you
can code:

IGLinkedSequence<Element, MyOperationsClass>

where MyOperationsClass is an element operations class you have coded, which
provides your own element operations allocate() and deallocate(). This class may
or may not inherit from previously described template classes, except that it must
inherit from IStdMemOps).

A certain instance of your collection is instantiated together with an instance of your
MyOperationsClass. You can retrieve the this pointer of this instance of
MyOperationsClass to find out where the collection is instantiated, and you can use
this address in your implementation of the allocate() element function to allocate
your elements in the same memory pool where your collection resides.

Functions for Derived Element Classes

One of the C++ language rules states that function template instantiations are
considered before conversions. Because the Collection Class Library defines default
templates for element functions, functions such as equal() or compare(), defined for a
class, will not be considered for that class's derived classes; the default template
functions will be instantiated instead. In the following example, the compiler would
attempt to instantiate the template compare() function for class B, instead of inheriting
the compare() function of class A and converting B to A:

class A { /* ... */ };
long compare (A const&, A constd);
class B : public A { /x ... %/ };
ISortedSet < B > BSet;

The instantiated default compare() function for class B uses the operator< of B, if
defined. Otherwise, a compilation error occurs, because class B's operator< is not
found. You must define standard functions such as equal() or compare() for the
actual element type B to prevent the template instantiation of those functions, in case
you want to provide a class-specific equal() or compare() function for B.

The classes IElemPointer, IMngElemPointer, and IAutoElemPointer ({Qsee “Managed
Pointers” on page 119) internally use a function called elementForOps() to direct
functions such as equal() and compare() to the referenced element, so that they are
not applied to the pointer itself and so that instantiations such as ISet <IElemPointer

114 VisualAge C++ Open Class Library User's Guide

Using Pointer Classes

<Task>> perform the functions on the elements. This indirection is usually transparent
but you must consider it when you derive classes from the IElemPointer class. The
standard operation classes first apply a function elementForOps() to the element
before they apply the corresponding non-member (equal (), ...) function. By default, a
corresponding template function is instantiated for elementForOps() which takes an
element as input and returns that element. For pointer classes that perform operations
on the pointers themselves (IAutoPointer, IMngPointer), this function takes the
pointer as input and returns the same pointer. For pointer classes that perform the
operations on the referenced elements (IElemPointer, I[AutoElemPointer,
IMngETemPointer), this function takes the pointer as input and returns the referenced
element. If a class derived from IElemPointer<E> is used as a collection element
type, the default template functions must be instantiated before a conversion will be
considered. A derived class must therefore explicitly redefine the elementForOps ()
function, as shown in the following example, where class TaskPtr redefines both
versions of elementForOps() by calling the default elementForOps() with a TaskPtr as
argument. Both versions are then made to return a cast to Task reference:

class TaskPtr : public IETemPointer < Task > {
friend Task& elementForOps (TaskPtr & t) {
return (Task &) elementForOps (t); }
friend Task const & elementForOps (TaskPtr const & t) {
return (Task const &) elementForOps (t); }

}s
ISet < TaskPtr > taskSet;

Using Pointer Classes

In C++, variables and function arguments have their values copied when they are
assigned. This copying can decrease a program's efficiency, especially when the
objects are large. To improve efficiency, pointers or references are often used for
common objects. For example, a pointer or reference to the object can be copied,
instead of the object itself. Polymorphism is achieved with pointers through the use
of virtual functions. Pointers to elements can be used as collection element types,
rather than the elements themselves. (References are not allowed as collection
element types).

The Collection Classes define five pointer classes:

e IElemPointer

* TJAutoPointer

e TJAutoETemPointer
e IMngPointer

e IMngElemPointer

These types are referred to as pointer classes. Their main characteristics are:

Chapter 9. Element Functions and Key-Type Functions 115

Using Pointer Classes

e (Certain pointer classes perform storage management. Storage management in this
context means that referenced objects are automatically deleted under certain
conditions.

¢ Certain pointer classes, if stored in a collection, perform all element and key-type
functions, for example equality test, on the referenced elements, instead of on the
pointers themselves.

¢ Certain pointer classes combine both of the above features.

You can use pointer classes that perform element and key functions on the referenced
elements, by storing pointers from these classes in collections. For pointers from
pointer classes that perform storage management only, you can use the pointers
instead of native C++ pointers for general purposes.

You can store pointers from these pointer classes, as well as C++ pointers, as
elements in any collection. The following sections describe the enhancements that
pointers from the above classes provide over native C++ pointers.

Overview of Pointer Classes
If you store standard C++ pointers in a collection, the collection performs all element
functions (for example, equality test) on the pointers themselves. This is not always
what you intend. If you want the collections to perform those element functions on
the referenced elements instead, use one of the following pointer classes:

e IElemPointer
e TJAutoETemPointer
® IMngElemPointer

If you use pointers from these classes, and you check, for example, the equality of
two pointers from your collection of pointers, True is only returned if the referenced
elements are equal as defined by the equality relation of the element type, even if the
elements are located at different addresses in memory. The same equality test for a
collection of C++ pointers only returns True if the pointers point to the same address.

Pointers from the three I...Elem... classes are also called element pointers. Element
pointers are only useful when you store them in a collection. The elements
themselves are not “stored” in the collection, although information from the elements
is used by Collection Classes functions. {3y See “Element Pointers” on page 118 for
more information on the element pointer types.

116 VisualAge C++ Open Class Library User's Guide

Using Pointer Classes

If you prefer to perform all element functions (for example, equality test) on the
pointers themselves, and not on the referenced objects (elements), you can use one of
the following pointer classes:

* IMngPointer
e TJAutoPointer

For example, if you check the equality of two such pointers from your collection of
pointers, True is only returned if the pointers point to the same address. (This is the
same behavior as you would expect for native C++ pointers.)

Most pointer classes perform automatic storage deallocation for objects that are no
longer referenced. They are:

* TJAutoPointer

e JAutoETemPointer
* IMngPointer

e IMngElemPointer

Pointers of classes IAuto... are called automatic pointers. They perform memory
management so that referenced objects are deleted as soon as the pointer passes out
of scope. {3 See “Automatic Pointers” on page 119 for more information on
automatic pointers.

Pointers of classes IMng... are called managed pointers. They perform memory
management so that the references to objects are counted, and objects are deleted only
when they are no longer referenced by any managed pointer. {3 See “Managed
Pointers” on page 119 for more information on managed pointers.

To exploit the advantage of memory management, you can use non-element pointers
(for example, IMngPointer) instead of standard C++ pointers without storing the
pointers in a collection.

Automatic storage management is particularly useful when functions return pointers
or references to objects that they have created (dynamically allocated), and the last
user of the object is responsible for cleaning up.

The following features of Collection Classes pointer types give you the choices
shown in the table below. Standard C++ pointers are included for comparison.

¢ Element functions performed on referenced elements
¢ Element functions performed on pointers
e Automatic storage management

Chapter 9. Element Functions and Key-Type Functions 117

Using Pointer Classes

Destruction of Pointed Objects

operations on pointer

pointer

Not managed When Reference
out-of-scope counted
Collections call element Standard C++ TAutoPointer IMngPointer

Collections call element

IETemPointer

TAutoETemPointer

IMngElemPointer

operations on
referenced object

The pointer classes can only take arguments of type class or struct. The reason is
that the overloaded operator-> needs to return an object of such a type. You can
apply pointer objects from these five classes in the same way you use ordinary C++
pointers, with the * and -> operators. Elements are implicitly deleted, except in the
case of IETemPointer. To delete an element referred to by an IETemPointer, you must
use an explicit conversion to the referenced element type:

IETemPointer < E > ptr;
/1 ...
delete (E*) ptr;

Element Pointers

118

If you create a collection of C++ pointers or pointers of type IMngPointer or
IAutoPointer, Collection Classes methods that use element comparison functions will
do the comparison on the pointers to the elements, instead of on the elements
themselves.

If you do want element functions to work on the pointers instead of the referenced
elements, you do not need to implement equality and ordering relation for the chosen
pointer type (IAutoPointer, IMngPointer or C++ pointers). The compiler can
instantiate the default element function templates. If necessary, you can implement
your element functions for the referenced element type.

In the following example, adding, locating, and other functions are based on pointer
equality and ordering, and not on the equality defined for the Task type.

class Task

TaskId ivid;
/...
IBoolean operator== (Task const& t)
{ return ivId == t.ivId; }
}s
typedef IMngPointer < Task > MngPointerToTask;
ISet < MngPointerToTask > setOfTaskPointers;
// equality will refer to pointer
// though it is defined for Task

VisualAge C++ Open Class Library User's Guide

Using Pointer Classes

On the other hand, if you want element functions to work on the elements referenced
by the pointers, the Collection Classes offer the IETemPointer, IAutoElemPointer, and
IMngETemPointer pointer classes, which are instantiated with the element type.
Pointers of these classes automatically apply all element functions, except for
assignment, to the referenced object. Element pointers are constructed from C++
pointers. The C++ dereferencing operators * and -> are defined, for element pointers,
to refer to the referenced objects.

class Task

{

TaskId ivId;

Priority priority () const;

b

typedef IETemPointer < Task > TaskPtr;

ISet < TaskPtr > taskSet; // taskSet is a set of task pointers

TaskPtr t1 (new Task); // convert a new C++ task pointer to
// Collection Class task pointer

taskSet.add (t1); // add the pointer to taskSet

/...

taskSet.elementAt (cursor)->priority(); // apply priority function
// to the element (priority is
// a member function of Task)

/] ...
taskSet.remove(tl); // remove pointer from collection
delete (Task=*)tl; // delete task pointed to by tl.

The dynamically created elements are not automatically deleted when they are
removed from the collection.

Managed Pointers
Managed pointers keep a reference count for each referenced object (element). When
the last managed pointer to the object is destructed, the object is automatically
deleted. Use managed pointers when you are unsure who is responsible for deleting
an object. If several pointers to an object may be introduced over time, the order in
which the pointers are released is not known.

The following example shows how to use pointers from the IMngElemPointer class:

typedef IMngElemPointer < Task > TaskPtr;
ISet < TaskPtr > tasks;

TaskPtr t1 (new Task, IINIT);

tasks.add (t1);

/] ...

tasks.remove (tl);

In the example, the allocated task will automatically be deleted by the remove()
function unless it is referenced through another TaskPtr.

Automatic Pointers

Automatic pointers do not keep a reference count. A referenced object (element) is
automatically deleted in two cases:

Chapter 9. Element Functions and Key-Type Functions 119

Using Pointer Classes

The automatic pointer is destructed. Use automatic pointers when the lifetime of
the element is the same as the lifetime of the pointer, and an explicit deletion of
the element is awkward or even impossible. This case applies in particular to
pointers to objects that are dynamically created within a function, and whose
lifetime is the scope of the function. The function may be left through several
return statements or through an exception being thrown from some other function
being called.

Using the assignment operator, the automatic pointer is used to point to another
element (which is implicitly a new element). The assigned pointer is set to NULL.

If you define a collection taking automatic pointers as elements, the elements are
automatically deleted when the collection is destructed, when an element is removed,

or,

if the element was not added to the collection, when the variable or temporary

holding the pointer is destructed:

{

ISet < IAutoElemPointer < IString > > eSet;

eSet.add (IAutoElemPointer (new IString ("abc"), IINIT));
eSet.add (IAutoElemPointer (new IString ("def"), IINIT));
// the temporary automatic pointer variables have been set
// to NULL when the pointer was copied to the collection

{

eSet.add (IAutoElemPointer (new IString ("def"), IINIT));

} // deletes the second IString ("def"), because it was not added
// (note that in a set each element occurrs only once)

}// deletes the IString ("abc") and first IString ("def")
// with the destruction of the eSet

Transfer of You should be aware of the implementation details described below when
Automatic transferring automatic pointers between functions. Consider the following cases:

Pointers

¢ A calling function passes an automatic pointer to a called function and the

pointer is returned.

IAutoPointer <Int> f (IAutoPointer <Int> i) { return i; }
/] ...
main () {

IAutoPointer <Int> i (new Int (5), IINIT);

cout << *f(i) << endl;

}
This program results in the following taking place at run time:

— main constructs an IAutoPointer object i and initializes it with the address
of Int object 5.

— On invocation of (), the copy constructor of IAutoPointer is called, and the
new constructed auto pointer is initialized with the address of the given input
pointer. The given pointer is set to NULL. On return from f(), the copy
constructor of IAutoPointer constructs a new auto pointer in main() and
initializes it with the address of the auto pointer object from f(), which is
then destructed.

120 VisualAge C++ Open Class Library User's Guide

Using Pointer Classes

— When main exits, it calls the destructors for all auto pointer objects and the

destructor for Int object 5.

* A called function has no input, but returns an object that has been dynamically
been created using an automatic pointer.

Int g() {
IAutoPointer <Int> j (new Int (6), IINIT);
return *j;

}

/] ...
main () {

cout << g() << endl;

This program results in the following taking place at run time:

— On invocation of g(), this function constructs an IAutoPointer object,

constructs an Int(6) object, and initializes the auto pointer with the address
of Int(6).

On return from g(), the copy constructor of Int constructs a new Int(6)
object in main(). The auto pointer object and the Int(6) object in g() are
destructed.

— On exit from main(), the Int(6) object is destructed.

Constructing Pointers from the Pointer Classes
All pointers from the pointer classes have two constructors: a default constructor that
initializes the pointer to NULL, and a constructor taking a C++ pointer to an element
that you must have created before (using new).

Implicit conversions from a C++ pointer to a managed or automatic pointer are
dangerous: elements might be implicitly deleted without your being aware that they
have been. Therefore, the conversion functions for these classes take an extra
argument IINIT to make the construction explicit. Hence, the notation for creating a
managed or automatic pointer is:

IAutoPointer < E > ePtr (new E, IINIT);

Note:

After you have constructed a managed or automatic pointer from a C++
pointer, do not use the C++ pointer. You should only access the element
through the pointer of the given class. Otherwise, the element could be
implicitly destructed while a C++ pointer still refers to it. In particular, you
must not construct two managed pointers or two automatic pointers from the
same C++ pointer, because the managed pointers would keep two separate
reference counts, and to implicitly delete the referenced element twice. For
example:

IString *s = new IString("...");

IMngPointer < IString > pl (s, IINIT); // OK

IMngPointer < IString > p2 (s, IINIT); // NO!

// Do not use s a second time, because the compiler may try to
// delete the IString object referred to by s, pl, and p2 twice.

Chapter 9. Element Functions and Key-Type Functions 121

Using Pointer Classes

Notes on
Pointer
Classes

You should keep the following rule in mind when using managed or
automatic pointers created from standard pointers: Never use the C++ pointer
once the managed or automatic pointer has been created from it, because this
may interfere with the automatic storage management. For example, the
object that is referenced by a C++ pointer and by an automatic pointer created
from this C++ pointer is deleted as soon as the automatic pointer gets out of
scope. The C++ pointer then points to undefined storage.

The extra IINIT argument is introduced to make such situations explicit and especially
to avoid the usage of the constructor as an implicit conversion operator. The IINIT
argument is defined as follows:

enum IExplicitInit {IINIT};

Without the IINIT argument, you might try to write code such as the following:

typedef IMngPointer < Task > TaskPtr;

void func (TaskPtr currentTask);

/] ...

Task* stndP = new Task; //creating a C++ pointer

TaskPtr mngdP = TaskPtr (stndP); // creating a managed pointer from
// a C++ pointer

func (stndP); // Error: Second use of the C++ pointer

For the call to func(), the compiler would call a constructor for implicit conversion if
the constructor did not require IINIT. On function return, the temporary managed
pointer would be destructed and the Task object deleted.

1. The pointer classes do not work with basic types such as int, Tong, and char.

2. If you implement a key collection containing element pointers, you must define

your key() function with the element as input, not the pointer to the element, for
example:

typedef IKeySortedSet <IMngElemPointer <Element>, int> keySortedSetOfPointers;
/] ...
int const& key(Element const& element) {

return element.elementKey();

}
where elementKey() returns the element's key.

. The copy constructor and assignment operator of an automatic pointer are defined
in a way that resets the source pointer to NULL. This prevents multiple automatic
pointers from pointing to the same element. In the following example, p2 is
implicitly set to NULL:

TAutoPointer < E > pl, p2;

pl = p2;

However, the copy constructor and assignment operator still take a const
argument (using a const cast-away) to maintain compliance with the standard

122 VisualAge C++ Open Class Library User's Guide

Using Pointer Classes

interface for these operations. This standard interface is required, for example,
when you use these types as element types in collections, because the copy
constructor and assignment operator are required to have such an interface. (If
this interface were not a requirement, the collection's add() function could not
take a const argument.)

Chapter 9. Element Functions and Key-Type Functions 123

Using Pointer Classes

124 VisualAge C++ Open Class Library User's Guide

Replacing the Default Implementation

Tailoring a Collection Implementation

This chapter describes how to tailor a collection implementation for your specific
applications. It describes the based-on concept and predefined implementation
variants.

Introduction

When you are developing a program that uses a collection, you should begin by using
the default implementation and go on to a final tuning phase where you choose
implementations according to the actual requirements of your application. You can
determine these requirements by profiling or by using other measurement tools. This
section describes how to choose between a variety of implementations provided by
the Collection Classes as well as how to create your own implementation classes.

As described in “The Overall Implementation Structure” on page 88, each abstract
data type has several possible implementations. Some of these implementations are
basic; that is, the collection class is implemented directly as a concrete class. These
basic implementations include:

e AVL trees

¢ Hash tables

e Linked sequences
e Tabular sequences

Other implementations, including bags, are based on other collection classes. The
based-on concept provides a systematic framework for choosing the most appropriate
implementations. It is also useful for extending the Collection Classes with other
basic implementations, such as specific kinds of search trees, and for using these
implementations as the basis for other data abstractions such as sets, maps, and bags.

Replacing the Default Implementation

You can easily replace the default implementation with another implementation.
Suppose that you have a key set class called MyType that has been defined with the
default implementation IKeySet. The definition of this class would look like this:

typedef IKeySet < Element, Key > MyType;
If you want to replace the default implementation, which uses an AVL tree, with a

hash table implementation, you can replace the above implementation with the
following definition:

© Copyright IBM Corp. 1993, 1995 125

The Based-On Concept

typedef IHashKeySet < Element, Key > MyType;

If you replace a collection's default implementation with one of its implementation
variants, you must determine what element functions and key-type functions need to
be provided for the variant. You must then provide those functions. The list of
required functions is not always the same for a collection's default implementation as
for particular implementation variants. Required functions for a collection's default
implementation or an implementation variant are listed in the collection's chapter in
the Open Class Library Reference. See the section “Template Arguments and
Required Functions” in each such chapter.

The Based-On Concept

The Collection Class Library achieves a high degree of implementation flexibility by
basing several collection class implementations on other abstract classes, rather than
by implementing them directly through a concrete implementation variant of the class.
This design feature results in an implementation path rather than the selection of an
implementation in a single step. The Collection Class Library contains type
definitions for the most common implementation paths; they are described in the
corresponding sections of the Open Class Library Reference. {3y See Figure 12 on
page 129 for an illustration of implementation paths. The figure is explained in
“Provided Implementation Variants” on page 128.

The element functions that are needed by a particular implementation depend on all
collection class templates that participate in the implementation. While ISet requires
at least element equality to be defined, an AVL tree implementation of this set also
requires the element type to provide a comparison function. A hash table
implementation also requires the element type to have a hash function. The required
element functions for all predefined implementation variants are listed in the chapters
for individual collection types in the Open Class Library Reference.

For a concrete implementation, such as a set based on a key-sorted set that is in turn
based on a tabular sequence, these class templates have to be plugged together. The
plug mechanism requires class templates to be used as template arguments. Because
C++ does not allow class templates as template arguments, the Collection Class
Library implements the plug mechanism using macros. Two macros are provided:

¢ One for defining a template with an additional operations class argument, for
example, IDefineGSetOnGKeySortedSet. Ay See “Using Element Operation
Classes” on page 110 for information on why you would use such additional
arguments.

* One for defining a template with only the element type, or the element and key
types, as arguments, for example, IDefineCollectionWithOps and
IDefineKeyCollectionWithOps.

126 VisualAge C++ Open Class Library User's Guide

The Based-On Concept

The second macro needs, as an element operations class, an argument as is described
in “Using Element Operation Classes” on page 110. Standard operations class
templates are predefined that can be used for this purpose. Their names are
systematically derived from the operations they define. The name structure is:

I<elem-ops>[K<key-ops>]0ps

where <elem-ops> and <key-ops> are a sequence of letters: E for equality, C for
comparison, and H for hashing. IEKEHOps, for example, is an operations template that
provides element equality, key equality, and hashing on keys as well as the basic
memory management and element assignment operations.

For the following example, assume you have a specific form of a sorted tree called
IGMySortedTree, which is a new implementation for a KeySorted Set. It must exactly
implement the interface provided for a KeySortedSet:

e It must have three template arguments, the element type, the key type, and an
element operations class.
e It must implement all of the member functions defined for KeySortedSet.

A set implementation IGMySet that is based on this new sorted tree is defined as
follows:

IDefineGSetOnGKeySortedSet (IGMySortedTree, IGMySet)

IGMySet is defined as a template with the element type and an element operations
class as arguments. A template that only takes the element type as argument and that
uses the standard element operations for equality and comparison can then be defined:

IDefineCollectionWithOps (IGMySet, IECOps, IMySet)

This expands to the code shown below. The expansion is not intended to give you an
in-depth understanding of how the mechanism works internally. It merely illustrates
the value of the macros.

template < class Element, class ElementOps >
class IGMySet :
IWSetOnKeySortedSet
< Element, ElementOps,
IGMySortedTree
< Element, Element,
I0psWithKey < Element, ElementOps > > >

{ /* ... constructor redefinition ... */ };
template < class Element >
class IMySet : public IGMySet < Element, IECOps < Element > >
{ /* ... constructor redefinition ... */ };

Chapter 10. Tailoring a Collection Implementation 127

Provided Implementation Variants

Provided Implementation Variants

Figure 12 on page 129 lists the basic and based-on implementations provided by the
Collection Classes. The upper left corner of each cell contains the name of the
(abstract) collection class; basic implementations are written in smaller letters in bold
face, while based-on implementations are described by arrows starting from the class
that they implement and ending in the (abstract) class on which they are based. An
implementation choice for a given class must use either a basic implementation for
this class or follow a based-on implementation path that ultimately leads to a basic
implementation.

Take the example of the Bag abstraction. The Bag is not implemented directly. (You
can tell this from the figure because no implementation variant name appears in bold
in the box containing Bag.) To determine the possible implementation variants for
Bag, follow the arrows out of the Bag box:

* One arrow leads to the KeySet box. The KeySet box contains an implementation
variant, HashTable KeySet, so this is one possibility. An arrow also points from
the KeySet Box to the KeySortedSet box, which allows the following
possibilities:

— AVL Tree Key Sorted Set (appears in KeySorted Set box)
— B* Tree Key Sorted Set (appears in KeySorted Set box)
— An arrow leads from KeySorted Set to Sequence, which contains the
following implementation variants:
- LinkedSequence
- TabularSequence
- DilutedSequence

A Bag can therefore be implemented using any of the six implementation variants
cited in bold face above.

128 VisualAge C++ Open Class Library User's Guide

Provided Implementation Variants

Map Relation Sorted Map Sorted Relation

T T T T

KeySet + 5 KeyBag + > KeySorted Set+ KeySorted Bag +

HashTable KeySet HashTable KeyBag AVL Tree K.S.Set
B* Tree K.S.Set

A "_\ /-’ A @"_\
Set & Bag M Sorted Set& Sorted Bag & Equality Sequence

1
Heap \ Sequence +

LinkedSequence
[= TabularSequence
DilutedSequence

Figure 12. Possible Implementation Paths

The following table lists the based-on implementations of the Collection Classes, and
the header files that provide the IDefine... macros. Usually, you do not need to use
the IDefine... macros. You can use them, however, to define your own
implementation variant for a collection class and to integrate it into the scheme of
implementation paths shown in Figure 12.

Macro Name Header File
IDefineGBagOnGKeySet ibagks.h
IDefineGBagOnGKeySortedSet ibagkss.h
IDefineGDequeOnSequence idegseq.h
IDefineGEqualitySequenceOnGSequence iesseq.h
IDefineGHeapOnGSequence iheapseq.h
IDefineGKeySetOnGKeySortedSet ikskss.h
IDefineGKeySortedBagOnGSequence iksbseq.h
IDefineGKeySortedSetOnGSequence ikssseq.h
IDefineGMapOnGKeySet imapks.h
IDefineGMapOnGKeySortedSet imapkss.h
IDefineGPriorityQueueOnGKeySortedBag ipquksb.h
IDefineGQueueOnSequence iqueseq.h
IDefineGRelationOnGKeyBag irelkb.h

Chapter 10. Tailoring a Collection Implementation 129

Provided Implementation Variants

Macro Name Header File
IDefineGSetOnGKeySet isetks.h
IDefineGSetOnGKeySortedSet isetkss.h
IDefineGSortedBagOnGKeySortedSet isbkss.h
IDefineGSortedMapOnGKeySortedSet ismkss.h
IDefineGSortedRelationOnGKeySortedBag isrksb.h
IDefineGSortedSetOnGKeySortedSet isskss.h
IDefineGStackOnSequence istkseq.h

Features of Provided Implementation Variants

You can implement a given collection type (bag, key sorted set, etc.) in a number of
different ways. {3y The possible implementation variants are described in “Provided
Implementation Variants” on page 128, and are listed in the “Class Implementation
Variants” section of each collection chapter in the Open Class Library Reference.
The Collection Classes provide multiple implementation variants for collections
because different variants have different performance and storage use characteristics.
After you have coded and debugged an application that uses the Collection Classes,
you can change an implementation to a variant that is well-suited to the ways in
which you use the collection. For example, in “Key Set” in the Open Class Library
Reference, the section “Variants and Header Files” on page 159 lists six
implementation variants, including the default key set. These variants are
implemented using the following concrete techniques:

e AVL tree (the technique used for the default key set)
* B* tree

¢ Hash table

¢ Sorted linked sequence

¢ Sorted tabular sequence

e Sorted diluted sequence

As it turns out, the implementation variants for key set encompass all the concrete
techniques used by the Collection Classes. Other collections may only use some of
the techniques in the list above. If you want to choose the best implementation
variant for your program, you need to know the advantages of each concrete
technique. The remainder of this section describes each technique and presents its
advantages and the trade-offs it entails.

130 VisualAge C++ Open Class Library User's Guide

Sequences

Tabular
Sequence

Provided Implementation Variants

Sequences are generally used to store elements sequentially. Each of the three
available implementation variants for sequences allows certain operations to be done
more efficiently than others. The benefits of each variant are described first, and then
each variant is explained in detail.

Tabular sequences provide good performance where a collection is primarily used
for reading data but elements are not frequently added or deleted once the
collection is created.

Diluted sequences are more suitable for collections where some elements are
inserted or deleted after the collection is created, but where the collection is still
primarily read from rather than written to.

Linked sequences are more suitable than tabular or diluted sequences when you
anticipate that many elements will be added or deleted, and where you cannot
accurately predict the maximum size of the collection when it is first created.

Following are descriptions of each type of sequence.

A tabular sequence is an array implementation of a list. The elements are stored in
contiguous cells of an array. In this representation, a list can easily be traversed, and
new elements can easily be added to the tail of the list. If an element needs to be
inserted into the middle of the list, however, all following elements need to be shifted
to make room for the new element. Similarly, if an element needs to be removed
from the list, and the element is not the last element in the list, all elements following
the element to be deleted must be shifted in to close up the gap.

A tabular sequence can access all elements quickly because all elements can be stored
in a single storage block. If all of the following conditions hold true for your use of
a collection, a tabular sequence is a suitable implementation variant to use:

e The elements to be stored are small.

* You can predict with some accuracy how many elements your application will
have to handle.

e Few or no elements will need to be added or deleted once the collection is first
created.

Note that memory is statically allocated for tabular sequences, at the beginning of
your program.

Figure 13 on page 132 shows a tabular sequence implementation variant.

Chapter 10. Tailoring a Collection Implementation 131

Provided Implementation Variants

ell|el2

el3|el4d4]|elb el n max

A

v

filled free
last

Figure 13. Tabular Sequence Implementation Variant

Diluted
Sequence

A diluted sequence, like a tabular sequence, is an array implementation of a list.
However, when you delete an element from a diluted sequence, it is not actually
deleted, but only flagged as deleted. This provides a performance advantage, in that
elements following a deleted element do not need to be shifted. The additional
overhead of using a dilution flag is trivial.

If you want to add a new element at a certain position, only those elements between
that position and the next element flagged as deleted need to be shifted. (If no
elements later in the list are flagged as deleted, then all elements beyond the insertion
position must be shifted.)

Use a diluted sequence rather than a tabular sequence if your application will be
doing much adding or deleting of elements after the collection is established.

Figure 14 shows a diluted sequence implementation variant.

Diluted

Diluted

el 1

el 2| el3 el 4 el n max

A

v

filled free
last

Figure 14. Diluted Sequence Implementation Variant

Linked
Sequence

A linked sequence uses pointers to link each element to its predecessor and
successor. This implementation does not require contiguous memory for storing an
array, which means that elements do not have to be shifted to make room for new
elements or to close up gaps created by deleted elements.

Because storage is dynamically allocated and freed, this implementation variant is a
good choice in applications that add or delete many elements, particularly where you
cannot predict the amount of storage required. Figure 15 on page 133 shows a
linked sequence implementation variant.

132 VisualAge C++ Open Class Library User's Guide

Provided Implementation Variants

'—» el 1 > el 2 o] el n

header

last element

Figure 15. Linked Sequence Implementation Variant

Trees

AVL Tree

A tree is a collection of nodes. The nodes either contain the data of the collection or
pointers to that data.

A node normally contains a reference to one or more other nodes. Referenced nodes
are children of the referencing node. One node is the entry point to the tree. This
node is designated as the root. Nodes without any references to other nodes are
called leaf nodes or terminal nodes.

Trees in general are more useful for searching elements than for adding and deleting
elements. For this reason, they are often called search trees. The descriptions of
AVL and B* trees below explain why trees are well-suited for searching.

AVL trees are a special form of binary tree. You can better understand AVL trees if
you know how a binary tree is structured.

Trees are binary trees when all nodes have either zero, one, or two children. Binary
trees are often used in applications where you want to store elements in a certain
order. In such cases, the left child always points to an element that comes earlier in
the order than the parent node, and the right child points to an element that comes
later than the parent. A search through a binary tree begins at the root node. The
search then continues downward until the desired element is found, by determining
whether a node comes before or after the searched-for node, and then following the
appropriate branch. For example, the binary tree shown in Figure 16 on page 134
has elements added in the following sequence: 8§ - 10 -5-1-9-6-11. A search for
element 9 begins at the root node (element 8). Assuming that the element value
defines the ordering relation, the search would take the right node from element 8
(because 9 is greater than 8) and would arrive at element 10. The search would take
the left node from element 10 (because 9 is smaller than 10) and would arrive at
element 9, the desired element.

Chapter 10. Tailoring a Collection Implementation 133

Provided Implementation Variants

Figure 16. Binary Search Tree
One drawback of a binary search tree is that the tree can easily become unbalanced.

Figure 17 shows how unbalanced the tree becomes when the elements 12 through 15
are added.

O
o
pioioio
0
0

15

Figure 17. Unbalanced Binary Search Tree

This tree looks almost like a linked sequence, without the performance advantage of a
normal binary search tree. To obtain this performance advantage, a binary search tree
should always remain balanced. The AVL Tree is a special form of binary search tree
that maintains balance.

The AVL tree was invented by the two mathematicians, Adel'son-Vel'skii and Landis,
from whom it derives its name. AVL trees are height-balanced. They have the
property that, for every node in the tree, the height of that node's left subtree minus
the height of the right subtree is always -1, 0, or +1. AVL trees provide better
performance than ordinary binary search trees because they do not become
unbalanced. Unbalanced trees often have very poor search characteristics. If adding
or removing an element from an AVL tree causes the tree to lose its AVL property,

134 VisualAge C++ Open Class Library User's Guide

Figure 18. AVL Tree

B* Tree

Provided Implementation Variants

then a few local readjustments are sufficient to restore the AVL property. Figure 18
on page 135 shows how the unbalanced tree shown earlier would look after the AVL
property is restored.

AVL trees are useful for collections containing a large number of small elements. An
AVL tree implementation is even suitable for adding and deleting, because the
performance overhead for the rebalancing that sometimes occurs when an element is
added or deleted is still less expensive than searching through the elements of a
sequence to find the position at which to add or delete an element.

If you use a set collection and do not choose an implementation variant, you are
automatically using an AVL tree. If you use a set and are not aware that the set is
implemented as an AVL tree, you may be surprised that a set requires an ordering
relation, when a set is an unordered collection, as shown in Figure 7 on page 81.
The reason a set requires an ordering relation is that an AVL tree requires an ordering
relation so that it knows where to add new elements or where to find elements being
accessed or deleted. As this example shows, required element and key-type functions
are determined by two factors:

e Some functions are required because of the properties of the collection.
e Some properties are required because of the implementation variant you choose.

A B* tree is a search tree that may have more than two references per node.
Figure 19 on page 136 shows a B* tree with up to five children per node.

Chapter 10. Tailoring a Collection Implementation 135

Provided Implementation Variants

Figure 19. A B* tree

A B* tree combines the advantages of binary search and sequential access upon the
same set of keys. B* trees are based on two simple ideas:

e The internal nodes are used only for storing the keys, with all real data stored at
the leaves. A B* tree takes into consideration the page or block size of the
operating system's virtual memory structure, and is suitable for applications
where paging or memory thrashing is a constraint.

e The leaves of a B* tree are chained together in logical sequence to support
sequential access.

A B* tree implementation variant is suitable when you have many large elements that
are accessed by key. Because keys and their data are separated, the keys in the tree
structure are used for a quick search and the pointers are used for quick access to the
data.

In contrast to a B* tree, keys and data in an AVL tree are both stored in the nodes.
This means that searching through elements could cause page faults if the elements
are large, because the various keys may be spread across several pages along with the
data they refer to.

In Figure 20 on page 137, the B* tree has an order of 5 (which means that each
internal node has a maximum of five references). The data is stored only in the
leaves. A leaf block is built to hold one element. A leaf block may be larger than
one page. The B* tree implementation uses the keys in the nodes for quick access to
a required page (leaf), or it uses the keys for a quick sequential access to all pages,
and hence to all elements.

136 VisualAge C++ Open Class Library User's Guide

Provided Implementation Variants

foot. pointer | ‘] ‘ ‘I‘ - ‘ = ‘
wlo(m [a[[a[[a] |mlcm| [u] [a]
» \1 \«
MJE" E \ts [Jbo [\ [[\ 35 [[][], \ ‘\ [|[=] \!45\ o]y [[‘#‘
’2 ‘ wo ‘ ’ 6‘ six ‘ \1 x 37 21 |twentyone | ==+ 45& fourtyfive 62 | sixtytwo

\ -] v ‘\

‘26 twentysix ‘ 49 fourtynine

Figure 20. B* Tree Implementation Variant

Hash Table

Hashing is another important and widely used technique to implement collections.
Conceptually, hashing involves calculating an index from the key or other parts of an
element, and then using that index to look for matches in a hash table. The function
that calculates the index is called a hash function.

A hash table implementation variant is suitable for nearly all applications with a
balanced mix of operations. Such an implementation is quick for retrieving elements.
It can also add and delete elements quickly, because, unlike an AVL tree, it does not
need to be rebalanced. The efficiency of a hash-table implementation is largely
dependent on how efficiently you implement the hash function.

You cannot use a hash-table implementation variant when you require your elements
to appear in main storage in sorted order (where elements earlier in the sorting order
have lower addresses than elements later in the sorting order). On the other hand,
you must use a hash table if you have a complex key (one composed, for example, of
several attributes of an element), and either you cannot find a reasonable way to
compare keys, or the comparison would be expensive.

For collections that do not provide access by key, but that support a hash-table
implementation variant, the complete element is used as the input to the hash
function.

Chapter 10. Tailoring a Collection Implementation 137

Provided Implementation Variants

Hashing, as implemented in the collection classes, allows elements to be stored in a
potentially unlimited space, and therefore imposes no limit on the size of the
collection. Figure 21 on page 138 shows a hash table implementation variant.

Figure 21. Hash Table Implementation Variant

The hash function that calculates the index 3 from abcd is implemented as follows:

1. Each character is transformed into an integer according to its position in the
alphabet.

2. The resulting integers are added together.

3. The result is divided by the hash table size. The remainder is the hash.

This hash function returns the following results for elements abcd, xyz and yyy:

e abcd: (1+2+3+4) D 7=3
e xyz: 24 +25+26) % T7=5
e yWw:(25+25+25 %7 =5

The principal behind a hash table is that the possibly infinite set of elements in your
collection is partitioned into a finite number of hash values (/, 2, 3, ...). Your hash
function is called with a key and a modulo value, and you use the key and the
modulo value to arrive at an integer hash value. If for two different keys the hash
function returns the same hash value (as for xyz and yyy in the previous figure), a
hash collision occurs. In such cases, a hash implementation constructs a collision list
where all keys returning the same hash value are linked.

In the best case, for each different key, your hash function should return a different
hash value. At the very least, it is desirable for the collision lists to remain small so
that access time is fast. This means that hash values should be evenly distributed.
Your hash function should randomly hash the key so that the hash value is not
dependent on the key value in any trivial way. Your hash function should always
return the same hash value for a given key and modulo provided to it.

138 VisualAge C++ Open Class Library User's Guide

Polymorphic Use of Collections

Polymorphic Use of Collections

This chapter describes how you can use polymorphism in the Collection Classes.

Introduction to Polymorphism

Polymorphism allows you to take an abstract view of an object or function argument
and use any concrete objects or arguments that are derived from this abstract view.
L The collection properties defined in “Flat Collections” on page 80 define such
abstract views. They are represented in the form of the class hierarchy in Figure 11
on page 92.

Polymorphic use of collections differs from polymorphism of the element type.
Element polymorphism means that you can use the collections with any elements that
provide basic operations like assignment and equality; this kind of polymorphism is
implemented by the use of the C++ template concept. This chapter deals with the
polymorphic use of collections rather than elements. Polymorphic use of collections
means that a function can specify an abstract collection type for its argument, for
example IACollection, and then accept any concrete collections given as its actual
argument.

Each abstract class is defined by its functions and their behavior. The most abstract
view of a collection is a container without any ordering or any specific element or
key properties. Elements can be added to a collection, and a collection can be
iterated over. A polymorphic function on collections might be to print all elements;
such a function is given as an example on page 140.

Collections whose elements define equality or key equality provide, in addition to the
common collection functions, functions for retrieving element occurrences by a given
element or key value. Ordered collections provide the notion of a well-defined
ordering of the element occurrences, either by an element ordering relation or by
explicit positioning of elements within a sequence. They define operations for
positional element access. Sorted collections provide no further functions, but define
a more specific behavior, namely that the elements or their keys are sorted.

These properties are combined through multiple inheritance: the abstract collection
class IEqualitySortedCollection, for example, combines the abstract concepts of
element equality and of being sorted, which implies being ordered. If a polymorphic
function uses this class as its argument type, the arguments will be sorted, and the
function can use functions like contains() that are only defined for collections with
element equality.

© Copyright IBM Corp. 1993, 1995 139

Using Reference Classes

Using Reference Classes

For performance reasons explained in “The Overall Implementation Structure” on
page 88, concrete collection classes are not directly derived from abstract classes.
Instead, you must use an indirection that “couples” a concrete collection with an
abstract class. For each leaf in the collection class hierarchy, IASet, for example,
there is an indirection class template called IRSet. ({ySee Figure 10 on page 90.)
It takes as template arguments the element type and, for key collections, the key type
and a concrete collection class that has been instantiated with this element and key
type. Instances of this indirection class refer to instances of the concrete collection
class. (The R in IRSet stands for reference.) The IR... classes are derived from the
corresponding abstract IA... classes and are therefore part of the Collection Class
hierarchy. Instances of this class can be used wherever an instance (pointer or
reference) of an abstract base class is required.

The following example defines a universal printer class that accepts an arbitrary
collection of jobs and prints their IDs. The elements are printed in the iteration order
that is defined for the given collection. The concrete key set running cannot be used
as an argument to the printer directly, because IKeySet is not derived from the
abstract collection classes. The reference class IRKeySet is used for this purpose. It
is instantiated with the element and key type, and with the concrete collection class
JobSet. An instance of this class refRunning is defined by providing running as a
constructor argument. refRunning can then be used as argument to the universal
printer.
class JobPrinter {
public:
print (IACollection < Job* > const& jobs)
{ cout << "ID Gt
ICursor *cursor = jobs.newCursor ();
cout << "{ "
forCursor (*cursor)
cout << jobs.elementAt (*cursor)->id() << ' ';
cout << "}\n";
delete cursor;

1
1
/] ...
typedef IKeySet < Job*, JobId > JobSet;
JobSet running;
/...
IRKeySet < Jobx, JobId, JobSet > refRunning (running);
JobPrinter jobPrinter;
jobPrinter.print (refRunning);

140 VisualAge C++ Open Class Library User's Guide

Support for Visual Builder for C++

The Collection Classes include special classes that support Visual Builder (Visual
Builder is described in Visual Builder User's Guide). For every concrete flat
collection class (for example ISequence), there is a corresponding Visual Builder
collection class starting with IV (for example IVSequence).

All collection methods that modify a collection send Visual Builder notifications to
observers. The class IPartCollectionNotification defines four notification IDs for
Collection Classes:

IPartCollectionNotification::addedId Sent if an element is added to the collection

IPartCollectionNotification::removedId Sent if an element is removed from the
collection

IPartCollectionNotification::replacedId Sent if an element is replaced in the
collection

IPartCollectionNotification::modifiedId Sent if a collection is changed in any way
other than those mentioned above.

For notifications addedId, removedId and replacedId, you can use
INotificationEvent::eventData() to access event data generated by collections. This
event data is an object that includes a cursor() method to access a collection cursor.
The cursor points to the element referred to by the modification method. For
example, if addedId is the notification, the cursor points to the added element. The
replaceld notification also gives you access to a copy of the element that was
replaced.

Collection notifications addedId, removedId and replacedId pass a pointer to a class
corresponding to the notification.

Notification Class

addedId IPartCollectionAddedEventData
removedId IPartCollectionRemovedEventData
replacedId IPartCollectionReplacedEventData

© Copyright IBM Corp. 1993, 1995 141

These classes provide the following methods:

Table 4. Methods of IPartCollection...EventData

Class Methods

IPartCollectionAddedEventData const ICursor& cursor() const
IPartCollectionRemovedEventData const ICursor& cursor() const
IPartCollectionReplacedEventData const ICursor& cursor() const

Element& replacedElement() const

For all notifications except RemovedId, the library sends notification after the
modification occurs. The library sends RemovedId notification before the collection is
changed because otherwise you would not be able to use the cursor to refer to the
element being removed.

Notifications are only sent if the collection is changed by the method. The following
methods do not create a notification:

e removeAll() for an empty collection

e add(), when add() does not actually add an element (for example because the
element already exists in a unique collection, or because the collection is full)

e remove() if the element is not in the collection

* TocateOrAdd if the element is already in the collection

Header Files for Visual Builder Support

The classes IPartCollectionAddedEventData, IPartCollectionRemovedEventData and
IPartCollectionReplacedEventData are defined in ipartccl.h. The notificationIds
are defined in ipartccn.h.

Example for IVSequence<IString>

142

The following example demonstrates the use of collection event data for a sequence
of IStrings. IString is the main string handling class provided by IBM Open Class.
See Chapter 17, “String Classes” on page 197 for information on how to use this
class.

#include <ivseq.h>

#include <ipartccn.h>
#include <ipartccl.h>

I0bserver &dispatchNotificationEvent(const INotificationEvent&
anEvent) {

// Process addedId notification

if (anEvent.notificationld() ==
IPartCollectionNotification::addedId) {

VisualAge C++ Open Class Library User's Guide

cout <<
<<

<<

cout <<
<<

<<

"Add at position :

(*(IVSequence<IString>*)&(anEvent.notifier()))
.position(((IPartCollectionAddedEventData<IString>x)

((charx)anEvent.eventData()))->cursor())

endl;

"New Data : "

(*(IVSequence<IString>x)&(anEvent.notifier()))

.elementAt (((IPartCollectionAddedEventData<IString>x)

((char*)anEvent.eventData()))->cursor())

endl;

// Process replacedId notification

if (anEvent.notificationld() ==
IPartCollectionNotification::replacedld) {

cout <<
<<

<<

cout <<
<<

<<

cout <<
<<

<<

"Replace at position : "
(*(IVSequence<IString>x)&(anEvent.notifier()))
.position(((IPartCollectionReplacedEventData<IString>*)
((charx)anEvent.eventData()))->cursor())

endl;

"New Data : "
(*(IVSequence<IString>x)&(anEvent.notifier()))
.elementAt (((IPartCollectionReplacedEventData<IString>x)
((char*)anEvent.eventData()))->cursor())

endl;

"0ld Data : "
((IPartCollectionReplacedEventData<IString>x)
((charx)anEvent.eventData()))->replacedElement ()

endl; }

Chapter 12. Support for Visual Builder for C++

143

144 VisualAge C++ Open Class Library User's Guide

Exception Handling

Exception Handling

This chapter describes the exception-handling facilities provided by member functions
of the Collection Class Library. This chapter includes the following topics:

¢ Introduction to exception handling
* Preconditions and defined behavior
e Levels of exception checking

e List of exceptions

* The hierarchy of exceptions

Introduction to Exception Handling

The C++ exception-handling facilities allow a program to recover from an exception.
An exception is a user, logic, or system error that is detected by a function that does
not itself deal with the error, but passes the error to a handling function. Exceptions
can result from two major sources:

e The violation of a precondition
* The occurrence of an internal system failure or system restriction

In this chapter, two kinds of functions are discussed. A called function is a
Collection Class function that may throw an exception. A calling function is a
function that calls a Collection Class function. The calling function may be a
Collection Class function or a function you have defined.

Exceptions Caused by Violated Preconditions
A precondition of a called function is a condition that the function requires to be true
when it is called. The calling function must assure that this condition holds. The
called function implementation may assume that the condition holds without further
checking it. If a precondition does not hold, the called function's behavior is
undefined.

If you want to make your programs more robust and to locate errors in the test phase,
the functions your program calls should check to ensure that their preconditions hold.
The Collection Class Library enables this checking through macro definitions.
Because this checking often requires significant overhead, it is turned off by default.
You need only use it while you are testing the system and verifying that
preconditions are always met.

© Copyright IBM Corp. 1993, 1995 145

Precondition and Defined Behavior

A call to a function that violates the function's preconditions has two possible results:

e If the called function checks its preconditions, the function will throw an
exception.

e If the function does not check its preconditions, the behavior of the function is
undefined.

Exceptions Caused by System Failures and Restrictions
System failures and restrictions are different from precondition violations. You
cannot usually anticipate them, and you have no opportunity to verify that such
situations, for example storage overflow, will not occur. These exceptions need to be
checked for, and an exception should be thrown if they occur.

Precondition and Defined Behavior

Exceptions are not generally used to change the flow of control of a program under
normal circumstances. An example of using exceptions under normal circumstances
is a function that iterates through a collection, and exits from the iteration by
checking for the exception that is thrown when an invalid cursor is used to access
elements. When the iteration is complete, the cursor will no longer be valid, and this
exception will be thrown. This is not a good programming practice. A function
should explicitly test for the cursor being valid. To make this possible, a function
must efficiently test this condition (isValid(), for the cursor example).

There are situations where the test for a condition can be done more efficiently in
combination with performing the actual function. In such cases, it is appropriate, for
performance reasons, to make the situation regular (that is, not exceptional) and return
the condition as a IBoolean result. Consider a function that first tests whether an
element exists with a given key, and then accesses it if it exits:

if (c.containsElementWithKey (key)) {

/] ...
myElement = c.elementWithKey (key); // inefficient

This solution is inefficient because the element is located twice, once to determine if
it is in the collection and once to access it. Consider the following example:

try {
/...
myElement = c.elementWithKey (key); // bad: exception expected
/! ...
} catch (INotContainsKeyException) {
/...
1

146 VisualAge C++ Open Class Library User's Guide

List of Exceptions

This solution is undesirable because an exception is used to change the flow of
control of the program. The correct solution is to obtain a cursor together with the
containment test, and then to use the cursor for a fast element access:

if (c.locateElementWithKey (key, cursor)) {
/] ...
myElement = c.elementAt (cursor); // most efficient
/...

} else {

}

Levels of Exception Checking

Some preconditions are more difficult to check than others. Consider the following
possible preconditions:

1. A cursor for a linked collection implementation still points to an element of a
given collection.
2. A collection is not empty.

In the production version of a program, it may be less efficient to check the first
precondition than the second.

The Collection Class Library provides three levels of precondition checking. They
are selected by the following macro variable definitions (use, for example, compile
flag -DINO_CHECKS):

INO_CHECKS Check for memory overflow. Other checks may be eliminated to
improve performance.

Default Perform all precondition checks, except the check that a cursor
actually points to an element of the collection.

IALL_CHECKS Perform all precondition checks, including the (costly) check that
a cursor actually points to an element of the collection. This
extra check can only fail for undefined cursors.

List of Exceptions

The Collection Class Library defines the following exceptions:

IChildAlreadyExistsException
Occurs when you try to add a child to a tree using addAsChild() at a position that
already contains a child.

Chapter 13. Exception Handling 147

List of Exceptions

ICursorinvalidException
Two cursor properties may lead to the ICursorInvalidException:

e Every time a cursor is created, you must specify the collection that it belongs to.
If a function takes a cursor as an argument (such as add(), setToFirst(), and
Tocate()), the function can only be applied to the collection that the cursor
belongs to. If the function is applied to another collection, the
ICursorInvalidException results.

e If a function takes a cursor as an input argument (such as elementAt(),
removeAt (), and replaceAt()), the cursor must be valid. A cursor is valid if it
actually refers to some element contained in the collection. You can use the
isValid() function to determine if a cursor is valid.

IEmptyException
Occurs when a function tries to access an element of an empty collection. Functions
that might cause this exception include firstElement() and removeFirstElement().

IFullException
Occurs when a function tries to add an element to a bounded collection that is already
full. Functions that might cause this exception include add() and addAsFirst().

lidenticalCollectionException
Occurs when the function addA11From() is called with the source collection being the
same as the target collection.

linvalidReplacementException
Occurs when, during a replaceAt() function, the replacing element has different
positioning properties ({3 see “Replacing Elements” on page 98) than the positioning
properties of the element to be replaced.

IKeyAlreadyExistsException
Occurs when a function attempts to add an element to a map or sorted map that
already has a different element with the same key. Functions that might cause this
exception include add and addAT1From().

INotBoundedException

Occurs when the function maxNumberOfElements () is applied to a collection that is not
bounded.

INotContainsKeyException
Occurs when the function elementWithKey() is applied to a collection that does not
contain an element with the specified key.

148 VisualAge C++ Open Class Library User's Guide

Exception Hierarchy

I0utOfMemory
Occurs when a function cannot obtain the space that it requires. This exception is not
the result of a precondition violation. Functions that add an element to a collection,
including add() and addAsFirst(), can cause this exception.

IPositioninvalidException
Occurs when a function specifies a position that is not valid in a collection. The
functions that might cause this exception include elementAtPosition(),
removeAtPosition(), and setToPosition().

IRootAlreadyExistsException
Occurs when the function addAsRoot () is called for a tree that already has a root.

The Hierarchy of Exceptions

In the Collection Class Library, all exceptions are derived from the IException class
Ly described in Chapter 18, “Exception and Trace Classes” on page 213. It provides
common functions to access information about an exception that has occurred.

The direct subclasses of IException used in the Collection Class Library are

IPreconditionViolation and IResourceExhausted. The following figure shows the
hierarchy of exceptions:

Chapter 13. Exception Handling 149

Exception Hierarchy

IException

Figure 22. Hierarchy of Exceptions

IPreconditionViolation

IChildAlreadyExistsException

ICursorInvalidException

IEmptyException

IFullException

IIdenticalCollectionException

IInvalidReplacementException

IKeyAlreadyExistsException

INotBoundedException

INotContainsKeyException

IPositionInvalidException

INNENRNNNNE

IRootAlreadyExistsException

IResourceExhausted

I0utOfMemory

150 VisualAge C++ Open Class Library User's Guide

Collection Class Library Tutorials

Collection Class Library Tutorials

This chapter provides a set of tutorial lessons that you can use to learn common
Collection Class Library features. Each lesson builds on the lessons you learned and
the library features demonstrated in prior lessons. A section at the end of the chapter
describes other tutorials provided with the Collection Class Library that can help you
with specific Collection Class Library techniques. Use this chapter if you are
beginning to use the library and are unclear on some of the concepts described in
earlier chapters of this section.

The lessons in this chapter demonstrate the following capabilities of the Collection
Class Library:

¢ Defining a simple collection

¢ Adding, removing, and iterating over elements
¢ Changing the element type

¢ Changing the collection

¢ Changing the default implementation

Each lesson has the following format:
* What the lesson covers: What you will learn from the lesson.
* Requirements: What capabilities must be built into or added to the program.

e Setup: What files you will need from previous lessons.

o Implementation: Step-by-step instructions for implementing the program
requirements. The implementation section includes the required code as well as
detailed descriptions of each aspect of the implementation.

e Source files: Source file listings showing the contents of, or the order of
declaration of functions within, individual source files. Where a source file is not
changed from one lesson to the next, it is not listed a second time.

* Running the program: A description of what happens when you run the program,
observations on the program's behavior, and guidance on optional ways of
enhancing or changing the program.

e What you have learned: A summary of the Collection Class features that were

covered by the lesson.

There are five lessons in this chapter. The following provides an overview of the
characteristics of the program used in each lesson, and the Collection Class features
the lesson demonstrates:

© Copyright IBM Corp. 1993, 1995 151

Collection Class Library Tutorials

Lesson 1

Lesson 2

Lesson 3

Lesson 4

Lesson 5

A program that builds a collection of integer elements, and adds
three elements to the collection. Nothing is done with the
collection after these elements are added, and the program produces
no output. This lesson demonstrates how to define the element and
collection types with typedefs, how to instantiate a collection, how
to add elements to a collection, and how to determine what
Collection Class header file to include.

An enhancement to Lesson 1 that implements a menu so that you
can add, list, or remove items, show stock information, or exit the
program. Not all these functions are fully implemented at this
point. The lesson demonstrates how to iterate over a collection and
how to remove elements from a collection.

An enhancement to Lesson 2 that changes the element type from a
built-in type to a class type. The lesson demonstrates how to
construct a collection whose elements are of class type, how to
determine what element type functions are required, and how to
define those functions.

In this lesson, you change Lesson 3 to use a different collection.
The lesson demonstrates how to choose the correct collection for a
given application, how to implement various element and key
functions, how to use a cursor to iterate through elements with a
given key, and how to count the number of elements with a given
key.

In this lesson, you change the implementation variant of the
collection. This does not change the program's external behavior
but in real applications changing an implementation variant can
affect performance.

Preparing for the Lessons

To set up the lessons, create five directories beneath the same parent directory, and
name them lessonl through Tesson5. You will use these directories to store the files
you create for each lesson.

Compiling the To compile the lessons, use the following at the OS/2 command line:

Lessons

icc -Iinclude_pathl ... -linclude_pathn -Fd -Ft -Tdp -Ti -B"/De " main.C
lib_pathl\libl libpath2\1ib2

where include _pathx is the path for included .h and .hpp files, and lib_pathx is
the path for the required libraries. The libraries are DDE4CC(I).LIB, and for the
IString class, DDE4AMUI(I).LIB.

152 VisualAge C++ Open Class Library User's Guide

Lesson 1: Defining a Simple Collection

Note: The compiler creates a directory tempinc in the directory that is the current
directory when the program is compiled. This directory is used by the Collection
Class Library to place template files used to instantiate collections in your program.
You can delete the files in tempinc and the directory itself after compilation.

If the compiler produces errors during compilation, check to make sure that you have
specified the required library and that you have typed the source code in correctly.
Some common errors are misplacing semicolons and failing to close braces or
brackets.

Lesson 1: Defining a Simple Collection of Integers

Requirements

Setup

In this lesson, you write a program that builds a very simple collection of integer
elements and adds some elements to the collection. This lesson covers the following
Collection Class topics:

e Using a typedef to define the element type

e Using a typedef to define the collection type

¢ Instantiating the collection

¢ Adding elements to the collection

e Specifying the Collection Class header file to include

The collection must consist of elements of an integer type. The integer type is to be
known as type Bicycle, so that later lessons can change the members of the type.

The program adds three integers to the collection. Their values are unimportant. The
collection is to be a bag.

Change to the Tessonl directory, and use an editor to create and edit two files:

bike.h This file will contain declarations and typedefs for the element and
collection types.

main.C This file will contain the main() function.

Implementation

The implementation should use typedefs to define the element and collection types,
so that if the element or collection type changes later, the changes will be
automatically reflected in any code that uses the typedef.

Defining the Element Type: Use a typedef to define a Bicycle as a synonym for an
int. By using a typedef, you make it easier to change the element type later,
without having to change anything outside the element's type (or class) definition:

// in bike.h
typedef int Bicycle;

Chapter 14. Collection Class Library Tutorials 153

Lesson 1: Defining a Simple Collection

Notes:

1. In a realistic C++ program using Collection Classes, you do not need to use a
typedef to define the element type, because it is unlikely that you would switch
from a built-in C++ type to a class type.

2. Unless otherwise indicated, you should enter each new block or line of code
below any code you have already entered.

Defining the Collection Type: Use a typedef to define a collection type called
MyCollectionType. The collection type refers to a bag collection whose elements are
Bicycles. By using a typedef, you make it easier to change the collection type later,
without having to change other parts of your code:

typedef IBag <Bicycle> MyCollectionType;

In this typedef, IBag is the default implementation for a bag, Bicycle is a template
argument representing the element type, and MyCollectionType is the type name given
to the type being defined (a bag of Bicycle elements).

Instantiating a Collection: Now that you have defined a typedef for both the
element and the collection types, you can instantiate a collection with a type specifier
and a name:

MyCollectionType MyCollection;

Place this definition at global scope so that all functions, not only the main() function
defined in the next step, have access to the collection and its members. Functions
other than main() are defined in subsequent lessons.

Adding Elements: {13You can use “Flat Collection Member Functions” in the Open
Class Library Reference to determine what functions you need to use to manipulate
elements of a collection. If you consult that chapter, you will find that the add()
function is the function needed for this lesson. The syntax for add() is stated as:

void add (Element const& element);

For a collection named MyCollection, you can add elements using the following
syntax:

MyCollection.add(aBicycle);

Where aBicycle is a Bicycle (in this case an integer). To add three elements, place
code such as the following in main.C:

void main() {
Bicycle a,b,c;
a=458;
b=12;
c=365;

154 VisualAge C++ Open Class Library User's Guide

Lesson 1: Defining a Simple Collection

MyCollection.add(a);
MyCollection.add(b);
MyCollection.add(c);

Include Files: Above any typedefs or instantiations that use Collection Classes, you
must include the header file for any collection you are using. The chapter on bags in
the Open Class Library Reference tells you what the header file is for the default
implementation of a bag. You should add the following code to the start of bike.h,
and include bike.h in main.C:

// in bike.h
#include <ibag.h>

// in main.C
#include "bike.h"

Source Files for Lesson 1

Running the
Program

The files should now contain code similar to the following:

bike.h

#include <ibag.h>

typedef int Bicycle;

typedef IBag <Bicycle> MyCollectionType;
MyCollectionType MyCollection;

main.C

#include "bike.h"

void main() {
Bicycle a,b,c;
a=458;
b=12;
c=365;
MyCollection.add(a);

MyCollection.add(b);
MyCollection.add(c);

Compile main.C and run the executable. The program does not produce any

output, so it appears to do nothing. In fact, it adds three elements to a collection of
integers. The collection is lost on program termination. The program is useless in
practical terms, but does demonstrate some basic Collection Class concepts. Later
lessons build on the code in this lesson, and provide greater functionality, including
output of elements.

L “Bag” in the Open Class Library Reference defines a number of element type
functions as being required:

e Copy constructor

¢ Destructor

Chapter 14. Collection Class Library Tutorials 155

Lesson 2: Adding, Listing, and Removing Elements

What You
Have Learned

e Assignment
¢ Equality test (operator==)
¢ Ordering relation (operator<)

You did not have to define these functions in the above example, because for the
built-in type int, and by extension the user-defined type Bicycle, these functions are
already defined by the language.

This lesson showed you how to define elements and collections using typedefs,
how to instantiate a collection and elements, and how to add elements to that
collection.

Lesson 2: Adding, Listing, and Removing Elements

Requirements

The first lesson showed you how to create a simple collection and add three elements.
This lesson moves the code for adding elements to a separate function, and
implements functions for listing and removing elements as well. These functions are
called from a main program that dispatches the appropriate function based on the
user's choice of a menu option.

This lesson covers the following Collection Class topics:

e Iterating over a collection using iterators (al1ElementsDo())
* Removing elements from a collection

The code in the main() function must be replaced by a menu system that gives the
user the following options:

Add an item

List all items

Remove an item

Show stock information
Exit program

NS

Options 1 to 3 must be implemented through functions. Option 5 can be
implemented by calling exit() or by exiting the scope of the menu selection loop and
main(). You do not need to implement the function to show stock information in this
lesson. Instead, you can implement a function that prints an error message stating
that the function is not yet implemented. For all options except the exit option, after
the appropriate function returns, the menu should be redisplayed and the user should
be able to enter another selection.

156 VisualAge C++ Open Class Library User's Guide

Setup

Lesson 2: Adding, Listing, and Removing Elements

Copy the file bike.h from the Tessonl directory to the Tesson2 directory, and then
change your current directory to the lTesson2 directory. You will also create two
other files. The three files for this tutorial are:

bike.h Contains the element and collection typedefs.

Tesson.C Contains functions for adding, removing, listing, and showing stock
information on items.

main.C Contains the main menu for the program.

Implementation

You need to replace the body of the main() function with the menu handling and
function dispatching code. You will make use of I/O Stream input and output to
implement the functions that add, list, or remove items. One advantage of using the
I/0O Stream classes instead of functions like printf() and scanf() is that, when the
element type is changed, you can define input and output operators for the type, and
the I/O Stream input and output functions will continue to work without change.

Including the iostream.h Header File: You should include iostream.h at the start
of Tesson.C so that you can use the cin, cout, and cerr streams that are predefined by
the jostream class. You should also include the header file bike.h so that you can
access the Bicycle class and associated functions.

#include <iostream.h>
#include "bike.h"

Adding Items: Before the definition of main(), define a function addItem() that
requests user input for the item, then adds the item to the collection. The item is
added using the add() function described in the first lesson. Here is one way to

implement such a function:

// in Tlesson.C
void addItem() {
Bicycle tbike;
cout << "Enter item: ";
cin >> thike;
while (cin.fail()) {
cin.clear();
cin.ignore(1000,'\n');
cerr << "Input error, please re-enter: ";
cin >> thike;
}
MyCollection.add(tbike);
1

Note: You should also add a declaration for this and subsequent functions in main.C.

The function uses a temporary Bicycle object to contain the input until the element is
copied into the collection. The function displays a prompt, reads input, and tests for

Chapter 14. Collection Class Library Tutorials 157

Lesson 2: Adding, Listing, and Removing Elements

valid input. The while (cin.fail()) block clears any input errors and asks for input
again. Once the element is successfully read from input, it is added to the collection.

Because thike is actually an int in the current version, an operator>> is already
defined for it. Later, when you change the Bicycle type to a user-defined class, you
will have to add an operator>> for that class.

Listing Items: Before you can list all items, you must define a function that prints a
single item. This function can then be invoked by the allETementsDo() member
function of MyCollection. (,Qj allElementsDo() is described in “allElementsDo” in
the Open Class Library Reference.) Any function invoked by alT1ETementsDo() must
have a return type of IBoolean, and must have two arguments: a const reference to
the argument and a pointer to void. The pointer to void is used to pass additional
arguments to the applied function, if required by the function. For the printing
function in this lesson you do not need to pass additional arguments, because the
function does not use them. In such cases you pass a void* second argument:

// in lesson.C

IBoolean printItem (Bicycle const& bike, void* /* Not used */) {

cout << bike << endl;
return True;

The printItem() function should always return True because it should display the
value of each element of the collection. If you wanted certain values of elements to
cause printing to halt, you would have the function return False for any such element.
A return value of False causes the al1ETementsDo() function to stop iterating over the
collection.

Just as there was no need to define an input operator for Bicycle, there is no need to
define an output operator either, as long as Bicycle represents an int.

Now define the function TistItems() to call the printItem() function for each
element of the collection. Use the all1ElementsDo() function for the collection, and
use the printItem() function as argument. allETementsDo() then calls the function
for every element of the collection.

// in lesson.C

void TistItems() {
MyCollection.allElementsDo(printItem);
1

Removing Items: To remove an element from a collection, you need to use the
remove () member function. {y This function is described in “Flat Collection
Member Functions” in the Open Class Library Reference. remove() returns True if
the element was found in the collection and was removed, or it returns False if the
element was not found in the collection. Your removal function should print an error

158 VisualAge C++ Open Class Library User's Guide

Source Files
for Lesson 2

Lesson 2: Adding, Listing, and Removing Elements

if the element is not successfully removed. In the version below, the condition that
determines whether removal was successful actually invokes the remove() function:

// in lesson.C
void removeltem() {
Bicycle tbike;
cout << "Enter item to remove: ";
cin >> thike;
while (cin.fail()) {
cin.clear();
cin.ignore(1000,'\n');
cerr << "Input error, please re-enter: ";
cin >> thike;

if (!MyCollection.remove(thike))
cerr << "Item not found!\n";

Showing Stock Information: For now, you can define this function to display an
error message without changing the collection:

// in Tlesson.C
void showStock() {

cerr << "Function not implemented yet!\n";
}

Main Menu: Finally, change the code in main() to display the menu items, accept
input, and take appropriate action. Because this code will remain relatively
unchanged for subsequent lessons, place it in a separate file, main.C, and include
Tesson.C before the code of main(). A possible version of main.C is shown below.

You should have two source files defined at this point. Their names and sample
contents are:

main.C

#include <iostream.h>
#include <stdlib.h> // for use of exit() function
void addItem(), TistItems(), showStock(), removeltem();

void main() {
enum Choices { Add, List, Stock, Remove, Exit };
int menuChoice=0;
charx menu[5] = {"Add an item",
"List items",
"Show stock information",
"Remove an item",
WEXit! };
while (menuChoice!=5) {
cout << "\n\n\nSimple Stock Management System\n\n";
for (int i=0;i<5;i++)
cout << i+l << ", " << menu[i] << '\n';
cout << "\nEnter a selection (1-5): ";
cin >> menuChoice;

Chapter 14. Collection Class Library Tutorials 159

Lesson 2: Adding, Listing, and Removing Elements

while (cin.fail()) {
// get input again if nonnumeric was entered
cin.clear();
cin.ignore(1000,'\n");
cerr << "Enter a selection between 1 and 5!\n";
cin >> menuChoice;
}
switch (menuChoice) {
case 1: addItem(); break;
case 2: listItems(); break;
case 3: showStock(); break;
case 4: removeltem(); break;
case 5: exit(0);
default: cerr << "Enter a selection between 1 and 5!\n";

lesson.C

// lesson.C

#include <iostream.h>
#include <ibag.h>
#include "bike.h"

void addItem() {
Bicycle thike;
cout << "Enter item: ";
cin >> thike;
while (cin.fail()) {
cin.clear();
cin.ignore(1000,'\n');
cerr << "Input error, please re-enter: ";
cin >> thike;
}
MyCollection.add(tbike);
}

IBoolean printItem (Bicycle const& bike, void* /* Not used */) {
cout << bike << endl;
return True;

}

void TlistItems() {
MyCollection.allElementsDo(printItem);
}

void removeltem() {

Bicycle tbike;

cout << "Enter item to remove:

cin >> tbike;

while (cin.fail()) {
cin.clear();
cin.ignore(1000,'\n');
cerr << "Input error, please re-enter: ";
cin >> thike;

",
s

if (!MyCollection.remove(tbike))
cerr << "Item not found!\n";

}
void showStock() {

cerr << "Function not implemented yet!\n";

}

160 VisualAge C++ Open Class Library User's Guide

Running the
Program

What You
Have Learned

Lesson 3: Changing the Element Type

Compile main.C and lesson.C, link them, and run the program. You can enter
elements into the collection, list the elements, remove them, or exit from the program.
If you select the option to display stock information, an error message is displayed
and no action is taken.

Elements appear to be ordered: If you enter more than one integer into the
collection, and then list the collection's elements, you may find that the collection has
been sorted from the smallest to the largest element. Do not rely on this ordering
relation, because a Bag is an unordered, unsorted collection, and changes to your code
or to the Collection Class Library could change the order in which elements are
accessed.

Multiple equal elements are supported: If you add the number 7 to the collection
three times and list the items, the number 7 appears three times. If you then remove
the number 7 once, the number 7 still appears twice. A bag supports multiple equal
elements.

This lesson showed you how to use the al1ETementsDo() function to iterate over
elements of a collection, and how to provide a function to alT1ETementsDo() that is
called for each iterated element. The lesson also demonstrated how to use the
remove() function to remove elements from a collection.

Lesson 3: Changing the Element Type

Requirements

Now that you have a working program that allows you to add, list, or remove
elements from a collection, you are ready to change the element type to something
more complex than an integer.

This lesson covers the following Collection Class topics:

e Defining an element type as a class
e Determining what element type functions are required
¢ Defining those element type functions

The element type must be changed from the built-in integer type to a class type with
the following data members:

* A string representing the manufacturer or make of the bicycle

e A string representing the model of the bicycle

¢ An integer representing the type of bicycle: racing, touring, or mountain bike
* An integer representing the price of the bicycle

Chapter 14. Collection Class Library Tutorials 161

Lesson 3: Changing the Element Type

Setup Copy the files bike.h, 1esson.C, and main.C from the lesson2 directory to the
Tesson3 directory, and then change your current directory to the lesson3 directory.
Use an editor to modify these files, and to create a new file bike.C, which will
contain function definitions for functions declared in bike.h.

Implementation
First move the typedef definition for the collection and the #include statement for
ibag.h from bike.h to lesson.C, where they are actually made use of.

You can use the IString class to handle the strings for make and model. This class
includes operators for element equality, ordering relation, and addition
(concatenation), all of which will be used in this or later lessons.

Defining the Element Type: In keeping with good object-oriented programming
practice, you should separate the member function definitions from the class
definition, by placing the class definition in bike.h and the definitions of member
functions in bike.C. You should compile each .C file separately, and link them
together.

Class Data Members: The following code defines the data members of Bicycle.
You should replace the typedef for the element with the declaration for class
Bicycle. Two header files are also included because they are required by members of
the class. Place the following code in bike.h.

#include <istring.hpp> // access to IString class
#include <iostream.h> // access to iostream class

class Bicycle {
public:
IString Make;
IString Model;
int Type;
int Price;
// ... Member functions to be declared later and defined in bike.C

1

The following code defines an enumerator (used to determine the type of bicycle) and
an array of IString objects (used to display the types of bicycle). Place it in bike.C:

enum bikeTypes { Racing, Touring, MountainBike };
IString btype[3]={ "Racing", "Touring", "Mountain Bike"};

Selecting What Element Type Functions to Implement: When you implement the
element type as a user-defined type (a class), you must define certain element
functions, and in some cases key-type functions, for that element. These functions
are used by Collection Class functions to locate, add, copy, remove, sort, or order
elements within their collection, and to determine whether two elements of a

162 VisualAge C++ Open Class Library User's Guide

Lesson 3: Changing the Element Type

collection are equal. For example, you may need to define element equality through
an operator==, so that Collection Class functions can determine whether an element
you try to add to the collection is identical to an element already present in the
collection. Provided you use the correct return type and calling arguments, there is
no right or wrong way to code many of these functions. An equality function for
elements consisting of two int data members, for example, could return True
(meaning that two elements are equal) if the difference between the two data
members is the same for both elements. In this case, the objects (3,8) and (4,9)
would be equal.

To determine what element and key-type functions you need to implement for a given
collection, you should consult the appropriate collection's chapter in the Open Class
Library Reference. For this lesson, the collection is a bag. When you are first
developing a program, you should use the default implementation of the collection,
which is always the first implementation variant listed under the chapter's “Template
Arguments and Required Functions” section. For each implementation variant, a list
of required functions is provided, and you must either implement these functions for
your element class, or determine that they are automatically generated by the
compiler. In the case of the default implementation of a Bag, the following required
functions are shown, under the heading “Element Type”:

¢ Copy constructor
¢ Destructor

* Assignment

¢ Equality test

* Ordering relation

For this lesson, you also need to implement input and output operators and a default
constructor (used by the input operator and other functions).

Default Constructor: The default constructor should initialize all data members to
blank strings or zero integers:

// in bike.h, within class declaration
Bicycle() : Make(""), Model(""), Type(0), Price(0) {}

Assignment Operator and Destructor: There is no need to define these explicitly.
The compiler generates a default assignment operator and destructor that are suitable
for the program.

Copy Constructor: This function is used by the Collection Classes and by the input
operator. Declare and define it as follows:
// in bike.h:
Bicycle(IString mk, IString md, int tp, int pr) :
Make(mk), Model(md), Type(tp), Price(pr) {}

Chapter 14. Collection Class Library Tutorials 163

Lesson 3: Changing the Element Type

Equality Test: The equality test (operator==) should return True if two bicycles have
the same make and model, and False if not:

// in bike.h:
IBoolean operator== (Bicycle const& b) const;

// in bike.C:
IBoolean Bicycle::operator== (Bicycle const& b) const
{ return ((Model==b.Model) && (Make==b.Make)); }

Ordering Relation: The ordering relation (operator<) should indicate whether the
first bicycle would appear before or after the second bicycle in an alphabetically
sorted list:

// in bike.h:
IBoolean operator< (Bicycle const& b) const;

// in bike.C:
IBoolean Bicycle::operator< (Bicycle const& b) const
{ return ((Make<b.Make) || (Make==b.Make && Model<b.Model)); }

You can use the < and == operators for IString objects because they are defined for
the IString class to indicate alphanumeric sorting order.

Input Operator: This operator is required by the addItem() and removelItem()
functions defined previously. Both this and the output operator are declared outside
the class definition, at the bottom of bike.h, and they are defined in bike.C. The
input operator stores the alphanumeric data members of Bicycle in char arrays to
avoid the overhead of constructing temporary IString objects.

// in bike.h:
istream& operator>> (istream& is, Bicycle& bike);

// in bike.C:
istream& operator>> (istream& is, Bicycle& bike) {
char make[40], model[40];
char typeChoice;
float price;
int type=-1;
cin.ignore(1,'\n'); // ignore linefeed from previous input
cout << "\nManufacturer: ";
cin.getline(make, 40, '\n');
cout << "Model: ";
cin.getline(model, 40, '\n');
while (type == -1) {
cout << "Racing, Touring, or Mountain Bike (R/T/M): ";
while (cin.fail()) {
cin.clear();
cin.ignore(1000,'\n");
cerr << "Racing, Touring, or Mountain Bike (R/T/M): ";
cin >> typeChoice;
}
switch (typeChoice) {
case 'r':
case 'R': { type=Racing; break; }
case 't':
case 'T': { type=Touring; break; }

164 VisualAge C++ Open Class Library User's Guide

Source Files
for Lesson 3

Lesson 3: Changing the Element Type

case 'm':
case 'M': { type=MountainBike; break; }
default: { cerr << "Incorrect type, please re-enter\n"; }
}
1
cout << "Price ($$.$$): ";
cin >> price;
while (cin.fail()) {
cin.clear();
cin.ignore(1000,'\n");
cerr << "Enter a numeric value: ";
cin >> price;
}
pricex=100;
bike=Bicycle(make,model,type,price);
return is;

Output Operator: The output operator is required by the 1istItems() function, and

may later be required by other functions. It should display the make, model, type,

and price of a bicycle:

// in bike.h:
ostream& operator<< (ostream& os, Bicycle bike);

// in bike.C:
ostream& operator<< (ostream& os, Bicycle bike) {
return os << bike.Make
<< "\t" << bike.Model
<< "\t" << btype[bike.Type]
<< "\t" << float(bike.Price)/100;

The program should now be placed in the following files. Some function bodies

have been replaced with ellipses for brevity. main.C remains unchanged and is not

shown.

lesson.C

// lesson.C

#include <iostream.h>

#include <ibag.h>

#include "bike.h"

typedef IBag<Bicycle> MyCollectionType;
MyCollectionType MyCollection;

void addItem() { /* ... */ }
IBoolean printItem (Bicycle const& bike, void* /* Not used =*/)

{ /% ... %/}
void TistItems() { /* ... %/ }
void removeltem() { /* ... */}

void showStock() { /* ... %/ }

bike.h

#include <istring.hpp> // access to IString class
#include <iostream.h> // access to iostream class

class Bicycle {
public:
IString Make;
IString Model;

Chapter 14. Collection Class Library Tutorials

165

Lesson 3: Changing the Element Type

int Type;
int Price;
Bicycle() : Make(""), Model(""), Type(0), Price(0) {}
Bicycle(IString mk, IString md, int tp, int pr) :
Make (mk), Model(md), Type(tp), Price(pr) {}
IBoolean operator== (Bicycle const& b) const;
IBoolean operator< (Bicycle const& b) const;
}s
istream& operator>> (istream& is, Bicycle& bike);
ostream& operator<< (ostream& os, Bicycle bike);

bike.C

#include <istring.hpp>

#include "bike.h"

enum bikeTypes { Racing, Touring, MountainBike };

IString btype[3]={ "Racing", "Touring", "Mountain Bike"};

IBoolean Bicycle::operator== (Bicycle const& b) const
{ return ((Model==b.Model) && (Make==b.Make)); }

IBoolean Bicycle::operator< (Bicycle const& b) const
{ return ((Make<b.Make) || (Make==b.Make && Model<b.Model)); }

istream& operator>> (istream& is, Bicycle& bike) {
char make[40], model[40];
char typeChoice;
float price;
int type=-1;
cin.ignore(1,'\n'); // ignore linefeed from previous input
cout << "\nManufacturer: ";
cin.getline(make, 40, '\n');
cout << "Model: ";
cin.getline(model, 40, '\n');
while (type == -1) {
cout << "Racing, Touring, or Mountain Bike (R/T/M): ";
cin >> typeChoice;
while (cin.fail()) {
cin.clear();
cin.ignore(1000,'\n');
cerr << "Racing, Touring, or Mountain Bike (R/T/M): ";
cin >> typeChoice;
}
switch (typeChoice) {

case 'r':
case 'R': { type=Racing; break; }
case 't':
case 'T': { type=Touring; break; }
case 'm':

case 'M': { type=MountainBike; break; }
default: { cerr << "Incorrect type, please re-enter\n"; }
}
}
cout << "Price ($$.$$): ";
cin >> price;
while (cin.fail()) {
cin.clear();
cin.ignore(1000,'\n');
cerr << "Enter a numeric value: ";
cin >> price;
}
pricex=100;
bike=Bicycle(make,model,type,price);
return is;

166 VisualAge C++ Open Class Library User's Guide

Running the
Program

What You
Have Learned

Lesson 4: Changing the Collection

ostream& operator<< (ostream& os, Bicycle bike) {
return os << bike.Make
<< "\t" << bike.Model
<< "\t" << btype[bike.Type]
<< "\t" << float(bike.Price)/100;

Compile and link bike.C, main.C and lesson.C, and then run the program.

If you add two bicycles with the same make and model, but different types or prices,
the second bicycle's entry will be identical to the first when the bicycles are listed.
The reason is that element equality is defined only in terms of the make and model.
When you add what the collection considers to be an equal element, the existing
element is duplicated by the add() function.

When you remove an item, the input operator asks you to enter all fields for the item
to remove. Again, because element equality is defined only for the make and model
fields, the information you provide for bicycle type and price is not used in
determining which element to remove. If you define a bicycle:

Smithson 37Q Racing $270.00

You can remove that bicycle's entry by removing:
Smithson 37Q Mountain Bike $399.99

These limitations will be corrected in the next lesson.

In this lesson, you moved from using built-in types as elements of a collection to
using user-defined or class types. When you create a collection using class-type
elements, you must define certain element functions. This lesson showed you how to
determine what element functions are required, and how to implement them.

Lesson 4: Changing the Collection

When you design an actual application using the Collection Class Library, you should
choose the collection best suited to your program at the design stage. Nevertheless,
requirements may change, and if you have followed the techniques used in this lesson
such as specifying the collection type with a typedef, you can change the collection
type without having to rewrite the entire application. Only minor changes are
required to existing code, and a few simple element or key-type functions may need
to be added or changed.

This section illustrates the following Collection Class concepts:

¢ Selecting the correct collection type
¢ Implementing a key
* Defining key access

Chapter 14. Collection Class Library Tutorials 167

Lesson 4: Changing the Collection

* Defining key equality

¢ Defining a key hash

e Using a cursor to iterate through elements with a given key
¢ Counting the number of elements of a given key

Requirements
The program should be changed so that two bicycles of the same model and make
can have different type and price information. When users asks to delete a bicycle,
they should not have to enter the bicycle and price information; instead, a list of all
bicycles of the specified make and model should be displayed, and the user should be
able to select which bicycle to remove from the collection. The showStock() function
should also be implemented, so that it shows the number of a given make and model
of bicycle currently in the collection.

Setup Copy the files bike.h, bike.C, Tesson.C, and main.C from the Tesson3 directory to
the Tesson4 directory, and then change your current directory to the lesson4
directory. Use an editor to modify the files as described below.

Implementation
The collection must have the following characteristics:

Key access, so that an element can be accessed using only its make and model
information (for the listing and removing functions)

No element order, because order is not specified as a requirement

Multiple elements with the same key, so that several bicycles of the same make
and model can be present in the collection

Element equality, so that elements with the same make and model can have
different price and type information

L3 You can use Figure 7 on page 81 to determine what collection best meets the
requirements listed above. Begin by applying one requirement to the figure to narrow
down the number of possible collections. Apply a second requirement to the
remainder, and continue until you have found all valid collections. In this example,
there is one valid collection, selected as follows:

¢ Elements have a key (the make and model). This means that any of the
following collections may be a candidate:

— Map

— Relation

— Sorted map
— Sorted relation
— Key set

— Key bag

168 VisualAge C++ Open Class Library User's Guide

Lesson 4: Changing the Collection

— Key sorted set
— Key sorted bag

e The order of elements is not important. This means that all sorted collections
can be removed from the list above, leaving:

— Map

— Relation
— Key set
— Key bag

e Multiple elements may have the same key. This leaves relation and key bag.
¢ Element equality is required, so that individual elements with the same key can
be distinguished. This leaves relation.
A relation differs from a bag in that it is instantiated using a key type as well as the
element type, and requires the following additional functions:
Element type: Key access

Key type: Equality test and hash function.
These functions are defined below.
Changing the Collection Type Definition: Before you redefine the functions in

Tesson.C, you need to change the include file and typedef for the collection type so
that they use relation instead of bag:

// lesson.C
#include <irel.h> // was ibag.h
/...

typedef IRelation<Bicycle,IString> MyCollectionType;
// was typedef IBag<Bicycle> MyCollectionType;

Notice that IRelation takes two template arguments, an element type and a key type.
All collections that have a key must be defined with a template argument for key type
as well as one for element type.

Ordering Relation: A relation does not require an operator for ordering relation
(operator<). You defined this operator when the collection was implemented as a
bag. You should comment it out or remove it for this implementation. This function
is declared in bike.h and defined in bike.C.

Implementing a Key: The key consists of the make and model of the bicycle. You
can use an IString to implement the key. Because the return value of the key()
function must be a const reference, and because the key() function cannot change
the element, the key must be determined before the key() function is called. The
logical place to do this is in the element constructor (in bike.h), because the overhead

Chapter 14. Collection Class Library Tutorials 169

Lesson 4: Changing the Collection

of generating the key only occurs once per element. You can add a key data member
to the collection, and have it initialized when the copy constructor is called. In the
example below, the key is named MMKey (which stands for Make/Model Key):

// in bike.h:
class Bicycle {
IString MMKey; // add a private data member for the key
public:
// public data members and member functions
Bicycle(IString mk, IString md, int tp, int pr);
/] ...
}s

// in bike.C:

Bicycle::Bicycle(IString mk, IString md, int tp, int pr) :
Make (mk), Model(md), Type(tp), Price(pr),
MMKey (mk+md) {}

Defining Key Access: The key access function must be defined outside of the
element class. It has one argument, whose type is the element type. The key access
function must call a member function that returns the key, in this case a function
named getKey(). (The actual name does not matter.) The member function accesses
the private data member MMKey.

// in bike.h:
class Bicycle {
IString MMKey;
public: // ... data members and member functions
IString const& getKey() const;
1s
inTine IString const& key (Bicycle const& bike)
{ return bike.getKey(); }

// in bike.C:
IString const& Bicycle::getKey() const { return MMKey; }

The key access function must be declared with the name key(), with a const
reference to the key as its return value, and a const reference to the element as its
argument.

Equality Test: Equality for elements should be defined such that the key (that is, the
make and model), the type, and the price are the same for two bicycles. The
operator== function in bike.C can be redefined as follows:
IBoolean Bicycle::operator== (Bicycle const&b) const {
return (MMKey==b.MMKey && Type==b.Type && Price==b.Price);
}

Key Hash Function: The hash function provides a shortcut for Collection Class
search functions to find matches to a key. The search functions first call the hash
function on a key for which they need to locate an element. They use the hash value
returned to look for matches to that hash in a hash table. They then use the full key
to determine which of the hash function's matches have the correct key. The hash
key-type function is not a member function of the element's class. It is called by the

170 VisualAge C++ Open Class Library User's Guide

Lesson 4: Changing the Collection

searching function, with a key argument (the key on which to derive the hash) and an
unsigned long (the maximum hash value). The return value is the hash, and it cannot
exceed the maximum hash value. The hash function should be defined in Tesson.C
and must have the following return type and parameters:

unsigned long hash (IString const& keyName, unsigned long hashInput);

You can define the hash using the hashing function provided in istdops.h for char*
values:

unsigned long hash (IString const &aKey, unsigned long hashInput) {
return hash((const char*)aKey, hashInput);

}

Using Cursors to Remove Items: A Collection Class cursor (not related to the
cursor used to move about a cursor screen) is a reference to an element in a
collection. £y For an overview of cursors, see “Cursors” on page 98.

The removeltem() function must be redefined so that it requests the make and model
of bicycle to remove, lists all matching bicycles, and lets the user choose which
match to remove. Once matching bicycles have been displayed, a cursor can be used
to locate the bicycle the user wishes to delete. The cursor is defined as follows,
immediately after the collection MyCollection is declared, in lesson.C:

MyCollectionType::Cursor thisOne (MyCollection);

After the user enters a make and model to search for, the removeltem() function
should iterate through all elements that match the key, by using
TocateElementWithKey() to find the first matching element, and
TocateNextETlementWithKey() to find all subsequent matching elements. Both these
functions require a cursor as their second argument, and the cursor points to the
located element when the functions return. The first part of removeltem() can be
redefined as follows:

void removeltem() {
Bicycle thike;
int choice, cursct=1;
cout << "\nRemove an item";
cin >> tbike;
if (MyCollection.numberOfElementsWithKey(tbike.getkey()) > 0) {
MyCollection.locateElementWithKey(tbike.getKey(), thisOne);
cout << cursct << ", " << MyCollection.elementAt(thisOne) << endl;
for (cursct=2;
MyCollection.locateNextElementWithKey (
tbike.getKey(), thisOne);
cursct++)
{ cout << cursct << ".
<< MyCollection.elementAt(thisOne) << endl; }
//... Remainder to be defined later

}

In the above fragment, the user is asked for a bicycle make and model to remove. If
any elements match the make and model (this is determined by testing the

Chapter 14. Collection Class Library Tutorials 171

Lesson 4: Changing the Collection

numberOfElementsWithKey () function for a nonzero return), all such elements are
located by key. The locateElementWithKey() function sets its cursor to point to the
first matching element, and the locateNextElementWithKey() function advances the
cursor from the current match to the next match in the collection. The elements are
accessed for output using the elementAt() function, which returns a reference to the
element pointed to by the cursor argument.

Once the matching elements have been displayed with a number beside each one, the
program should ask the user to enter a number matching the number of the element to
remove. The matching elements can then be iterated over again until the number of
elements iterated over matches the user's selection, and the element pointed to by the
cursor is then deleted. The following code excerpt is the second part of the
removeltem() function:

// Insert this at "...Remainder to be defined later" in removeltem().
cout << "\nEnter item to remove, or 0 to return: ";
cin >> choice;
if (choice<=0 || choice > cursct) return;
MyCollection.locateElementWithKey(tbike.getKey(),thisOne);
// locate the first matching element again
for (cursct=2;
cursct<=choice &&
MyCollection.locateNextElementWithKey // check for valid
(thike.getKey(), thisOne); // next match
cursct++)
; // null loop - header contains the code to be executed
MyCollection.removeAt (thisOne);
1

else
cerr << "No bicycles of this make and model were found.\n";

// The closing brace below was already part of removeltem().

// Do not duplicate it.

}
Note: The locateNextElementWithKey() function invalidates the cursor if it cannot
find a next element with the key provided. An invalidated cursor does not point to
any element of the collection. Some flat collection member functions that use cursors
require that the cursor be valid (TocateNextElementWithKey() is one such function).
Before you use a cursor with such a function, you need to validate the cursor by
using a function that takes a cursor as argument but does not require a valid cursor on
entry. locateElementWithKey() is one such function.

In both excerpts of removeItem() above, the elements with matching keys are iterated
over by code in the header of the loop. In the second case, the loop has no body.
You can use this coding style because all the Tocate... functions have a return type
of IBoolean, which can be used in condition tests such as those in loop control
expressions.

Showing Stock Information: showStock() must be rewritten so that, for a given
make and model, it displays the number of matching elements in the collection. The
numberOfElementsWithKey () function can be used:

172 VisualAge C++ Open Class Library User's Guide

Source Files
for Lesson 4

Lesson 4: Changing the Collection

void showStock() {
Bicycle thike;
int count;
cout << "Stock information for a model";
cin >> thike;
count=MyCollection.numberOfElementsWithKey (tbike.getKey());
if (count!=1)
cout << "Currently there are " << count << " bicycles
else
cout << "Currently there is 1 bicycle
cout << "of this make and model in stock." << endl;

}

Changing the Input Operator and additem(): As the program now stands, the input
operator requests input for all data members of Bicycle, including type and price
information. This means that, when you select an item to remove or to show stock
information on, you must specify type and price information even though this
information is ignored. Therefore you need to move the request for type and price
information out of the operator>> definition in bike.C and into addItem(), so that the
user only needs to enter type and price information when an item is being added to
the collection. You also need to add the enumeration bikeTypes to lesson.C so that
addItem() has access to them.

See the “Source Files” section below for the changes required to addItem() and
operator>>.

The main program in main.C has not been changed. The following excerpts show
the layout of code between lesson.C and bike.h. Function bodies that remain
unchanged from the preceding lesson have been replaced by ellipses.

bike.h

#include <istring.hpp> // access to IString class
#include <iostream.h> // access to iostream class

class Bicycle {
IString MMKey;
public:
IString Make;
IString Model;
int Type;
int Price;
Bicycle();
Bicycle(IString mk, IString md, int tp, int pr);
IBoolean operator== (Bicycle const& b) const;
// IBoolean operator< (Bicycle const& b) const;
IString const& getKey() const;
1s

inline IString const& key (Bicycle const& bike)
{ return bike.getKey(); }

istream& operator>> (istream& is, Bicycle& bike);
ostream& operator<< (ostream& os, Bicycle bike);

Chapter 14. Collection Class Library Tutorials 173

Lesson 4: Changing the Collection

bike.C

#include <istring.hpp>

#include "bike.h"

enum bikeTypes { Racing, Touring, MountainBike };

IString btype[3]={ "Racing", "Touring", "Mountain Bike"};

Bicycle::Bicycle() : Make(""), Model(""), Type(0), Price(0)
Bicycle::Bicycle(IString mk, IString md, int tp, int pr) {
Make=mk;
Model=md;
Type=tp;
Price=pr;
MMKey=Make+ModeT;
}
// Comment out the ordering relation operator
// 1Boolean Bicycle::operator< (Bicycle const& b) const
// { return ((Make<b.Make) || (Make==b.Make && Model<b.Model)); }
IBoolean Bicycle::operator== (Bicycle const&b) const {
return (MMKey==b.MMKey && Type==b.Type && Price==b.Price);
}
IString const& Bicycle::getKey() const { return MMKey; }

istream& operator>> (istream& is, Bicycle& bike) {
char make[40], model[40];
char typeChoice;
float price=0;
int type=-1;
cin.ignore(1,'\n'); // ignore linefeed from previous input
cout << "\nManufacturer: ";
cin.getline(make, 40, '\n');
cout << "Model: ";
cin.getline(model, 40, '\n');
bike=Bicycle(make,model,type,price);
return is;

}

ostream& operator<< (ostream& os, Bicycle bike) {/* ... %/} // unchanged

lesson.C

// lesson.C

#include <iostream.h>

#include <irel.h> // was ibag.h

#include "bike.h"

enum bikeTypes { Racing, Touring, MountainBike };
typedef IRelation<Bicycle,IString> MyCollectionType;

MyCollectionType MyCollection;
MyCollectionType::Cursor thisOne (MyCollection);

IBoolean printItem (Bicycle const& bike, void* /* Not used */)

{ /% ... %/}

void addItem() {

Bicycle tbike;

char typeChoice;

float price;

int type=-1;

cout << "Enter item: ";

cin >> tbike;

while (type == -1) {
cout << "Racing, Touring, or Mountain Bike (R/T/M):";
cin >> typeChoice;

174 VisualAge C++ Open Class Library User's Guide

Lesson 4: Changing the Collection

while (cin.fail()) {
cin.clear();
cin.ignore(1000,'\n');
cerr << "Racing, Touring, or Mountain Bike (R/T/M): ";
cin >> typeChoice;

switch (typeChoice) {

case 'r':
case 'R': { type=Racing; break; }
case 't':
case 'T': { type=Touring; break; }
case 'm':

case 'M': { type=MountainBike; break; }
default: { cerr << "Incorrect type, please re-enter\n"; }
}

1

cout << "Price ($$.$$): ";

cin >> price;

price*=100;

tbike.Type=type;

tbike.Price=price;

MyCollection.add(tbike);

}

void TistItems() {/* ... %/ }
void removeltem() {
Bicycle tbike;
int choice, cursct=1;
cout << "\nRemove an item";
cin >> thike;
if (MyCollection.numberOfElementsWithKey(tbike.getkey()) > 0) {
MyCollection.locateElementWithKey(tbike.getKey(), thisOne);
cout << cursct << ", " << MyCollection.elementAt(thisOne) << '\n';
for (cursct=2;
MyCollection.locateNextElementWithKey (
thike.getKey(), thisOne);
cursct++)
{ cout << cursct << ".
<< MyCollection.elementAt(thisOne) << '\n'; }
cout << "\nEnter item to remove, or 0 to return: ";
cin >> choice;
if (choice<=0 || choice > cursct) return;
MyCollection.locateElementWithKey(tbike.getKey(),thisOne);
// locate the first matching element again
for (cursct=2;
cursct<=choice &&
MyCollection.locateNextElementWithKey // check for valid
(tbike.getKey(), thisOne); // next match

cursct++)
s // null Toop - header contains the code to be executed
MyCollection.removeAt(thisOne);
}
else
cerr << "No bicycles of this make and model were found.\n";

}

void showStock() {
Bicycle tbike;
int count;
cout << "Stock information for a model";
cin >> thike;

Chapter 14. Collection Class Library Tutorials 175

Lesson 5: Changing the Implementation Variant

Running the
Program

What You
Have Learned

count=MyColTlection.numberOfElementsWithKey (thike.getKey());

if (count!=1)
cout << "Currently there are " << count << " bicycles ";
else

cout << "Currently there is 1 bicycle ";
cout << " of this make and model in stock." << endl;

}

unsigned long hash (IString const &aKey, unsigned long hashInput) {
return hash((const char*)akKey, hashInput);

}

You can enter multiple bicycles of the same make and model, with different price

or type information, and all such models will appear when you select the “List items”
option. When you ask for stock information, the program displays the number of
elements in the collection that match the make and model information you specify.
When you remove an item, the program asks you for the make and model, displays a
list of matching items, and lets you specify which item to remove. The program
removes that item.

The Collection Class Library offers a wide range of collections with different
characteristics. In this lesson, you learned how to select an appropriate collection
based on the characteristics of the data being placed in the collection and on the
intended uses of the data. Many Collection Classes are accessed or sorted using a
key, and you learned how to define key access, equality, and hash functions, and how
to iterate through a key collection using a key cursor.

Lesson 5: Changing the Implementation Variant

You should pursue changing the default implementation to an implementation variant
only after the program is functionally complete and has been fully debugged. The
purpose of changing to a nondefault implementation variant is to improve
performance. This lesson shows you how to change the code defined in “Lesson 3:
Changing the Element Type” on page 161 so that it is functionally equivalent, but
uses IBagOnSortedDilutedSequence rather than IBag. The lesson assumes that you
have done some analysis of your code, and have determined that this implementation
variant may provide better performance. In the case of a full-fledged application,
once you change the implementation variant, you should compile the program and
time it against the original implementation to determine whether there is a worthwhile
gain in performance.

This section illustrates the following Collection Class concepts:

¢ Changing the implementation variant header file
¢ Changing the implementation variant template and template arguments
e Determining what functions are required by the implementation variant

176 VisualAge C++ Open Class Library User's Guide

Requirements

Setup

Lesson 5: Changing the Implementation Variant

The only implementation variant for a relation is the variant that allows you to use a
generic operations class.

If the collection were still a bag, a number of implementation variants would be
available. In the third lesson, you used the default implementation variant for a bag.
Other implementation variants are:

* Bag on B* key sorted set

e Bag on sorted linked sequence
e Bag on sorted tabular sequence
e Bag on sorted diluted sequence
* Bag on hash key set

For this lesson, you will use the code from the third lesson as a starting point, and
change the default Bag implementation.

Copy the files bike.h, bike.C, Tesson.C, and main.C from the lesson3 directory (not
the lesson4 directory) to the lesson5 directory, and then change your current
directory to the lesson5 directory. Use an editor to modify the files as described
below.

Implementation

To change the default implementation of a collection to another implementation
variant, you need to change the Collection Class file that you include, the collection
typedef, and potentially the element and key functions.

Implementation Variant Header Files: To determine the correct header file to
include, consult the “Class Implementation Variants” section of the chapter on Bag in
the Open Class Library Reference. The header file to include for
IBagOnSortedDilutedSequence is shown as ibagsds.h. You therefore change the
header file to include as follows:

// in lesson.C

// old:

/* #include <ibag.h> */

/] new:

#include <ibagsds.h>

Templates for Implementation Variants: To determine the correct template to
instantiate for the collection typedef, see the implementation variant in the
appropriate collection chapter. In this case, you would look for “Bag on Sorted
Diluted Sequence” in 43 “Bag” in the Open Class Library Reference. The collection
is shown there as:

IBagOnSortedDiTutedSequence <Element>
IGBagOnSortedDilutedSequence <Element, ECOps>

Chapter 14. Collection Class Library Tutorials 177

Lesson 5: Changing the Implementation Variant

Running the
Program

What You
Have Learned

Because you are not defining a generic operations class, you need to use the first
implementation variant. You therefore change the typedef for the collection as
follows:

// old: typedef IBag <Bicycle> MyCollectionType;

// new:
typedef IBagOnSortedDilutedSequence <Bicycle> MyCollectionType;

Element Type Functions: To determine the required element type functions, see the
“Element Type” section for the implementation variant. In the case of
IBagOnSortedDilutedSequence, the only element type function listed that was not
listed for a Bag is the default constructor, which is already defined in Bicycle for
other reasons. If other functions are required for a given implementation variant you
choose to use in an application, use the information on implementing a hash function
in Lesson 4 for hints on where to place and how to code such functions.

No further changes are required. For this lesson, the only implementation variant that
would require additional element type functions is IBagOnHashKeySet, and the required
additional function is a hash function, which is already described in “Lesson 4:
Changing the Collection” on page 167.

The program should have the same behavior, for a given set of inputs, as the
program from “Lesson 3: Changing the Element Type” on page 161. In a complex
application, a change in performance might occur, but in all cases the behavior of a
correctly coded program should be identical for different implementation variants of
the same collection class.

Once a C++ program using the Collection Classes is functionally complete and
error-free, you can focus on performance. The key to good performance of Collection
Classes programs is to select the appropriate implementation variant of a given
collection. Although this lesson did not explain which implementation variant to
choose (since this is largely dependent on the class type being used in the collection
and on other factors beyond the scope of the lessons), it showed you how to change
the implementation variant once the appropriate variant has been selected. {3 See
“Features of Provided Implementation Variants” on page 130 for guidance on what
implementation variants to select for a given application.

178 VisualAge C++ Open Class Library User's Guide

Other Tutorials

Errors When Compiling or Running the Lessons

If you code the programs in this chapter exactly as shown, they should compile
successfully, and should run without any errors except those related to incorrect user
input. Check your code for typographical mistakes or incorrectly placed code if you
get compiler errors.

If you implement element, key, input, or output functions in different ways than those
indicated, and your program does not compile successfully, or compiles but ends with
an exception message when run, you can use Chapter 15, “Solving Problems in the
Collection Class Library” on page 181 to determine the cause. You can also use
Chapter 15 to find errors related to using a different collection or implementation
variant from those specified in the lessons.

Other Tutorials

The Collection Class Library tutorials provided with VisualAge C++ can help you to
learn the concepts of the Collection Classes They are presented in the same order as
the Collection Class Library topics in this book. You should be familiar with the
information in the first three chapters of Part 3 before beginning the tutorials.

Using the Default Classes
When you are learning to use a particular collection, you should first use the default
class of that collection, so that you can gain a fundamental understanding of the
collection before you approach the implementation variants of the collection.

You need to understand the topics covered in the following sections to successfully
complete the tutorials:

Tutorial 1 Use of default implementations (“Instantiation and Object Definition” on
page 95)

Tutorial 2 Adding, removing and replacing elements in a collection (“Adding,
Removing, and Replacing Elements” on page 96)

Tutorial 3 Use of a cursor, locating and accessing elements, and the use of iterators
(“Cursors” on page 98, “Using Cursors for Locating and Accessing
Elements” on page 100, “Iterating over Collections” on page 101)

Tutorial 4 Use of exceptions (Chapter 13, “Exception Handling” on page 145)
After completing the above tutorials, you should be acquainted with the basic features

of the Collection Class Library. For a more thorough understanding of the library,
use the tutorials described below.

Chapter 14. Collection Class Library Tutorials 179

Other Tutorials

Advanced Use
If you want to understand more advanced uses of the classes, use tutorials 5 and 6.
You need to understand the topics covered in the following sections to successfully
complete the tutorials:

Tutorial 5 Exchanging implementation variants (Chapter 10, “Tailoring a Collection
Implementation” on page 125)

Tutorial 6 Using abstract base classes to write polymorphic functions (Chapter 11,
“Polymorphic Use of Collections” on page 139)

Source Files for the Tutorials
Each tutorial's files are stored in a separate directory. The tutorials are contained in
subdirectories with the name ...\tutorialliclcc\tutor? where ? corresponds to the
number of the tutorial (1-6). Every directory contains the following files:

tutor?.rea Read this to understand the purpose of the tutorial.
tutor?.txt Instructions to follow.

tutor?.mak Prepared makefile to compile the example.
solution Directory containing a possible solution.

You will find prepared .c and .h files, where certain parts are missing. The objective
of the tutorials is to apply the information you have learned about the Collection
Class Library by adding the missing parts for each file. Complete the prepared files
following the instructions in instruct.txt. You can compare your solutions to the
solutions directory.

180 VisualAge C++ Open Class Library User's Guide

Problem Determination

Solving Problems in the
Collection Class Library

This chapter helps you solve problems that you may encounter when you use the

Collection Class Library. The following table provides a short summary of each
problem, and directs you to a section containing hints for a solution.

Problem Area Problem Effect Page
Cursor Usage Unexpected results when using cursors 182
Element Functions and Error messages indicating a problem in 182
Key-Type Functions istdops.h
Key Access Function - How to Error messages indicating a problem in 184
Return the Key (1) istdops.h: a local variable or compiler
temporary is being used in a return
expression
Key Access Function - How to Unexpected results when adding an 185
Return the Key (2) element to a unique key collection
Definition of Key-Type Link step returns error message EDC3013 185
Functions
Exception Tracing Unexpected exception tracing output on 186
standard error
Declaration of Template Compiler messages (when templates are 186
Arguments and Element being processed) indicating that an element
Functions (1) type or one of its required element
functions is not declared
Declaration of Template Compilation errors from symbols being 186
Arguments and Element defined multiple times
Functions (2)
Declaration of Template Link errors from symbols being defined 187
Arguments and Element multiple times
Functions (3)
Default Constructor Compiler error messages indicating a 187
problem with constructors
Considerations when Linking Unresolved external references during 188

with Templates

© Copyright IBM Corp. 1993, 1995

linking

181

Element and Key-Type Functions

Cursor Usage

Effect

Reason

Solution

You get unexpected results when using cursors. For example, the elementAt ()
function fails for the given cursor or returns an unexpected element.

You have used an undefined cursor. Cursors become undefined when an element is
added to or removed from the collection.

Cursors that become undefined must be rebuilt with an appropriate operation (for
example, Tocate()) before they are used again. Rebuilding is especially important for
removing all elements with a given property from a collection. Elements cannot be
removed by coding a cursor iteration. Use the removeAl1() function that takes a
predicate function as its argument.

For more information about cursors, see “Cursors” on page 98 and “Removing
Elements” on page 97.

Element Functions and Key-Type Functions

Effect

When compiled, your program causes a compiler error indicating a problem in
istdops.h. The following are examples of such errors:

Message if key is missing

J:\...\ibmclass\istdops.h(166:1) : (E) EDC3013:
"key" is undefined.

j:\...\ibmclass\istdops.h(160:1) : informational EDC3207:
The previous message applies to the definition of template
"IStdKeyOps<Parcel,ToyString>::key(const Parcel&) const".

Message if hash is missing

J:\...\ibmclass\istdops.h(152:1) : (E) EDC3070:
Call does not match any argument list for "::hash".
j:\...\ibmclass\istdops.h(146:1) : informational EDC3207:
The previous message applies to the definition of template
"IStdHshOps<ToyString>::hash(const ToyString&,unsigned long) const".

Message if == is missing

J:\...\ibmclass\istdops.h(81:1) : (E) EDC3054:
The "==" operator is not allowed between "const ToyString" and
"const ToyString".

J:\...\ibmclass\istdops.h(80:1) : informational EDC3207:
The previous message applies to the definition of template
"equal(const ToyString&,const ToyString&)".

182 VisualAge C++ Open Class Library User's Guide

Reason

Solution

Element and Key-Type Functions

Message if < is missing

Jj:\...\ibmclass\istdops.h(105:1) : (E) EDC3054:
The "<" operator is not allowed between "const ToyString"
and "const ToString".

j:\...\ibmclass\istdops.h(103:1) : informational EDC3206:
The previous 2 messages apply to the definition of template
"compare(const ToyString&,const ToyString&)".

Compiler error messages indicating a problem in istdops.h are related to the element
and key-type functions that you must define for your elements. These functions
depend on the collection and implementation variant you are using. The compilation
errors listed above occur when the key() function, the hash() function, operator==, or
operator< are required for your elements, but are defined with the wrong interface or
not defined at all. Whether arguments are defined as const is significant. Compiler
messages do not always point directly to the incorrect function. For example, a
compare function with non-const arguments results in the compilation error:

The "<" operator is not allowed between "const ..".

Verify which element and key-type functions are required for the implementation
variant of the collection you are using. You can find this information for each
collection in the section pertaining to the collection under the heading “Template
Arguments and Required Functions.”

For more information about element and key-type functions, see Chapter 9, “Element
Functions and Key-Type Functions” on page 107.

Note that the same problem may be produced if function declarations and definitions
are not properly separated between .h files and .cpp files. This situation is described
in detail in “Declaration of Template Arguments and Element Functions (1)” on
page 186.

Chapter 15. Solving Problems in the Collection Class Library 183

How to Return the Key

Key Access Function - How to Return the Key (1)

Effect

Reason

Solution

You get a compiler warning similar to:

Message if key is passed by value

J:\...\ibmclass\istdops.h(166:1) : warning EDC3285:
The address of a local variable or compiler temporary is being used
in a return expression.

J:\...\ibmclass\istdops.h(160:1) : informational EDC3207:
The previous message applies to the definition of template
"IStdKeyOps<Word,int>::key(const Word&) const".

Compiler error messages indicating a problem in istdops.h are related to the element
and key-type functions that you must define for your elements. These functions
depend on the collection and implementation variant you are using. Your
global-name-space function key() returns the key by value instead of by reference. A
temporary variable is created for the key within the operator-class function key. The
operator class function key returns the key by reference. Returning a reference to a
temporary variable causes unpredictable results.

The key function must return a reference and must also take a reference argument. If
the key function calls other functions to access the key, it must call those functions
with a reference to the object as an argument, and those functions must return a
reference to the key.

Verify that the global name-space function key correctly returns a key const&
instead of key.

For more information on element and key-type functions, see Chapter 9, “Element
Functions and Key-Type Functions” on page 107.

184 VisualAge C++ Open Class Library User's Guide

Definition of Key-Type Functions

Key Access Function - How to Return the Key (2)

Effect

Reason

Solution

You are adding an element into a unique key collection, such as a key set or a map,
and you are sure that the collection does not yet contain an element with the same
key. Nevertheless, you get unexpected results: IKeyAlreadyExistsException, or the
element is not added and the cursor is positioned to a different element.

This problem has the same cause as the problem described in “Key Access Function
- How to Return the Key (1)” on page 184. However, you did not get the warning
message described above, because you compiled with a lower warning level.

This problem has the same solution as that described in “Key Access Function -
How to Return the Key (1)” on page 184.

Definition of Key-Type Functions

Effect

Reason

You are using a collection class with a key, and you get an error message during the
link step indicating a problem in istdops.h. The following are examples of such
errors:

Message if key() function is undefined
istdops.h(176): (E) EDC3013: "key" function is undefined.

You are using a collection class that requires the element class to provide a key and
you chose to use the method of using a global key() function. You are using
collection class methods in a .cpp file but the .h file with the same name as the .cpp
file does not contain a declaration (prototype) of the global key function.

While compiling the .cpp file, which uses methods of the collection class, the C++
compiler has created or modified a temporary .cpp file in the tempinc directory.
During the link step, this .cpp file is compiled to resolve references to template code.
The error message you encounter refers to this compilation. The .cpp file in the
tempinc directory contains include directives for the collection class template code. It
also contains include directives for a .h file of the same name as the .cpp file that
uses the collection class methods. The template code in istdops.h requires that the
global key() function be known at compilation time. The only file that is included at
this time is the .h file with the same name as your .cpp file. The problem is that the
.cpp file is not included at this time, so a definition or declaration of the global key ()
function in this file is not recognized by the compiler.

Chapter 15. Solving Problems in the Collection Class Library 185

Template Arguments and Element Functions

Solution You must declare the global key() function in the .h file with the same name as the
.cpp file that uses the collection class methods. The definition of the global key ()
function should be in the .cpp file. If you are not sure which .h file is meant by the
message, look in the .cpp file found in the tempinc directory.

Exception Tracing

Effect You get unexpected exception tracing output on standard error, even though the
related exception causing the output is caught.

Reason For each exception raised, the trace function write() of class IException::TraceFn
is called and writes information about the raised exception to standard error. This
trace function write() is called whether the related exception is caught or not.

Solution To suppress the trace output, provide your own IException::TraceFn::write()
tracing function by subclassing IException::TraceFn and register the subclass with
setTraceFunction().

For more information about exception tracing, see the Open Class Library Reference
Volumes 2 and 3.

Declaration of Template Arguments and Element Functions (1)

Effect You get compiler messages when processing templates indicating that an element
type or one of its required element functions is not declared.

Reason The element type or element function is defined locally to the .cpp file that contains
the template instantiation with the element type as its argument. The prelink phase is
executed only by using the header files. Therefore, your declaration local to a .cpp
file is not recognized and causes these compilation errors.

Solution Move the corresponding declarations to a separate header file and include the header
file from the .cpp file.

Declaration of Template Arguments and Element Functions (2)

Effect You get compilation errors from symbols being defined multiple times.
Reason The template instantiation needs to include the type declarations it received as

arguments. Your header files containing type declarations used in template classes
may automatically be included several times.

186 VisualAge C++ Open Class Library User's Guide

Solution

Default Constructor

Protect your header files against multiple inclusion by using the following
preprocessor macros at the beginning and end of your header files:

#ifndef MYHEADER H_
#define MYHEADER H_ 1

#endif

Where _MYHEADER H_ is a string, unique to each header file, representing the header
file's name.

Declaration of Template Arguments and Element Functions (3)

Effect

Reason

Solution

You get link errors from symbols being defined multiple times.

The template instantiation needs to include the type declarations it received as
arguments. Your header files containing type declarations used in template classes
might automatically be included several times.

Verify that you did not define functions in the header files that declare types used in
templates. If you did, you must move them from the header file into a separate .cpp
file or make them inline.

Default Constructor

Effect

Reason

Solution

You get a compiler error similar to the following:

Message for missing default constructor

itbseq.h(25:1) : (E) EDC3222:

"IGTabularSequence<ToyString,IStdOps<ToyString> >::Node" needs a

constructor because class member "ivElement" needs a constructor

initializer.

Names namesOfExtinct(animals.numberOfDifferentKeys());

ANIMALS.C(55:57) : informational EDC3207:

The previous message applies to the definition of template
"ITabularSequence<ToyString>".

Compiler error messages indicating a problem with constructors for a collection are
typically related to the constructors defined for your element. Here the default
constructor for the element is missing.

Define the default constructor for the element class.

For more information about element and key-type functions, see Chapter 9, “Element
Functions and Key-Type Functions” on page 107. The element and key-type

Chapter 15. Solving Problems in the Collection Class Library 187

Linking with Templates

functions required for each collection are listed for each collection type in sections
entitled “Template Arguments and Required Functions.”

Considerations when Linking with Templates

Effect You get unresolved external references during linking that refer to symbols you
cannot explain.

Reason A possible reason for unresolved external references during linking is that template
code cannot be correctly resolved.

Solution 1. Use ICC for linking. ICC knows it has to process templates, LINK386 does not.

2. Use the -Tdp option for linking. This tells ICC it is processing C++ code that
might have templates, so ICC may have to process these templates.

188 VisualAge C++ Open Class Library User's Guide

Part 4. Data Type and Exception Class Library

This part tells you how to use the data type and exception classes. You can use these
classes to create and manipulate strings, date and time information, handle exceptions,
or define your own classes.

Note: For information on the INotificationEvent, INotifier, IObserver, IObserverList,
and IStandardNotifier classes, see Building VisualAge C++ Parts for Fun and Profit.

Chapter 16. Data Types and Exceptions 191
Organization of Classes 191
IBase Class 194
IVBase Class 194
String and Buffer Classes L. 195
DBCS and National Language Support 195
Chapter 17. String Classes 197
What You Can Do with Strings 199
IStringTest Class 211
Chapter 18. Exception and Trace Classes 213
Introduction to the Exception Classes 213
Catching Exceptions Thrown by Class Library Functions 215
Throwing Your Own Exceptions Using the Exception Classes 217
Macros Used with the Exception Classes 218
Using the ITrace Class 221
Chapter 19. Date and Time Classes 225
IDate Class 225
ITime Class 227
Simple Combined Date and Time Example 229

© Copyright IBM Corp. 1993, 1995 189

190 VisualAge C++ Open Class Library User's Guide

Class Organization

Data Types and Exceptions

The Data Types and Exceptions Class Library was developed by IBM, originally as
part of the User Interface Class Library on C Set ++ for OS/2. Because these classes
did not have the graphical-user-interface orientation of other classes in the User
Interface Class Library, the classes were separated from the User Interface Class
Library into a library of their own. On some earlier implementations, this class
library was known as the “Application Support Class Library.”

Organization of Classes

Figure 23 on page 192 shows the organization of the Data Type and Exception
classes that are derived from IBase and those that are derived from IException. Five
other classes do not inherit from any classes and are used to support the derived
classes. See Table 5 on page 194 for information on the names of these classes and
the classes they support. The purposes of the principal classes are described below.
Classes are listed alphabetically.

IBase The base class of most of the other classes in the Data Types,
Exception, and User Interface classes of IBM Open Class Library.
This class provides an output operator and conversion functions
for the library, and typedef synonyms used by other library
classes to make programming easier. You do not need to create
objects of the IBase class; it is described for completeness only.

IBuffer Objects of the buffer classes contain the actual character contents
of objects of the string classes. All manipulation of string
characters is done in the buffer object referenced by the string
object. IBuffer is the buffer class for single-byte character set
objects.

IDate This class provides support for date information. You can
construct IDate objects in a number of ways, and then use IDate
methods to determine the day of the week, month or year,
compare two dates, test a date for certain characteristics, and
obtain the names of days or months that are dependent on the
national-language locale setting in effect at run time.

IDBCSBuffer This class is the buffer class for double-byte character sets.
Double-byte character sets are used for handling languages such as
Japanese, Chinese, and Korean, which contain more symbols than
can be represented by the 256 characters of the single-byte
character set.

© Copyright IBM Corp. 1993, 1995 191

Class Organization

IBase

INotification

IDate ITime IString IHandle TPair
Event
. . - - IString .
IVBase IReference IRectangle TPointArray 10String Handle TPoint
IBuffer IErrorInfo IStringParser]Strinsngi;rser:: ITrace IStringTest IRange 1Size
ICLib IGUI ISystem IXLib IStringTest
IDBCSBuffer ErrorInfo ErrorInfo ErrorInfo ErrorInfo MemberFn
IRefCounted IObserver IObserver:: IObserver INotifier
Cursor List
: IStandard
[Exception Notifier
TAccess TAssertion IDevice IInvalid IInvalid IResource
Error Failure Error Parameter Request Exhausted
10utOf IOutOfSystem [OutOfWindow|
Memory Resource Resource

Figure 23. Organization of Data Types and Exceptions Class Library. Some class names have been split into two lines to fit in

their boxes.

IErrorInfo

The IErroriInfo class is an abstract base class that defines the
These classes retrieve error
information and text that is then put into an exception object.

interface for its derived classes.

192 VisualAge C++ Open Class Library User's Guide

IException

I0bserver

IString

IStringTest

ITime

ITrace

IVBase

10String

Class Organization

The IException class is the base class from which all exception
objects thrown in the library are derived.

This class, along with the I0bserverList, INotifier,
IStandardNotifier, and IObserver::Cursor classes, lets you
register observers with class objects so that you can be notified
when a change to such an object takes place. For further
information on using these classes, see Building VisualAge C++
Parts for Fun and Profit.

This class gives you a greater flexibility in handling strings than
traditional C-style character arrays. The IString class supports
both single- and double-byte character sets. With IString objects,
you can code string-handling operations much more quickly. For
example, you can concatenate two strings simply by using the +
operator, or compare them using the == operator.

This class is provided so that you can define your own version of
the matching function used by IString search and compare
methods.

You can use this class to create time-of-day objects and to
compare them, add them together, extract specific information
from them, or write them to an output stream.

Objects of the ITrace class provide module tracing. Whenever an
exception is thrown by the library, trace records are output with
information about the exception. You can use environment
variables to redirect the trace output to a file.

This class is a virtual base class used to derive other classes such
as the buffer classes.

This class is identical to the IString class, except in its method of
indexing strings. In the IString class, the first character of a
string is at position 1, whereas the same string when stored in an
I0String object has its first character at position 0. I0String is
provided for programmers who are used to the C string-handling
approach of treating strings as starting at position 0. IString and
I0String objects are easily interchanged, and they support the
same set of methods and operators.

One of the most important classes from a programmer's perspective is the IString
class. This class can make your programming much more productive if you do any
amount of string handling. The IString class provides a simpler, safer, and more
flexible way of handling strings than traditional C-style character arrays and the
functions of the string.h library. The IString class has associated classes that give

Chapter 16. Data Types and Exceptions 193

IVBase Class

you even greater flexibility in how you index strings and in how you test for pattern
matches in the searching and replacing functions the class provides.

Table 5. Support Classes for Data Type and Exception Classes

Class Name Supports These Classes
IStringEnum IString

10String

IBuffer

IDBCSBuffer
IMessageText IBase
IException: : TraceFn IException
IExceptionLocation IException

IBase Class

The IBase class provides:

An output operator for the library
Conversion functions for the library
Handling of the message text file
Types for the library

Synonyms

You do not need to create objects of the IBase class. This class is introduced at the
root of the class hierarchy for the following reasons:

e To define the local type Boolean and the enumeration values true and false.

This definition enables these identifiers to be referenced without their scope
qualifier IBase: : within declarations and member function definitions of classes
derived from IBase.

To provide basic functions applicable to many of the classes in IBM Open Class
Library. These functions are asString(), asDebugInfo(), and
operator<<(ostreamd&). Note that asString() and asDebugInfo() do not work
correctly if they are invoked through a pointer or reference to an IBase object,
because the functions are not virtual. IVBase redeclares these as virtual
functions. This means that, if you invoke these functions against an IVBase* or
IVBase& object, the implementation for the actual class of the pointed-to or
referenced object is invoked.

IVBase Class

The IVBase class:

¢ Ensures generic behavior for library classes that have virtual functions

194 VisualAge C++ Open Class Library User's Guide

DBCS and National Language Support

e Allows derived classes to access the type and value names of the IBase class

All functions in the IVBase class should be overridden in derived classes because the
IVBase class does not have access to any useful information about objects of its
derived classes.

String and Buffer Classes

You can store and manage strings using the string and buffer classes. There are two
type of string classes, two types of buffer classes, and two support classes. The two
string classes, IString and I0String, are the main classes. The buffer and support
classes are used to implement the string classes.

The buffer classes, IBuffer and IDBCSBuffer, contain the actual contents of the
string objects. The IDBCSBuffer class supports characters of the double-byte
character set (DBCS). If you are using the string classes, DBCS support is automatic
and transparent.

IBuffer and IDBCSBuffer are purely internal classes used in the implementations of
IString and I0String. They are only used in protected sections of the IString
class. They are described in this guide because you may want to understand them if
you are deriving classes from IString.

The support classes, IStringEnum and IStringTest, provide data types and testing
functions that are used in the string and buffer classes.

DBCS and National Language Support

The library provides double-byte character set (DBCS) support and national language
support (NLS). You can use one source file for your application code and provide
DBCS and NLS support by using separate resource files for the languages you
support. The benefits of this organization include the following:

e The application is easy to maintain, because a single version of the application is
used. This reduces the cost of maintaining your code.

e The application is easy to upgrade because only the source code is upgraded and
then linked to the separate language files for different languages. This reduces
the time and cost of upgrading your code because different language versions can
be generated at the same time.

Because message strings are defined in resource files, they can be translated easily to
your local language without changes to the source code.

You should note the following when creating a DBCS-enabled application:

Chapter 16. Data Types and Exceptions 195

DBCS and National Language Support

¢ String manipulation is DBCS-enabled. The string classes support mixed strings
that contain both SBCS and DBCS characters. Use the string testing functions to
determine if a character is single byte or double byte.

e The IDBCSBuffer class ensures that the search functions do not match the second
or any subsequent bytes of a DBCS character and that the bytes of a DBCS
character will not be split.

196 VisualAge C++ Open Class Library User's Guide

String Classes

String Classes

The string classes define a data type for strings and provide member functions that let
you perform a variety of data manipulation and management activities. They provide
capabilities far beyond those available with standard C strings and the string.h
library functions.

The string classes have the following capabilities:

¢ String buffers are handled automatically.

¢ Strings can contain both SBCS and DBCS characters.

¢ Strings can be indexed by character or by word.

e Strings can contain null characters. (There are no restrictions on the contents of
a string object.)

Member functions of the string classes allow you to:

e Use strings in input and output

¢ Access information about strings

e Compare strings

e Test the characteristics of strings

e Search for characters or words within a string

¢ Manipulate and edit strings

e Convert strings to and from numeric types

e Format strings by adding or removing white space

Introduction to the String Classes
There are two string classes: IString and I0String. They are identical except for
the method each uses to index its characters. The characters of an IString object are
indexed beginning at 1. 10String characters are indexed beginning at 0. {3 See
“Indexing of Strings” on page 198 for more information on the indexing of the string
classes. The string class you should use depends on which indexing scheme you
prefer or find easier to implement.

Objects of IString and objects of I0String can be freely intermixed in a program.
Objects of one class can be assigned objects of the other. Arguments that require an
object of one will accept objects of the other. You will only notice a difference
between an IString and an I0String when you are using functions that use or
return a character index value.

In this chapter, only the IString class is presented. However, for every function of
the IString class, there is a corresponding and identically named function of the

© Copyright IBM Corp. 1993, 1995 197

Indexing of Strings

I10String class. The I0String version of each function accepts the same arguments
and has the same return type as the IString version, except that all parameters of
type IString become I0String. Any other differences between the IString and
I0String versions of the function are noted in the function descriptions in the Open
Class Library Reference.

String Buffers
When you create an object of a string class, the actual characters that make up the
string are not stored in the string object. Instead, the characters are stored in an
object of a buffer class.

The use of a buffer object is transparent to you when using the string classes. A
correctly sized buffer is automatically created when you create a string object. The
buffer is destroyed when a string object is destroyed. When you manipulate or edit a
string, you are actually manipulating and editing the buffer object that contains the
characters of the string.

Double-Byte Character Set Support
Objects of the IString class and the I10String class can contain a mixture of
single-byte characters and double-byte characters. All member functions allow for the
mixture. The searching functions will not match a single-byte character with the
second or subsequent byte of a double-byte character. Functions that return
substrings will never separate the bytes of a double-byte character.

Although the double-byte characters are supported, you must be careful not to alter
the contents of a string in a way that would corrupt the data. For example, the
Statement:

IString[n]="'x";
would be an error if the nth byte of the IString was part of a double-byte character.

Indexing of Strings
Objects of the string classes are arrays of characters. There are two types of indexes
used with the arrays. The first is a character index: each character is numbered from
left to right starting at the number 1 in the IString class and the number O in the
I0String class. Therefore in the IString “The dog is brown,” the letter “i” has an
index value of 9. In the I0String “The dog is brown,” the letter “i” has an index
value of 8.

The second type of index is the word index. In the word index, each

white-space-delimited word is numbered from left to right starting at the number 1.
The word index is the same for IString objects and I10String objects. Therefore in

198 VisualAge C++ Open Class Library User's Guide

Creating and Copying Strings

the IString “The dog is brown,” the word “is” has an index value of 3. In the
10String “The dog is brown,” the word “is” also has an index value of 3.

The only difference between objects of the IString class and objects of the
I0String class is the starting value for the character index.

What You Can Do with Strings

This section describes the wide range of string handling capabilities provided by the
IString class. If you have a particular task you want to learn about from the list
below, you can look that task up now and find references to appropriate IString
functions. If you want an overview of all the capabilities of the IString class, read
the entire section. The tasks are:

e Creating and copying strings

* Doing string input and output

¢ Concatenating strings

¢ Finding words or substrings within strings

¢ Replacing, inserting, and deleting substrings
* Determining string lengths and word counts
¢ Extending strings

¢ Converting between strings and numeric data
¢ Converting between strings and different base notations
e Testing the characteristics of strings

e Formatting strings

Many of the IString operators and functions are overloaded to support both
IStrings and arrays of characters as return types and arguments. For example, the
comparison operators (==, >, <, >=, <=, =) all support either two IString operands or
one IString and one array of characters operand. The array of characters operand
can be on either side of the comparison operator. See the descriptions of individual
member functions in the Open Class Library Reference to determine what
combinations of IString and array of characters are supported for a given function
or operator.

Creating and Copying Strings

IString
Constructors

You can create IStrings using constructors, and you can copy IStrings using copy
constructors, assignment operators, and substring functions.

You can use IString constructors that construct null strings, that accept a numeric
argument and convert it into a string of numeric characters, or that translate one or
more characters into an IString. You can also create a single string out of up to
three separate buffers, whose contents are concatenated into the created IString

Chapter 17. String Classes 199

Creating and Copying Strings

l
eg]
a

Copying
IStrings

object. The following example shows some of the above ways of creating IString
objects:

#include <istring.hpp>

#include <iostream.h>

void main() {
IString Numberl(123); // --> Numberl ="123"
IString Number2(123.12); // --> Number2 ="123.12"
IString Character('a'); // --> Character ="a"
IString Stringl("a"); // --> Stringl ="a"
IString String2("and"); // --> String2 ="and"
IString String3("a\@d"); // --> String3 ="a"
1

Note that the last string (String3) is initialized with only the first byte of quoted text.
The null character in the char* constructor argument is interpreted by the compiler
as a terminating null. However, the IString class does support null bytes within
strings. To construct String3 as the example intended, you could write:

/...

IString String3("and");

String3[2]="\0";

If this string is later copied to another string, the null character and following
characters are also copied:

IString String4=String3;
String4[2]='N"; // --> Stringd ="aNd"

The IString assignment operator and copy constructor both copy one string to
another string. One of the strings can be an array of characters, or both may be
IString objects. The IString assignment operator and copy constructor offer the
following advantages over the strcpy and strdup functions provided by the C
string.h library:

* When an IString object is copied, a new copy of the string is not made. Instead,
the two strings point to the same buffer location. The object is only copied if
one of the strings is changed. This means that, for strings that are copied but
where neither the source string nor the copy is subsequently changed,
performance is improved by the amount of time it would have taken to make the
new copy.

¢ The notation is simple and intuitive. To copy Stringl into String2, you simply
code String2=Stringl. With strings defined using the traditional char* method,
such an assignment merely copies a pointer to the original string. With IString
objects, the assignment copies each byte of the string into the new string.

* You do not have to determine the length of the source string and allocate
sufficient storage to store it in the target string before the assignment. IString
takes care of allocating the storage for you, whether the target string is being
constructed within the assignment or has already been constructed. This reduces

200 VisualAge C++ Open Class Library User's Guide

Creating and Copying Strings

the risk of memory violations. In the following example, String2 is constructed
and initialized, and then copied to (its original contents are overwritten), while
String3 is copy-constructed to contain a copy of Stringl. Notice that String2's
length is extended by the assignment operation.

IString Stringl="A longer string than String2";

IString String2="A short string";

IString String3=Stringl; // initialized to Stringl

String2=Stringl; // extended to fit Stringl

e The string being copied can contain null characters anywhere within it, and the
entire string will be copied.

e If you accidentally create an array of characters without the terminating null, the
strcpy function may continue copying past the storage allocated for the string.
This can cause storage violations, or, at the least, it can corrupt the data in the
target string. The length of IString objects is not determined by a terminating
null, so storage violations and corrupt target strings are less likely.

Creating You can use the subString function to return a new IString object containing a
Substrings of portion of another IString. This function lets you create an IString containing the
Strings leftmost characters, rightmost characters, or characters in the string's middle. The

following example shows calls to subString that create substrings with leftmost,
rightmost, or middle characters:
// Using the subString method of IString

#include <iostream.h>
#include <istring.hpp>

void main() {
IString A11("This is the entire string.");

// Left -> subString(1, Tength)
IString Left=A1T.subString(1,5);

// Middle -> (startpos, length)
IString Midd1e=A11.subString(6,14);

// Right -> (string Tength - (substring length - 1))
IString Right=AT1.subString(A11.1ength()-6);

COUt << II<II << A‘l'l << II>\nII
<< "<" << Left << ">\n"
<< "<" << Middle << ">\n"
<< "<" << Right << ">" << endl;

This program produces the following output:

<This is the entire string.>
<This >

<is the entire >

<string.>

Chapter 17. String Classes 201

Concatenating Strings

Doing String Input and Output

3

l
eg]
a

The IString class overloads the input and output operators of the I/O Stream Class

Library so that you can extract IString objects from streams and insert IString

objects into them. The input operator reads characters from the input stream until a

white-space character or EOF is encountered. The IString class also defines a

member function to read a single line from an input stream. The following example

shows uses of the input and output operators for IString and the 1ineFrom function:
//Using the IString I/0 operators and the TineFrom function

#include <istring.hpp>
#include <iostream.h>

void main() {
IString Strl, Str2, Str3;
Strl="Enter some text:";
char test[80];

// Write prompt
cout << Strl;
// Get input
cin >> Str2;
// This only reads in one word of text, so we should
// check to see if this was the only word on the Tine:
if (cin.peek()!="\n") {
// there's more text on this line so ignore it
cin.ignore(1000,'\n');
}
// Change prompt
Strl.insert("more ",Strl.indexOf(" text:"));
// Write prompt again
cout << Stri;
// Get line of input
Str3=IString::lineFrom(cin,'\n');
// Write output
cout << "First word of first input: " << Str2 << '\n'
<< "Full text of second input: " << Str3 << endl;

}

This example produces the output shown below in regular type, given the input
shown in bold:

Enter some text:Here is my first string

Enter some more text:Here is my second string

First word of first input: Here

Full text of second input: Here is my second string

Note that, although null characters are allowed within an IString object, a null
character in an input string is treated as the end of the input, and a null character in
an IString being written to an output stream ends the output of that IString.

Concatenating Strings

The IString class defines an addition operator (+) to allow you to concatenate two
words together. An addition assignment operator (+=) lets you assign the result of the
concatenation to the left operand. The copy() member function lets you create an

202 VisualAge C++ Open Class Library User's Guide

IString consisting of multiple copies of itself or of another string. The following

Finding Words or Substrings

example shows ways of concatenating text onto the start or end of an IString:

il
‘eg. N\
d

void main()

// Concatenating strings

#include <iostream.h>
#include <istring.hpp>

{

IString Strl="Let ";
IString Str2="us ";

IString Str3="concatenate ";
IString Str4="repeatedly

IString Str5=Strl+Str2; // Add Strl and Str2 and store in Str5;

Str5+=Str3; // Add Str3 to Strb
Strd.copy(3); // Copy Str4 several times onto itself
Str5+=Stra; // Add Str4 to Strb

cout << Str5 << endl; // Write String 5

}

This program produces the following output:

Let us concatenate repeatedly repeatedly repeatedly

Finding Words or Substrings within Strings
A wide range of functions are available to let you find words, substrings, patterns, or
individual characters within a string. You can even do wildcard searches: for

example, you can search through a string to find a substring that begins with the

letters "Ar" followed by one or more characters, followed by the letters "rk".

The following example shows a number of the searching functions available for

IString objects. Comments describe the type of search operation being carried out.

// Searching for substrings

#include <iostream.h>
#include <istring.hpp>
void main() {

IString Strl="This string contains some sample text in English.";
IString Str2=Strl.subString(27); // positions 27 and following:

cout <<

// "sample text in English."
"The string under consideration is:\n\n"

<< Strl << "\n\n";

// 1. Count the number of occurrences of a substring within the string

cout <<
<<
<<

// 2. Find

"The substring \"in\" occurs
Strl.occurrencesOf("in"
" times in the string.\n";

the first occurrence of a substring:

// (Note that the substring can be a char, char*, or IString value)

cout <<
<

A

// 3. Find

cout <<
<<

"The Tetter 'x' first occurs at position
Strl.indexOf('x') << ".\n";

the first occurrence of any letter of those specified:

"One of the letters q, r, or s first appears at position
Strl.indexOfAnyOf("grs") << ".\n";

Chapter 17. String Classes

203

Replacing, Inserting, and Deleting

// 4. Find the first occurrence of any letter other than those specified:

cout << "The first letter that is not in \"Think\" "
<< "appears at position "
<< Strl.indexOfAnyBut ("Think") << ".\n";

// 5. Find the index of a word

cout << "The third word starts at position "
<< Strl.indexOfWord(3) << ".\n";

// 6. Find a match to a phrase, and return the position of the
// first matching word

cout << "The phrase \"" << Str2 << "\" starts at word number "
<< Strl.wordIndexOfPhrase(Str2) << " of the string.\n";

// 7. Do a wildcard search to see if the string starts with "Th",
// contains "co", and ends with "sh."

cout << "Does the string match the wildcard search string "
<< "\"Thxcoxsh.\"?\n";

if (Strl.isLike("Th*co*sh.")) cout << "Yes.";

else cout << "No.";

cout << endl;

}

This program produces the following output:

The

Thi

The
The
One
The
The
The
Doe
Yes

string under consideration is:
s string contains some sample text in English.

substring "in" occurs 3 times in the string.

lTetter 'x' first occurs at position 36.

of the Tetters q, r, or s first appears at position 4.

first letter that is not in "Think" appears at position 4.

third word starts at position 13.

phrase "sample text in English." starts at word number 5 of the string.
s the string match the wildcard search string "Th*co*sh."?

Replacing, Inserting, and Deleting Substrings
The ability to manipulate the contents of an IString is one of the greatest advantages

of

the IString class over the traditional method of using string.h functions to

manipulate arrays of characters. Consider, for example, a function that perform the

fol

lowing changes on a string. Issues that you need to address when using arrays of

characters, but that are handled for you by the IString class, are shown in
parentheses:

1. Replace all occurrences of Blue with Yellow (string must be expanded by two

characters for each replacement, and text after the replacement must be shifted
out).

2. Replace all occurrences of Orange with Pink (string must be shortened by two

characters for each replacement).

204 VisualAge C++ Open Class Library User's Guide

String Lengths and Word Counts

3. Delete the sixth word of the string. (How are words delimited? By spaces?
Carriage returns? Tab characters? What about multiple adjacent whitespace
characters?)

4. Insert the word Dark as the fourth word or at the end of the string if the string
has fewer than three words. (String must be extended. How are words
delimited? Do you add a space before or after the word?).

You can easily handle the above requirements using IString member functions. The
sample function fixString() below implements the requirements. Numbered
comments correspond to the numbers of the requirements:

// Inserting, deleting and replacing substrings

#include <iostream.h>
#include <istring.hpp>

void fixString(IString&);

void main() {
IString Strl="Light Blue and Green are nice colors. ";
Strl+="But so are Red and Orange.";
cout << Strl << endl;
fixString(Strl);
cout << Strl << endl;

}

void fixString(IString &myString) {
myString.change("Blue", "Yellow"); // 1. Change Blue to Yellow
myString.change("Orange", "Pink"); // 2. Change Orange to Pink
myString.removeWords(6,1); // 3. Remove words, starting at word 6,
// for a total of 1 word.
int Word4=myString.indexOfWord(4);

if (Word4>0) // 4. Insert "Dark" as fourth word
myString.insert("Dark ",Word4-1); // or at end of string if string
else // has fewer than 4 words. The
myString+=" Dark"; // insertion occurs 1 byte before
} // word 4 (otherwise it inserts

// in the middle of word 4).

This program produces the following output:

Light Blue and Green are nice colors. But so are Red and Orange.
Light Yellow and Dark Green are colors. But so are Red and Pink.

Determining String Lengths and Word Counts
You can determine not only the length of a string, but the number of words within
the string, or the length of a particular word in the string. The length of a string is
not affected by any null characters you insert in the middle of the string. (The
strlen function of string.h treats any null character in an array of characters as a
terminating null.)

The following descriptions assume that ThisString contains the text “This string has
five words.”

Chapter 17. String Classes 205

Numeric Conversions

The length and size functions both return the length of an IString. For example,
ThisString.size() returns the value 26, as does ThisString.length().

To determine the number of words in a string, use the numWords member function.
For example, ThisString.numWords() returns the value 5.

To determine the length of a particular word, use the TengthOfWord member function.
For example, ThisString.lengthOfWord(3) returns the value 3.

Extending Strings

With arrays of characters, unless you allocate more storage than originally required
for a string, you can only extend a string by allocating a new chunk of storage,
moving the existing string into the new area, and extending it there.

IString objects are automatically extended for you whenever an IString operator or
function requires the extension. This lets you spend more time coding useful
function, and less time trying to track down the source of memory violations or data
corruption. You can even use the subscript operator to assign a value to a position
beyond the end of the string. The following example, by indexing past the end of
ShortString, causes the string to be padded with blanks up to position 119, and the
letter “a” is added at position 120:

IString ShortString="A short string";
ShortString[120]="a";

The + and += operators, the assignment operator, and all member functions that
change the contents of a string automatically allocate additional storage for the string
if that storage is required. This can drastically reduce the amount of string-handling
code you need to write.

Converting between Strings and Numeric Data

The IString class provides a number of as... functions that convert from IString
objects to numeric types. You can also convert from numeric types to IString
objects by using the versions of the IString constructor that take numeric values as
arguments. The following example shows various IString functions that convert
between strings and numbers:

// Conversion between IString and numeric values

#include <iostream.h>

#include <istring.hpp>

void main() {

IString NumStr=1.4512356919E1; // Initialized with a float value

int Integer=NumStr.asInt(); // Convert to integer value

float Float=NumStr.asDouble(); // C++ conversion rules allow asDouble's
// result to be converted to float

double Double=NumStr.asDouble(); // Convert to double value

NumStr=688; // Assign another integer value

206 VisualAge C++ Open Class Library User's Guide

Base Conversions

cout.precision(20); // Set precision of cout stream
cout << "Integer: " << Integer << "\nFloat: " << Float
<< "\nDouble: " << Double << "\nString: " << NumStr << endl;

}

This program produces the following output:

Integer: 14

Float: 14.512356758117676
Double: 14.512356919
String: 688

You can also change the base notation of IString objects containing integer
numbers, by using the d2... functions, which convert from decimal to binary,
hexadecimal, or character representations. Conversion functions are described in the
next section.

Converting between Strings and Different Base Notations
You can use the format conversion functions to change the way the data in a string is
represented. These functions are overloaded so that each function has two versions.
The nonstatic version replaces the value of the string with the converted value. The
static version preserves the original string and returns a new string object containing
the converted value. For example:

aString.c2b(); // Changes value of aString
IString binaryDigits = c2b(aString); // Preserves value of aString

The conversion functions check the format of the source string to make sure it is
compatible with the source format implied by the function name. For example, if you
use the b2d function to convert a string from binary to decimal, the function first
checks that the string contains only the digits ‘0’ and ‘1’. If it contains any
characters other than those allowed by the source type, the format conversion
functions always return O.

The following example shows the use of the conversion functions. If you examine
both the example and the output provided below, you can see how to use the
functions.

// 1String conversion functions

#include <istring.hpp>

#include <iostream.h>

enum Bases {Bin, Dec, Hex, Char};

IString Base[4]={"binary", "decimal", "hex", "character"};
IString NumStr;

void Show(int From, int To, IString& Result) {
cout << NumStr << " in " << Base[From] << " is
<< Result << " in " << Base[To] << '.' << endl;
1

Chapter 17. String Classes 207

Testing String Characteristics

void main() {
IString NewStr;
NumStr="122";
NewStr=IString::d2b(NumStr); Show(Dec,Bin,NewStr);
NewStr=IString::d2x(NumStr); Show(Dec,Hex,NewStr);
NewStr=IString::d2c(NumStr); Show(Dec,Char,NewStr);
NumStr="Hat";
NewStr=IString::c2b(NumStr); Show(Char,Bin,NewStr);
NewStr=IString::c2d(NumStr); Show(Char,Dec,NewStr);
NewStr=IString::c2x(NumStr); Show(Char,Hex,NewStr);
NumStr="5F";
NewStr=IString::x2b(NumStr); Show(Hex,Bin,NewStr);
NewStr=IString::x2d(NumStr); Show(Hex,Dec,NewStr);
NewStr=IString::x2c(NumStr); Show(Hex,Char,NewStr);
NumStr="0110100001101001";
NewStr=IString::b2d(NumStr); Show(Bin,Dec,NewStr);
NewStr=IString::b2x(NumStr); Show(Bin,Hex,NewStr);
NewStr=IString::b2c(NumStr); Show(Bin,Char,NewStr);
}

The output from this program resembles the following. Depending on the code page
and character set (ASCII or EBCDIC) of the system you are running the program on,
the values may vary.

122 in decimal is 01111010 in binary.

122 in decimal is 7A in hex.

122 in decimal is z in character.

Hat in character is 0100100001100001011101060 in binary.
Hat in character is 4743540 in decimal.

Hat in character is 486174 in hex.

5F in hex is 01011111 in binary.

5F in hex is 95 in decimal.

5F in hex is _ in character.

0110100001101001 in binary is 26729 in decimal.
0110100001101001 in binary is 6869 in hex.
0110100001101001 in binary is hi in character.

Testing the Characteristics of Strings
The IString class lets you test your strings to determine characteristics such as the
following:

e Whether they represent valid hexadecimal, decimal, or binary values

e Whether they contain only letters, letters and numbers, uppercase letters,
lowercase letters, or punctuation characters

¢ Whether they contain all SBCS or DBCS characters

This list covers only a few of the testing functions provided by IString.

The testing functions return a value of type Boolean or IBoolean, indicating either
True or False for the tested characteristic. For example, the function
isBinaryDigits() returns False for the IString value “1101121101.”

The testing functions all have names beginning with is..., because they ask a
question, such as “is the IString made up only of binary digits?”” For a complete list
of the testing functions, see the Open Class Library Reference. The following
example shows how you can use a subset of these functions:

208 VisualAge C++ Open Class Library User's Guide

Testing String Characteristics

// Evaluating strings using the IString is... methods

#include <istring.hpp>
#include <iostream.h>

void evaluate(IString& StringToTest) {
if (StringToTest.isPrintable())
cout << "Evaluating the string " << StringToTest << ":" << endl;
else
cout << "Evaluating an unprintable string:" << endl;
if (StringToTest.isDigits())

cout << " Contains only digits 0-9." << endl;
if (StringToTest.isAlphabetic())
cout << " Contains only alphabetic characters." << endl;
if (StringToTest.isAlphanumeric())
cout << " Contains only alphabetic and numeric characters." << endl;
if (StringToTest.isBinaryDigits())
cout << " Contains only zeros and ones." << endl;
if (StringToTest.isHexDigits())
cout << " Contains only hex digits 0-9, a-f, A-F." << endl;

if (StringToTest.isControl())
cout << " Contains only ASCII values 00-1F, 7F." << endl;
if (StringToTest.isLowerCase())

cout << " Contains only lowercase letters a-z." << endl;
if (StringToTest.isUpperCase())

cout << " Contains only uppercase letters a-z." << endl;
if (StringToTest.isSBCS())

cout << " Contains only SBCS characters." << endl;

}

void main() {
IString Str[6];

Str[0]="12345"; // numeric, hexadecimal
Str[1]="abcde"; // alphabetic, hexadecimal
Str[2]="10101"; // numeric, binary
Str[3]="abCde"; // alphabetic, hexadecimal
Str[4]="xyz12"; // alphanumeric, lowercase

Str[5]="\x04\x06\x11\x12"; // control, unprintable

for (int i=1;i<6;i++) evaluate(Str[i]);

}

The output from this program resembles the following. Depending on the code page
and character set (ASCII or EBCDIC) of the system you are running the program on,
the results may vary.

Evaluating the string abcde:
Contains only alphabetic characters.
Contains only alphabetic and numeric characters.
Contains only hex digits 0-9, a-f, A-F.
Contains only lowercase letters a-z.
Contains only SBCS characters.
Evaluating the string 10101:
Contains only digits 0-9.
Contains only alphabetic and numeric characters.
Contains only zeros and ones.
Contains only hex digits 0-9, a-f, A-F.
Contains only SBCS characters.
Evaluating the string abCde:
Contains only alphabetic characters.
Contains only alphabetic and numeric characters.
Contains only hex digits 0-9, a-f, A-F.
Contains only SBCS characters.

Chapter 17. String Classes 209

Formatting Strings

Evaluating the string xyzl2:
Contains only alphabetic and numeric characters.
Contains only SBCS characters.
Evaluating an unprintable string:
Contains only ASCII values 00-1F, 7F.
Contains only SBCS characters.

Formatting Strings
You can insert padding (white space) into strings so that each string in a group of
strings has the same length. The center, 1eftJustify, and rightJustify functions all
do this; their names indicate where they place the existing string relative to the added
white space. You provide the final desired length of the string, and the function adds
the correct amount of white space (or removes characters if the string is longer than
the final length you specify). For example:

// Padding IStrings

#include <istring.hpp>
#include <iostream.h>

void main() {
IString s1="Short", s2="Not so short",
s3="Too Tong to fit in the desired field length";
sl.rightJustify(20);
s2.center(20);
s3.leftdustify(20);
cout << sl << '\n' << s2 << '\n' << s3 << endl;

}

This program produces the following output:

Short
Not so short
Too long to fit in t

If a string is too wide, you can strip leading or trailing blanks using the strip...
functions:
// Using the strip... functions of IString

#include <istring.hpp>
#include <iostream.h>

void main() {
IString sl, s2, s3, Long=" Lots of space here "
sl = s2 = s3 = Long;
sl.stripLeading();
s2.stripTrailing();
s3.strip();
cout << ">" << Long << "<\n"
<< ">" << 5] << "<\np"
<< ">" << g2 << "<\np"
<< ">" << 53 << "<" << endl;

This program produces the following output:

> Lots of space here <
>Lots of space here <
> Lots of space here<

>Lots of space here<

210 VisualAge C++ Open Class Library User's Guide

IStringTest Class

You can also change the case of an IString to all uppercase or all lowercase:
// Changing the case of IStrings

#include <iostream.h>
#include <istring.hpp>

void main() {
IString Upper="MANY of THESE are UPPERCASE CHARACTERS";
IString Lower="Many of these ARE Towercase characters";
Upper.change ("MANY","NONE") . TowerCase() ;
Lower.change("Many","None") .upperCase();
cout << Upper << '\n' << Lower << endl;

}

This program produces the following output:

none of these are uppercase characters
NONE OF THESE ARE LOWERCASE CHARACTERS

Other IString Capabilities
This section has described only a portion of the functionality of the IString class.
Many functions described here are overloaded to provide a wider range of
functionality, and many of the functions of the IString class were not described
here. See the Open Class Library Reference for complete descriptions of all the
public IString functions.

IStringTest Class

The IStringTest class lets you define the matching function used in the searching
and testing functions of the string and buffer classes. When a search string is passed
to a searching or testing function, the search string and the string object are compared
on a character-by-character basis. The characters are considered to match if they are
identical. The IStringTest class allows you to define when characters are
considered to match.

For example, you can implement a string test that locates a given occurrence of a
particular character in a string:
// Using the IStringTest class

#include <istring.hpp>
#include <iostream.h>

class Nth : public IStringTest {

char key; // Specifies the character to look for
unsigned count; // Specifies which occurrence to find
pubTic:

//

// Construct an Nth object as follows:

// 1. Create an IStringTest instance whose function type is user,
// with a null character to start;

// 2. Initialize the count to n

// 3. Initialize the key to c

//

Nth(char c, unsigned n)

: IStringTest(user,0), count(n), key(c) { }

Chapter 17. String Classes 211

IStringTest Class

//

// test function: accepts an int (the character to look for)

// checks if the character matches the key

// if so, decrements count

// eventually, count will equal zero if enough matches are found,
// so "return !count" will return true (-1)

// otherwise, "return !count" will return a value other than -1

virtual Boolean test (int c) const

{

if (c == key) // if it matches,
((Nth*)this)->count--; // decrement count
return !count; // return complement of count

// will be true (-1) if count==0
}
}s

void main() {

IString text="this is a test string";

cout << "The fourth appearance of the letter t in the string:\n"
<< text << '\n' << "is at position "
<< text.indexOf(Nth('t',4)) << endl;

This program produces the following output:

The fourth appearance of the letter t in the string:
this is a test string
is at position 17

A derived template class, IStringTestMemberFn, is provided to support the use of the
IStringTest class with any function that accepts its objects as an argument.

A constructor for IStringTest accepts a pointer to a C function. The C function must
accept an integer as an argument and return a Boolean. Such functions can be used
anywhere an IStringTest can be used. Note that this is the type of the standard C
library functions that check the type of C characters, for example, isalpha() and
isupper().

212 VisualAge C++ Open Class Library User's Guide

Exception Classes

Exception and Trace Classes

This chapter outlines some of the ways that you can use the exception and trace
classes. The exception classes are a set of classes that allow you to catch exceptions
based on their type. The trace class ITrace allows you to conveniently put trace
statements in your programs.

Introduction to the Exception Classes
There are three primary ways to use the exception classes:

1. Certain functions in IBM class libraries throw exceptions that are objects of the
exception classes. If you are familiar with the characteristics of the exception
classes, you can take advantage of the exception classes to make your code that
uses the IBM class libraries more robust.

2. You can both throw and catch objects of the exception classes in your own code.
The exception classes provide a convenient way to package information about an
exception.

3. You can derive your own classes from the exception classes.

Characteristics of the Exception Classes
The exception classes have the following characteristics:

e A stack of exception message text strings. These strings allow you to describe
the exception in detail.

e An error ID that lets you uniquely identify what error caused the exception.

e A severity code that lets you determine whether the exception can be recovered
from or not.

¢ Information about where the exception was thrown.

The exception classes’ member functions allow you to:

¢ Add information about where the exception was thrown
e Add text to the description of the exception

¢ Get the error ID of the exception

¢ Determine if the exception is recoverable

¢ Log the exception data

¢ Set the error ID of the exception

* Set the severity of the exception

¢ Set a trace function

© Copyright IBM Corp. 1993, 1995 213

Exception Classes

Derivation of the Exception Classes
The exception classes consist of a base class IException and a set of derived classes:

e TAccessError

e IAssertionFailure
e IDeviceError

e IInvalidParameter
e IInvalidRequest

e IResourceExhausted

In addition, IResourceExhausted has the following derived classes:

e I0utOfMemory
e I0utOfSystemResource
e TQutOfWindowResource

Because all these classes are derived from the IException class, a single catch
statement can catch all of the exceptions that are objects of the exception classes.
The following catch statement, for example, will catch any exception that is an object
of one of the exception classes:

catch(IException &ie){
/...

// code for all exception class exceptions

}

On the other hand, if you wanted to deal with each kind of exception separately, you
could have catch statements that looked like this:

catch(IAccessError &ia){
/...

// code for IAccessError exceptions

}
catch(IAssertionFailure &if){

/...

// code for IAssertionFailure exceptions

}
/...

Situations in Which the Exception Classes Are Used

The following table lists the exception classes and the situations in which they are
typically thrown:

214 VisualAge C++ Open Class Library User's Guide

Catching Exceptions Thrown by Class Library Functions

Exception Class Thrown When ...

IAccessError A logical error occurs, such as "resource not found"
IAssertionFailure The expression in an IASSERT macro evaluates to false
IDeviceError A hardware-related error occurs

IInvalidParameter An invalid parameter is passed

IInvalidRequest An object is in the wrong state for a function

IResourceExhausted A resource is exhausted or currently unavailable

I0utOfMemory Memory is exhausted

Catching Exceptions Thrown by Class Library Functions

Under certain circumstances, member functions of IBM Open Class will throw
exceptions that are objects of the exception classes. You can take advantage of this
fact to make your code that uses these classes more robust.

An Example of the new Operator Throwing an Exception
For example, suppose that you use the new operator to create a huge array of integer
pointers. If there is not enough memory available to satisfy a particular request for
memory, the new operator throws an I0utOfMemory exception.

In the following piece of code, a single invocation of the new operator exhausts all of
the memory that is available for allocation. In this code, the catch statement specifies
the base class IException rather than I0utOfMemory. If you know that a member
function may throw an exception class object, but you do not know its exact type,
you can specify a catch statement like this one to catch all of the possible exception
class exceptions.
// The new operator throwing an exception

#include <iostream.h>

#include <iexcept.hpp>
#include <istring.hpp>

#define TOOBIG 1000000000

void main() {
int i;
try {
intx istr = new int[TOOBIG];

catch(IException &ie)
{
cout << "Type of exception is: " << ie.name() << endl;
cout << "Location of exception is: "
<< je.locationAtIndex(0)->fileName() << endl;

Chapter 18. Exception and Trace Classes 215

Catching Exceptions Thrown by Class Library Functions

if (ie.isRecoverable())

cout << "Exception is recoverable" << endl;
else

cout << "Exception is unrecoverable" << endl;

Assuming that the constant TOOBIG is large enough to exhaust all of the memory
available for allocation, this code produces the following output:
Type of exception is: IQutOfMemory

Location of exception is: ibase.C
Exception is unrecoverable

An Example of the Subscript Operator Throwing an Exception
The subscript operator of the IString class can throw exceptions that are objects of
the exception classes. If you use the subscript operator on an IString object that is
declared const, the operator will throw an InvalidRequest exception if the index is
out of the bounds of the IString object.

In the following piece of code, an IString object is declared const, and then the
subscript operator is used with an index beyond the size of the object.

// Example that causes a subscript out of bounds exception

#include <iostream.h>

#include <iexcept.hpp>
#include <istring.hpp>

void main() {
try {
const IString ConstStr = "OFF";
cout << ConstStr[4] << endl;
}
catch(IException &ie)
{
cout << "Type of exception is: " << ie.name() << endl;
cout << "Location of exception is: "
<< je.locationAtIndex(0)->fileName() << endl;
if (ie.isRecoverable())
cout << "Exception is recoverable" << endl;
else
cout << "Exception is unrecoverable" << endl;

Because the index is beyond the size of the IString object, the subscript operator
throws an exception. When this code is run, the following output is produced:
Type of exception is: IInvalidRequest

Location of exception is: istring5.C
Exception is recoverable

Member functions in the Collections and User Interface class libraries also throw

exceptions that are objects of the exception classes. If you call such functions within
try blocks followed by a catch statement for IException exceptions, you can:

216 VisualAge C++ Open Class Library User's Guide

Throwing Your Own Exceptions

e Make your code more robust by detecting and dealing with exceptions that occur
in class library calls.

e Determine why exceptions are occurring by examining the information that is
passed back in the exception class object.

Throwing Your Own Exceptions Using the Exception Classes

In addition to catching exception class exceptions that are thrown by class library
functions, you can also throw them in your own code. Throwing exception class
exceptions in your own code has the following advantages:

e The exception classes provide a convenient package for exception information.

e If you use one of the predefined exception classes or derive one of your own
from IException, you can use the same catch statement to catch exceptions that
are generated by both class library functions and your own functions.

Consider the following simple example. The getFirstChar function calls the
IASSERTSTATE macro with a get call as an argument. If the get call fails, it returns
zero and the TASSERTSTATE macro throws an IInvalidRequest exception.
// Using the IASSERTSTATE macro

#include <iostream.h>

#include <fstream.h>
#include <iexcept.hpp>

void openFile(fstream& fs, char xfilename){
fs.open(filename, ios::in);

}

char getFirstChar(fstream& fs) {
char c;
IASSERTSTATE(fs.get(c));
return c;

}

void main() {
char c;
char * filename = "source.dat";
fstream fs;
openFile(fs, filename);
try {
¢ = getFirstChar(fs);
cout << "Here is first character: " << ¢ << endl;

catch(IException &ie)
{
cout << "Type of exception is: " << ie.name() << endl;
cout << "Location of exception is: "
<< je.locationAtIndex(0)->fileName() << endl;
if (ie.isRecoverable())
cout << "Exception is recoverable" << endl;
else
cout << "Exception is unrecoverable" << endl;

Chapter 18. Exception and Trace Classes 217

Exception Classes Macros

Suppose that this example is run, and the source.dat file is not available. The call to
open in the OpenFile function will fail. When getFirstChar is called within the try
block, an exception will be thrown by the IASSERTSTATE macro. This exception will
be caught by the catch statement in main, and the output will look something like
this:

Type of exception is: IInvalidRequest

Location of exception is: iopen.C
Exception is recoverable

Macros Used with the Exception Classes

The exception classes support a set of macros that allow you to manage the exception
classes conveniently. You can use these macros to throw exceptions and to declare
and define subclasses of IException or one of its subclasses.

ITHROW
Accepts as input an object of any IException subclass. It expands to
add the location information to the instance, logs all instance data, and
then throws the exception.

IRETHROW

Accepts as input a predefined instance of any subclass of IException
that has been previously thrown and caught. Like the ITHROW macro, it
also captures the location information, and logs all instance data before
rethrowing the exception.

IASSERTSTATE
This macro accepts an expression to be tested as input. The expression is
asserted to be true, meaning that you anticipate that it is true and are
stating so to the compiler. If it evaluates to false, it invokes the
IExcept__assertState function, which creates an IInvalidRequest
exception. Location information is added to the exception, which is then
logged and thrown.

IASSERTPARM
This macro accepts an expression to be tested as input. The expression is
asserted to be true. If it evaluates to false, it invokes the
IExcept__assertParameter function, which creates an
IInvalidParameter exception. Location information is added to the
exception, which is then logged and thrown.

TEXCLASSDECLARE
Creates a declaration for a subclass of IException or one of its
subclasses.

TEXCLASSIMPLEMENT
Creates a definition for a subclass of IException or one of its subclasses.

218 VisualAge C++ Open Class Library User's Guide

Exception Classes Macros

IEXCEPTION_LOCATION
Expands to create an instance of the IExceptionLocation class.

INO_EXCEPTIONS_SUPPORT
Provided in support of compilers that lack exception handling
implementation. If it is defined, the ITHROW macro ends the program
after capturing the location information and logging it, instead of
throwing an exception. This macro may not work correctly on all
compilers.

ITHROWGUIERROR
This macro takes as its only argument the name of the GUI function that
returned an error code. It calls the IGUIError::throwGUIError function,
which creates an IGUIError instance and uses it to create an
IAccessError instance, adds location information, logs out the exception
data, and throws the exception. The exception severity is set to
recoverable. Only used this macro if the error information that is
retrievable by the IGUIErrorInfo class is available.

ITHROWGUIERRORZ
This macro takes three arguments:

e The name of the GUI function that returned an error code

¢ One of the values of the IErrorInfo::ExceptionType enumeration,
which indicates the type of exception to be created

e One of the values of the IException::Severity enumeration, which
indicates the severity of the exception

Only use this macro if the error information that is retrievable by the
IGUIErrorInfo class is available.

ITHROWSYSTEMERROR
This macro takes four arguments:

e The error ID returned from the system function

e The name of the system function that returned an error code

¢ One of the values of the IErrorInfo::ExceptionType enumeration,
which indicates the type of exception to be created

e One of the values of the IException::Severity enumeration, which
indicates the severity of the exception

Why Use the Macros?
You can manage exceptions that are objects of the exception classes directly. You
can call member functions directly to create objects, and query and set their values.
You can also explicitly derive your own classes from the existing exception classes.
Often, however, it is more convenient to use the macros provided by the exception
classes.

Chapter 18. Exception and Trace Classes 219

Exception Classes Macros

Consider the example that used the IASSERTSTATE macro:
// Using the IASSERTSTATE macro
#include <iostream.h>

#include <fstream.h>
#include <iexcept.hpp>

void openFile(fstream& fs, char *filename){
fs.open(filename, ios::in);

}

char getFirstChar(fstream& fs) {
char c;
IASSERTSTATE(fs.get(c));
return c;

}

void main() {
char c;
char * filename = "source.dat";
fstream fs;
openFile(fs, filename);
try {
¢ = getFirstChar(fs);
cout << "Here is first character: " << ¢ << endl;

}
catch(IException &ie)
{
cout << "Type of exception is: " << ie.name() << endl;
cout << "Location of exception is: "
<< je.locationAtIndex(0)->fileName() << endl;
if (ie.isRecoverable())
cout << "Exception is recoverable" << endl;
else
cout << "Exception is unrecoverable" << endl;
}

This code could be rewritten to invoke the exception class member functions directly:
// Invoking the IException member functions directly
#include <iostream.h>

#include <fstream.h>
#include <iexcept.hpp>

void openFile(fstream& fs, char *filename){
fs.open(filename, ios::in);

}

char getFirstChar(fstream& fs) {

char c;

if (!fs.get(c)) {
IInvalidRequest ir(" ", 0, IException::recoverable);
IExceptionLocation i1("imac.C","getFirstChar",5);
ir.addLocation(il);
throw(ir);

}

return c;

}

void main() {
char c;
char * filename = "source.dat";
fstream fs;

220 VisualAge C++ Open Class Library User's Guide

Using the ITrace Class

try {
c = getFirstChar(fs);
cout << "Here is first character: " << ¢ << endl;

catch(IException &ie)
{
cout << "Type of exception is: " << ie.name() << endl;
cout << "Location of exception is: "
<< je.locationAtIndex(0)->fileName() << endl;
if (ie.isRecoverable())
cout << "Exception is recoverable" << endl;
else
cout << "Exception is unrecoverable" << endl;

Notice how the single IASSERTSTATE in the getFirstChar function is replaced with a
test of the return value of get, the definition of an IInvalidRequest object, the
definition of an IExceptionLocation object, and an explicit throw statement. You can
see that the version of the program that uses the IASSERTSTATE macro is simpler and
easier to code.

Using the ITrace Class

The ITrace class provides a set of facilities that allow you to put trace statements in
your code conveniently. The most convenient way to use ITrace is through the
macros that it supports.

Using the Trace Macros to Control Trace Output
The ITrace class is convenient to use because it allows you to turn trace statements
on and off easily. By defining certain macros and by using the macros in the ITrace
class to create trace output, you can selectively turn tracing on and off. There are
three special trace macros:

e IC_TRACE_RUNTIME
e IC_TRACE_DEVELOP
o IC_TRACE_ALL

By defining or not defining these macros, you can specify whether or not the trace
macros are expanded, and thus whether or not your program produces trace output.

If IC_TRACE_RUNTIME is defined, the following macros are expanded:

IMODTRACE_RUNTIME
This macro takes one argument that is the name of the current module. It
creates an ITrace object using the module name as the name of the trace
and the current line number as the line number.

Chapter 18. Exception and Trace Classes 221

Using the ITrace Class

IFUNCTRACE_RUNTIME
This macro takes no arguments. It creates an ITrace object using the
function name as the name of the trace and the current line number as the
line number.

ITRACE_RUNTIME
This macro takes a single argument. This argument is written to the trace
location.

If IC_TRACE_DEVELOP is defined, all of the macros that are expanded when
IC_TRACE_RUNTIME is defined, are also expanded. In addition, the following macros
are expanded:

IMODTRACE_DEVELOP
This macro takes one argument. Typically you use the argument to name
the current module. This macro creates an ITrace object using the
module name as the name of the trace and the current line number as the
line number.

IFUNCTRACE_DEVELOP
This macro takes no arguments. It creates an ITrace object using the
function name as the name of the trace and the current line number as the
line number.

ITRACE_DEVELOP
This macro takes a single argument. This argument is written to the trace
location.

If IC_TRACE_ALL is defined, all of the trace macros are expanded.

An Example of Using ITrace
The following piece of code shows one way that you could use the trace macros to
produce trace output for your programs. In this code, the macros IFUNCTRACE_DEVELOP
and ITRACE_DEVELOP are used to create trace statements that indicate that the flow of
control has passed through the functions openFile and getFirstChar.

// Producing trace output with the ITrace class

#define IC_TRACE_DEVELOP

#include <iostream.h>
#include <fstream.h>

#include <iexcept.hpp>
#include <itrace.hpp>

void openFile(fstream& fs, char *filename){
IFUNCTRACE_DEVELOP();
fs.open(filename, ios::in);
ITRACE_DEVELOP("after open statement");
}

222 VisualAge C++ Open Class Library User's Guide

Using the ITrace Class

char getFirstChar(fstream& fs) {
char c;
IFUNCTRACE_DEVELOP() ;
fs.get(c);
ITRACE_DEVELOP("after get statement");
return c;

}

void main() {
char c;
char * filename = "source.dat";
fstream fs;
//
// static functions to enable tracing and direct
// tracing output to standard output
//
ITrace::enableTrace();
ITrace::writeToStandardOutput();
openFile(fs, filename);
c = getFirstChar(fs);
cout << "Here is first character: " << ¢ << endl;

Notice that, in this code, the static functions enableTrace and writeToStandardOutput
are used to enable tracing and to direct the trace output to standard output.

Because the macro IC_TRACE_DEVELOP is defined, the trace macros produce trace
output. In addition, the trace output has been explicitly directed to standard output,
so the output of the code looks like this:
+openFile(fstream&,charx)
>after open statement
-openFile(fstream&,charx)
+getFirstChar(fstreamd)
>after get statement
-getFirstChar(fstream&)
Here is first character: t

Suppose that you wanted to turn off the trace output in this program. One way to do
it is to modify the code so that the macro IC_TRACE_DEVELOP is not defined. If you do
this, the trace macros are not expanded, and no trace output is produced. The output
of this code with IC_TRACE_DEVELOP not defined looks like this:

Here is first character: t

Chapter 18. Exception and Trace Classes 223

Using the ITrace Class

224 VisualAge C++ Open Class Library User's Guide

Creating an IDate Object

Date and Time Classes

The IDate and ITime classes provide you with data types to store and manipulate
date and time information. With these classes, you can create date and time objects,
and use member functions to do the following:

e Write date and time objects to an output stream

e Access detailed information about dates or times

e Compare dates or times

e Test the characteristics of date or time objects

* Add or subtract days from a date, or hours, minutes, or seconds from a time
e Convert between date formats or between time formats.

The IDate and ITime classes are independent. When an ITime object's time passes
23:59:59 (24-hour format) or 11:59:59 p.m. (12-hour format), it has no effect on the
value of any IDate object. If you want to have interdependent date and time objects
you must create your own class, containing IDate and ITime data members, and
define constructors, operators, and member functions that take into account the
dependency of the IDate and ITime data members. {3y See “Simple Combined Date
and Time Example” on page 229 for an example of how to do this.

IDate Class

The IDate class uses Gregorian calendar dates. The Gregorian calendar is in general
use and consists of the 12, months January to December.

IDate also supports the Julian date format, which contains the year in positions 1 and
2, and the day of the year in postions 3 through 5. If the day of the year is less than
three digits, zeros are added on the left to increase the size to three digits. For
example, February 14, 1965 is 65045 as a Julian date. (February 14 is the 45th day
of the year.)

The IDate class returns the names of the days and months in the language defined by
the current Tocale. For information on defining the Tocale, see the standard C library
function setlocale().

Creating an IDate Object

You can create an IDate object using different IDate constructors. For example:

IDate OneDay(IDate::June,30,1994); // Month, day, year
IDate AnotherDay(23,IDate::April,1961); // Day, month, year
IDate SomeDay(940616); // Julian date format
IDate Yesterday(1994,177); // Year, day of year

© Copyright IBM Corp. 1993, 1995 225

Testing and Comparing IDate Objects

The constructors accepting a month use the IDate enumeration Month, whose
members are named January through December (the months of the year in English).

Changing an IDate Object
You can add days to, or subtract days from, an IDate object. You can also subtract
one date from another, in which case the result is the number of days between the
two dates. For example:

IDate Dayl, Day2?;

int NumDays;

Dayl=IDate::today();

Day2=Dayl+1; // Day2 is one day after Dayl
Day2+=2; // Day2 is now three days after Dayl
NumDays=Day2-Dayl; // NumDays=3

Note that you cannot add two IDate objects together, because such an addition does
not make sense. However, you can add two ITime objects together.

Information Functions for IDate Objects
The IDate class defines information functions that you can use to obtain specifics
about an IDate object. For example, you can find out what day of the week, month,
or year an IDate object's date falls on, or what the name of the day or month is for
the current locale. You can also find out what today's date is. The following
example shows some of the IDate information functions:

// Information functions for IDate class

#include <iostream.h>
#include <istring.h>
#include <idate.h>

void main () {

IDate Dayl(27,IDate::May,1964);

cout << Dayl.dayName() << " "
<< Dayl.monthName() << " "
<< Dayl.dayOfMonth() << " out of "
<< IDate::daysInMonth(Dayl.monthOfYear(), Dayl.year()) << " days in month, "
<< IDate::daysInYear(Dayl.year()) << " days in year "
<< Dayl.year() <<'.' << endl;

This program produces the following output:
Wednesday May 27 out of 31 days in month, 366 days in year 1964.

Testing and Comparing IDate Objects

You can compare two IDate objects to determine whether they are equal, or whether
one is later than the other. The following operators are defined: ==, !=

For example, the expression if ((Dayl>Day2) && (Dayl!=Day3) evaluates to true if
Dayl is January 1 1994, Day2 is June 3 1968, and Day3 is July 12 1941.

<, <=, > >=
s s Ty T

You can also check whether a particular year is a leap year, or whether a particular
combination of day, month, and year is valid. The isLeapYear() function returns

226 VisualAge C++ Open Class Library User's Guide

Changing an ITime Object

True if its integer argument is a leap year. The isValid() function accepts
combinations of day, month, and year (or day of year and year), and returns True if
the provided date is valid. For example, it returns True for the first date below, and
False for the second date:

if (IDate::isValid(IDate::June, 30, 1990)) // ...
if (IDate::isValid(1965,366) // ... False (No day number 366 in 1965)

ITime Class

The ITime class refers to time in the 24-hour format by specifying time units (hours,
minutes, seconds) past midnight. If you want to display ITime objects in the 12-hour
format, you must convert them to IStrings using the asString function with a charx
argument of "%r". (This argument is a format string. All format specifiers of the
strftime() function of the standard C library are supported by the IString
conversion function.)

Note: Objects of the ITime class are precise only up to the nearest second, and
cannot be used for more precise timings.

Creating an ITime Object

You can create an ITime object and initialize it to a number of seconds past or before
midnight, or to a number of hours, minutes, and optionally seconds past midnight:

ITime Timel(33556), // 09:19:16
// 33556 = 9 hours (32400 seconds), 19 minutes (1140 seconds),
// 16 seconds (adds up to 33556)
Time2(-33556), /] 14:40:44
// (9 hours, 19 minutes and 16 seconds BEFORE midnight)
Time3(12,00), // 12:00:00 (noon)
Time4(3,3,3); // 03:03:03

The constructors translate incorrect times into valid ITime objects using modulo
arithmetic. For the seconds past midnight format, any number whose absolute value
is greater than or equal to 86400 is divided by 86400, and the remainder is used to
calculate the time. For the hours, minutes, and optional seconds format, excess
minutes and seconds are added to the hours and minutes values, respectively, and if
the hour exceeds 23 it is divided by 24 and the remainder is taken. For example:

ITime Timel(133556), // 13:05:56 (13356-86400=47156 seconds after midnight)
Time2(-133556), // 10:54:04 (13356-86400=47156 seconds BEFORE midnight)
Time3(10,119,60), // 12:00:00 (noon) (10 hours plus 119 minutes plus 60 seconds)
Time4(33,33); // 09:33:00 (33 hours - 24 hours = 9 hours)

Changing an ITime Object

You can add or subtract two times. Four operators are provided: +, +=, -, and -=.
The following example shows the use of these operators:

ITime Start(12:00), Duration(2:00),
Done=Start+Duration; // Done=14:00

Start=Done-Duration; // Start=12:00 still
Start+=Duration; // Start=14:00
Start-=Duration; // Start=12:00 again

Chapter 19. Date and Time Classes 227

ITime Output Formats

Information Functions for ITime Objects
Three of the information functions return an ITime's hour, minute, or second settings;
the other information function returns the current time as determined by the system
clock. For example:

ITime Timel(ITime::now());
cout << Timel.hours() << " o'clock occurred "
<< Timel.minutes() << " minutes and "
<< Timel.seconds() << " seconds ago." << endl;

This displays a result such as the following:

12 o'clock occurred 16 minutes and 23 seconds ago.

Comparing ITime Objects
Functions are defined to let you compare ITime objects for equality, inequality, or
relative position in time. The following operators are defined: ==, !=, <, <=, >, >=.
In the following example, a message is displayed if enough time elapses between the
first and second calls to the now() member function:

#include <itime.hpp>
#include <jostream.h>
ITime First(ITime::now());
void main() {
ITime Second=ITime::now();
if (First<Second) // Some time has passed
cout << "You must be debugging me!" << endl;

}

This message usually does not print when the program is run outside of a debugging
session. However, if you debug the program and step through each line slowly, the
message may be displayed, because the first ITime object is initialized during
program initialization (before main is called) while the second ITime object is
initialized within main.

Writing an ITime Object to an Output Stream
ITime defines an output operator that writes an ITime object to an output stream in
the format hh:mm:ss. If you want to write the object out in a different format, you
should convert the object to an IString using the asString member function. This
member function accepts a char* argument containing a format specifier. The format
specifier is the same one as used by the C library function strftime. The following
program displays some valid specifiers and the output they produce:

// Examples of ITime output

#include <istring.hpp>

#include <itime.hpp>

#include <iostream.h>
#include <iomanip.h> // needed for setw(), to set output stream width

void main() {
char* FormatStrings[]={
"%H : %M and %S seconds", // %H, %M, %S - 2 digits for hrs/mins/secs
gt // %r - standard 12-hour clock with am/pm

228 VisualAge C++ Open Class Library User's Guide

Combined Date and Time Class

T, // %T - standard 24 hour clock

"5T %7, // %Z - local time zone code

"%IM past %11 %p" // %1... - One digit for hour/minute
}s // %p - am/pm

cout.setf(ios::Teft,ios::adjustfield); // Left-justify output

cout << setw(30) << "Format String" // Title text
<< setw(40) << "Formatted ITime object" << endl;

for (int i=0;i<5;i++) { // Show each time
IString Formatted=ITime::now().asString(FormatStrings[i]);
cout << setw(30) << FormatStrings[i]
<< setw(40) << Formatted << endl;
}

The program produces output that looks like the following:

Format String Formatted ITime object
%H : %M and %S seconds 16 : 13 and 04 seconds
%r 04:13:04 PM

%T 16:13:04

T %2 16:13:04 EST

%1M past %1I %p 13 past 4 PM

Simple Combined Date and Time Example

The following example shows a class MyDateTime that links its date and time data
members together within its addition operator definition. The class has three data
members, one from each of IDate and ITime, and one for the number of days to be
added when the addition operator is used. The class defines two addition operators:
one that accepts another MyDateTime object, and uses the number of days and the time
as the basis for the addition; and one that accepts only an ITime object, and adds that
to the MyDateTime object's time. Both addition operators check for wraparound in the
ITime member, and increment the IDate member if wraparound has occurred.

// Simple combined date-time class
#include <idate.hpp>
#include <itime.hpp>
#include <iostream.h>

class MyDateTime {

public:

IDate date; // date subobject

ITime time; // time subobject

int addDays; // number of days to add for addition operator

// Copy constructor
MyDateTime(IDate adate, ITime atime, int add = 0):
addDays (add), date(adate), time(atime) {}

// Default constructor
MyDateTime() {}

// Addition operator for other MyDateTime objects
MyDateTime operator + (const MyDateTime &aDateTime) const {
MyDateTime temp;

// Add any addDays value to date if necessary
temp.date = this->date + aDateTime.addDays;

Chapter 19. Date and Time Classes 229

Combined Date and Time Class

// Add times together
temp.time = this->time + aDateTime.time;

// If resulting time is greater than original time,
// clock wrapped around, so increment date
if (temp.time < this->time) temp.date += 1;

return temp;

// Addition operator for ITime objects

MyDateTime operator + (const ITime &time) const {
MyDateTime temp;
temp.date = this->date;

// Add time to time member of MyDateTime temporary
temp.time = this->time + time;

// If resulting time is greater than original time,
// clock wrapped around, so increment date
if (temp.time < this->time) temp.date += 1;

return temp;
1
13

ostream& operator << (ostream& os, MyDateTime& dt) {
cout << dt.date << " at " << dt.time;
return os;

}

void main() {
MyDateTime TodayNow(IDate::today(), ITime::now()),
Add, Temp;
Add.addDays = 17;
Add.time = ITime(12,24);
Temp = TodayNow + Add;
cout << "Right now it is " << TodayNow << ".\n"
<< "In 17 days, 12 hours, and 24 minutes, it will be "
<< Temp << "." << endl;

Temp =